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ABSTRACT: The accuracy of Møller–Plesset (MP) perturbation theory and coupled-
cluster (CC) theory can be significantly improved, at essentially no increase in
computational cost, by using summation approximants that model the way in which
these theories converge to the full configuration interaction limit. Approximants for
MP4 and CCSD(T) are presented, their size scaling is analyzed, and the functional
analysis of the MP energy, on which the MP4 approximant is based, is discussed. The
MP approximants are shown to have a form that is appropriate for describing
resonance energies. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 92: 35–46, 2003
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Introduction

H ere, an overview is provided of simple math-
ematical techniques that can significantly im-

prove the accuracy of some standard ab initio meth-
ods with essentially no increase in computational
cost and without the need to modify existing soft-
ware packages. The main focus will be on Møller–

Plesset (MP) perturbation theory. The strategy will
be to determine the mathematical structure of the
MP energy function and then sum the perturbation
theory with a summation approximant that models
this structure [1, 2]. A recently proposed summa-
tion approximant for coupled-cluster (CC) theory
[3] will also be discussed.

A perturbation series should not be taken as an
end in itself but rather as the starting point for a
functional analysis. The MP series is the asymptotic
series (a Taylor expansion) of a function E(z), which
is the analytic continuation of the energy eigen-
value in terms of a perturbation parameter z. The
full configuration interaction (FCI) energy, that is,
the variational solution to the Schrödinger equation
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within a finite basis set expansion of the wave func-
tion, in principle corresponds to E(1), while E(0) is
the sum of Hartree–Fock orbital energies. The MP
series coefficients are proportional to the deriva-
tives of E(z) at z � 0, according to Taylor’s theorem.
These derivatives contain information about the
functional form of E(z) that can be used to construct
summation approximants that model the function
over a larger range of z than does the conventional
power series expansion. The result is an extrapola-
tion from z � 0 to z � 1 that is more accurate than
the usual method for evaluating the MP series.

Additional information about the mathematical
structure of E(z) is available from direct functional
analyses of the MP Hamiltonian [4–6]. Using this
information in conjunction with the perturbation
series proves to be a particularly effective approach.
The functional form of the summation approximant
can be chosen in advance to model the expected
structure of E(z). This strategy greatly improves the
accuracy of MP4. It also makes it possible, at least in
principle, to apply existing MP and FCI calculation
methods to the difficult problem of quasibound
resonance states.

CC theory can also be thought of as a series
solution for the FCI energy, with the same starting
point as the MP series. The mathematical analysis
of this series is much less straightforward. How-
ever, a comparison with benchmark FCI results in
the literature shows that the sequence SCF, CCSD,
CCSD(T) can be extrapolated toward the FCI limit
with a summation approximant in the form of a
continued fraction [3]. A summary of the results,
which are remarkably good in many cases, will be
presented.

Functional Analysis of the
Møller–Plesset Energy

The MP partitioning of the Hamiltonian [7] is

H� z� � H0 � zH1, H1 � Hphys � H0, (1)

where H0 is the sum of one-electron Fock operators
and Hphys is the true Hamiltonian. This partitioning
introduces into the analysis a perturbation param-
eter z as a continuous variable. The energy eigen-
value is obtained as an asymptotic power series in
z of a function E(z). This power series, truncated at
some finite order, provides an approximate extrap-

olation from the sum of orbital energies, at z � 0, to
the physical energy at z � 1.

The accuracy of this extrapolation depends on
the singularity structure of the function E(z) in the
complex z plane [8]. For example, a famous theo-
rem of Cauchy [9] tells us that the power series will
diverge at z � 1 if E(z) has a singularity within the
disk �z� � 1. Even when the series is convergent,
singularities just outside this disk can cause the
convergence rate to be slow.

It is known that E(z) contains a large number of
branch-point singularities. The following result was
proved by Katz [4]:

Theorem 1. Let E(0)(z), E(1)(z), E(2)(z), . . . be the spec-
trum of energy functions corresponding to the power
series in z obtained from MP perturbation theory applied
to the Hamiltonian of Eq. (1) for some given values of all
conserved quantities (angular momentum, for example).
Then, for any i and j there exist branch points zij in the
complex z plane at which E(i)(z) is equal to E( j)(z) such
that in the neighborhood of zij

E�i�� z� � bij � cij�1 � z/zij�
1/ 2, (2)

where bij and cij are constants.

This remarkable theorem implies that the entire
energy spectrum for a given symmetry is described
by a single function E(z) with each eigenstate cor-
responding to a different Riemann sheet of the
function. The sheets are connected by square-root
branch points. The proof is based on an application
of Liouville’s theorem to the function [E(0)(z) �
E(i)(z)]�1, in a manner closely analogous to Li-
ouville’s proof of the fundamental theorem of alge-
bra.

The implication for us of Theorem 1 is that E(z)
will contain complex-conjugate pairs of square-root
branch points scattered throughout the complex z
plane. However, these are not the only kinds of
singularities we need to consider. Consider the fol-
lowing theorem:

Theorem 2. There exists a branch point on the negative
z axis at which the energy function E(0)(z), which cor-
responds to the ground state at z � 0, crosses the energy
function of an ionizing state.

Baker [5] demonstrated the existence of an analo-
gous phenomenon for many-body perturbation the-
ory of nuclear matter and suggested that it should
be a general characteristic of many-fermion sys-
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tems. The specific case of an atomic system was
treated by Stillinger [6] and nicely illustrated with
an analysis of an approximate model for the He
atom. The proof is straightforward. The operator H1
in Eq. (1) contains the interelectron potentials 1/rij.
If z is negative these potentials are attractive. When
z is sufficiently negative the system will dissociate,
with the electrons leaving the nuclei to form a
bound electron cluster. Baker [5] showed that this
dissociation is analogous to a phase transition and
noted that the function E(z) should therefore be
expected to have an algebraic singularity at the
crossing point, as is in general the case for critical
phenomena.

The behavior of the perturbation series of E(0)(z),
at least in the limit of large order, is determined by
the dominant singularity, that is, the singularity
closest to the origin of the z plane. A precise state-
ment of this principle is as follows:

Theorem 3. If the perturbation series is

E� z� � �
n�0

�

Enzn (3)

and if the dominant singularity in the neighborhood of
the singular point z1 has the form

�1� z� � c1�1 � z/z1�
�1 (4)

with Taylor series

�1� z� � �
n�0

�

�1,nzn, (5)

then En � �1,n in the limit of large n.

This was proved by Darboux [10].
If z1 is an algebraic branch point on the negative

real axis then the �1,n will alternate in sign. If the
dominant singularity structure corresponds to a
complex-conjugate pair of square-root branch
points,

�1� z� � c1��1 � z/z1�
1/ 2 � �1 � z/z*1�1/ 2�, (6)

then if �z1 � 0 there will be ranges of n with �1,n of
one sign alternating periodically with ranges with
the opposite sign and if �z1 	 0 there will be
periods with alternating sign separated by two con-
secutive �1,n with the same sign. The length of the
periods is [11]

� � 	/arctan���z1/�z1��. (7)

Theorem 3 tells us the behavior for large n, but at
smaller n nonsingular contributions to the pertur-
bation series and the effects of other more distant
singularities could be more important than the
dominant behavior. In practice MP series for atoms
and molecules often do show behavior consistent
either with that of a dominant Katz branch-point
pair close to the positive real axis or with that of a
singularity on the negative real axis. The former
case has been designated a series of “class A” while
the latter has been designated a series of “class B”
[12, 13]. Cremer and He [13] developed useful qual-
itative criteria for predicting in advance whether a
given system will have a series of class A or of class
B: Class A includes systems with well-separated
Hartree–Fock orbitals and radicals while class B
systems have orbitals that are crowded or that clus-
ter in regions of space. Alkanes, for example, are
typically in class A. Examples of class B are closed-
shell systems with double or triple bonds or with
highly electronegative atoms. It is possible to have
a mixture of class A and class B behavior, due to
singularity structure in both half planes at about the
same distance from the origin, and the resulting
sign patterns in the En can be intricate. An example
is the C2 molecule [14], in which the series behavior
is apparently dominated by two different Katz
branch points, at �0.97 
 0.34i and at 1.18 
 0.36i
[1].

Quadratic Approximants

Consider the three polynomials

PL� z� � �
i�0

L

pizi, (8)

QM� z� � 1 � �
i�1

M

qizi, (9)

RN� z� � �
i�0

N

rizi, (10)

that satisfy the asymptotic relation

QME2 � PLE � RN � �� zL�M�N�1�, (11)
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where E represents the power series, Eq. (3). The
notation “� �(zj)” means that the power series
expansion of the expression on the left side has no
terms with degree less than j. Solving for E, we
obtain a multiple valued summation approximant

S�L/M,N�� z� �
1
2 � PL

QM
�

1
QM

�PL
2 � 4QMRN� . (12)

The two branches (
) of S[L/M,N] are connected by
square-root branch points at the nondouble roots of
the discriminant polynomial,

D�L/M,N�� z� � PL
2 � 4QMRN. (13)

The coefficients pi, qi, ri are determined from the set
of L � M � N � 2 simultaneous linear equations
obtained by collecting terms in Eq. (11) according to
power of z.

Quadratic approximants are a special case of the
algebraic approximants, a general construction in
which the left side of Eq. (11) is replaced by a
polynomial in E of arbitrary degree m, which was
proposed by Padé in his 1892 Ph.D. thesis [15]. The
rational approximants, m � 1, were investigated in
detail by Padé and are well known today. The
higher-degree approximants appear to have been
left largely unexplored until over 80 years later,
when Shafer [16] rediscovered the quadratic ap-
proximants and used them to sum Taylor series for
some simple multiple valued functions. Since then,
the mathematical properties of algebraic approxi-
mants have been explored in more detail [17–20]
and applications have been found for them in var-
ious areas of atomic and molecular physics [21–27].

Quadratic approximants would seem to be well
suited for describing the singularity structure of the
MP energy function. Conventional MP theory uses
the partial summation approximant,

Sn� z� � �
i�0

n

Eizi. (14)

The function Sn(z) is a polynomial, which is non-
singular at all finite z. This is the cause of the MP
series convergence problems that have attracted so
much attention in recent years [14, 28–33]. Sn(z) is
unable to model the singularity structure of E(z).
Quadratic approximants of MP series converge to
the FCI energy, even in cases where the partial
summation approximants diverge badly [1].

In principle, Eq. (12) describes two branches of
E(z). One branch corresponds to the ground state
while the other corresponds to an excited state. It
has been demonstrated [19], in a study of anhar-
monic oscillators, that algebraic approximants can
simultaneously converge on different Riemann
sheets if the perturbation series is known to suffi-
ciently high order, although the rate of convergence
is much faster on the principal sheet. At fourth
order, the MP series only provides enough infor-
mation for the quadratic approximant to accurately
describe the Riemann sheet of the ground state. It is
usually obvious in practice (by comparison with the
value of the rational approximant, for example)
which branch of Eq. (12) gives the ground-state
energy.

q� Summation Method

Large-order MP series can be generated by
means of FCI methodologies [34, 35], but direct
calculation of the series coefficients is at present
feasible only through sixth order [36] and calcula-
tions beyond fourth order are rare on account of the
high computational cost. The fourth-order series
(MP4) shows enough large-order behavior for qua-
dratic approximants to significantly improve the
accuracy on average, but on occasion the quadratic
approximant fails badly and the partial summation
approximant S4 gives the better result [1]. The q

method [2] is a procedure that improves the de-
pendability of the quadratic approximants.

The basic idea is to shift the position of the
dominant singularity away from the origin of the
complex plane by repartitioning the Hamiltonian.
The 
 transformation, originally proposed by Feen-
berg [37] in the context of nuclear physics, is in
particular convenient for this purpose. Let

H�
�� z� �
1

1 � 

H0 � z�H1 �




1 � 

H0� , (15)

where 
 is an arbitrary parameter and H1 is defined
as in MP theory according to Eq. (1). At the physical
point z � 1 this Hamiltonian is equivalent to Hphys,
as is the MP Hamiltonian, H(0)(z), but elsewhere in
the z plane each value of 
 yields a different func-
tion E(z). Schmidt et al. [12] found that

Ei
�
� � �

k�1

i�1 � i � 2
k � 1�
i�k�1�1 � 
�kEk�1 (16)
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for i � 2. Therefore, an advantage of the Feenberg
repartitioning is that the perturbation series coeffi-
cients for arbitrary 
 can be expressed as a linear
combination of the the 
 � 0 series coefficients, Ej,
given by standard software packages. The Hartree–
Fock energy is left unchanged by the 
 transforma-
tion:

E0
�
� � E1

�
� � E0 � E1. (17)

To choose the optimal value of 
 we need to
know the position of the dominant singularity, zd.
The q
 method takes the roots of the discriminant
polynomial, D[L/M,N], as an estimate of the singu-
larity structure. zd is assumed to be approximately
equal to the value of the root nearest the origin.

In practice [1, 2] the quadratic approximant is
applied to a series with the zeroth-order term equal
to the Hartree–Fock energy,

Ẽ�
�� z� � �
i�0

n�1

Ẽi
�
�zi, (18)

where

Ẽ0
�
� � E0

�
� � E1
�
�, Ẽi�0

�
� � Ei�1
�
� . (19)

This is mainly for the sake of convenience because
E0 and E1 are not usually reported individually in
the literature. It seems to have little effect on the
accuracy whether this series or the original series is
used. The two functions are related by

E�
�� z� � �1 � z� E0
�
� � zẼ�
�� z�. (20)

Because the first term on the right side of Eq. (20) is
nonsingular, Ẽ(
)(z) and E(
)(z) will have the same
branch points.

Figure 1 shows the roots of the discriminant as a
function of 
 for the NH2 molecule, a clear example
of a class A system according to the Cremer–He
criteria. At large positive 
 the dominant singular-
ity is in the positive half plane while at large neg-
ative 
 it is in the negative half plane. The MP4
approximant can model the singularity structure in
only one of the half planes at a time. In an interme-
diate range of 
 it makes a sharp transition between
the class A and class B singularities. In fact, the true
Ẽ(
)(z) has singularities in both half planes at all 
.
Only at higher order is there enough information

about the singularities for the approximant to si-
multaneously model class A and class B structure.

The lower panel of Figure 1 shows the MP4
summation error (i.e., the difference between the
summation approximant at z � 1 and the FCI en-
ergy) as a function of 
. The diamond marks the
point corresponding to the maximum zd. The small
increase from the 
 � 0 value of zd has a significant
effect on the summation accuracy. The accuracy is
poor in the transition region of 
 because the ap-
proximant is trying to model the approximately
equidistant singularities in the positive and nega-
tive half planes by placing a single singularity
somewhere in between them. This means that the

FIGURE 1. Branch points and energy error of qua-
dratic approximant for the 2B1 state of NH2 as a func-
tion of repartitioning parameter 
. The perturbation se-
ries is from Ref. [36], with the DZP basis. The upper
panel shows the positions of the branch points of the
quadratic approximant (which lie on the real axis). The
lower panel shows Eapprox � EFCI vs. 
, where Eapprox

is the quadratic approximant S[1/0,1] (solid curve) or the
partial summation approximant S4 (broken curve). The
diamond marks the point corresponding to the maxi-
mum in the dominant singularity of the quadratic ap-
proximant in the positive half plane.
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approximant has a nonphysical singularity near the
origin but has no singularities in either of the re-
gions where the true E(
)(z) is singular. Those cases
in which direct quadratic summation performs
poorly [1] usually have 
 � 0 lying well within the
transition region. The singularity shifting of the q

procedure ensures that the transition region will be
avoided. The behavior for NH2 is typical for class A
systems. For a benchmark set of 10 class A mole-
cules at equilibrium geometries it was found [3]
that the median MP4 error with partial summation
was reduced from 1.890 mEh to 0.109 mEh by the q

approximant.

For class B the situation is somewhat more com-
plicated. For such systems, it is appropriate to in-

troduce the constraint r0 � 0 [1] and use the ap-
proximate with index [1/0, 2] [2]. Figure 2 shows
results for the hydrogen fluoride molecule with the
aug-cc-pVDZ basis [38]. The maximum in �zd� in the
positive half plane and the maximum in the nega-
tive half plane both give good results for the en-
ergy, although the improvement over partial sum-
mation is not as great as for class A systems. The
“q
�” result, corresponding to the maximum in the
negative half plane, gives an error of �0.447 mEh,
compared to �0.882 for the partial sum and 0.536
for CCSD(T). However, for class B there is a strong
correlation between the accuracy of the quadratic
approximant and how far into the negative half
plane zd can be shifted. For hydrogen fluoride, zd
can be shifted as far as �1.90, but for for F�, with
the same basis, zd is only shifted to �1.36. The
conventional MP4 error for F� is �5.502 mEh and
MP4-q
� reduces it to �2.165 mEh, a significant
improvement but still much worse than the
CCSD(T) error of 0.735 mEh. The problem here is
similar to that with the 
 � 0 approximants for class
A systems—singularity structure in both half
planes is being modeled by a single branch point in
between.

In general, the MP4-q
 result tends to be worse
than the CCSD(T) result for class B if zd of the
approximant cannot be shifted beyond �1.5 [2, 3].
Figure 3, which shows �log10�(EMP4�q
 � EFCI)/
Ecorr� as a function of the maximum �zd� for 40
different MP4 series,* demonstrates that singularity
analysis of the quadratic approximant offers a rea-
sonably reliable diagnostic of the summation accu-
racy.

Resonance Eigenvalues

A quasibound unstable resonance can be treated
as an eigenstate of the time-independent Schröd-
inger equation with a complex energy eigenvalue

*The systems are, in order of increasing �zd�, H2O cc-pVDZ
with R � 3Re, H2O cc-pVDZ with R � 2.5Re, CN� cc-pVDZ, C2

cc-pVDZ, C2 cc-pVDZ(�), H2O DZP with R � 2Re, H2O cc-
pVDZ with R � 2Re, HF DZP with R � 2Re, CN STO3G, H2O
DZP with R � 1.5Re, H2O cc-pVDZ with R � 1.5Re, HF cc-pVDZ
with R � 2.0Re, N2 cc-pVDZ, F� aug-cc-pVDZ, F� [4s3p1d], F�

[5s4p2d], F� [4s3p2d], HF DZP with R � 1.5Re, HF cc-pVDZ with
R � 1.5Re, HF aug-cc-pVDZ, HF cc-pVTZ-( f/d), H2O cc-
pVTZ(�), F� cc-pVTZ-( f ), H2O DZP, HF DZP, H2O cc-pVDZ
(core not frozen), Ne aug-cc-pVDZ, H2O cc-pVDZ, Ne [6s4p1d],
Ne [4s2p1d], Ne cc-pVTZ-( f ), F [5s4p2d], F [4s3p2d], F [4s3p1d],
Ne [5s3p2d], HF cc-pVDZ, HCl aug-cc-pVDZ, Cl� aug-cc-pVDZ,
Ne cc-pVDZ, F� cc-pVDZ.

FIGURE 2. Branch point locations and error of the
[1/0, 2] constrained quadratic approximant for the hy-
drogen fluoride molecule as a function of the reparti-
tioning parameter 
. The dash-dot curves in the upper
panel show the imaginary parts of the branch points
while the solid curves show the real parts. The broken
curve shows the energy error from partial summation of
MP4. The diamonds mark the points corresponding to
the maxima in the dominant singularity of the quadratic
approximant. The perturbation series is from Ref. [14]
with the aug-cc-pVDZ basis.
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[39–41]. Such states can be observed spectroscopi-
cally as broad peaks embedded in an unbound
continuum. The real part of the eigenvalue gives
the position of the peak while the imaginary part is
proportional to the linewidth, , according to the
expression (in atomic units)  � �E/2.

Perturbation theories of these eigenvalues typi-
cally give asymptotic series of functions with
branch points. Consider the Eckart potential [42],
the classic model problem of scattering theory, with
the potential energy

V� x� �
Aex

1 � ex �
Bex

�1 � ex�2 , (21)

which is a barrier with maximum value of
V(xmax) � (A � B)2/4B at the point

xmax � ln�A � B
A � B�. (22)

The exact expression for the tunneling resonance
energies is [43]

�n

 �

��
�4B � 1 � �2n � 1�i�2 � 4A�2

16�
�4B � 1 � �2n � 1�i�2 . (23)

Consider a perturbation theory with the zeroth-
order approximation B 3 �, corresponding to an
infinitely high barrier [41]. The scaled energy �n


/4B
can be expanded in terms of a power series in the
parameter

� � 1/�4B. (24)

The exact solution, Eq. (23), can be rearranged and
expressed as a function of � in the form

1
4B �n


��� �
1
2 ����

����
�

�����

���� � , (25)

where �(�), (�), and �(�) are polynomials,

���� � �1 � 4n�n � 1��2�2, (26)

��� �
1
8 �1 � �8A � 4n2 � 4n � 2��2�����

� 2 A2�4�1 � �4n2 � 4n � 2��2�, (27)

���� � 16�2�2n � 1�2�� � A2�4�2��2 � 1�. (28)

Equation (25) has the same general form as the
expression for the quadratic approximant, Eq. (12),
with branch points at � � 
1. This suggests that
quadratic approximants would be well suited for
treating problems of this sort.

Some resonance problems lead to perturbation
theories with a zero radius of convergence, with a
branch point at the origin. An example is the H
atom in an external electric field, which has no
bound states for any nonzero value of the field
strength. The perturbation theory series coeffi-
cients, however, are real numbers. The desired
complex resonance energies are on a different
branch of the energy function than that given by the
perturbation series. One approach to this problem
is to sum the series with a Padé–Borel approximant
with integration over a complex path [43]. Another
approach, which is somewhat simpler, is to sum the
series with quadratic approximants [21]. Both
methods give good results. The true singularity is
more complicated than a square-root branch point.

FIGURE 3. Number of accurate digits in correlation
energy, defined as �log10��E/Ecorr�, �E � EMP4�q
 �
EFCI, as a function of the distance from the origin of the
dominant singularity of the MP4-q
 approximant in the
negative half plane, for a set of 40 class B systems
(see footnote on previous page).
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However, the approximants are able to use group-
ings of square-root branch points to model the sin-
gularity, much as rational Padé approximants are
able to model branch points with groupings of
poles [44].

Quadratic and higher-degree approximants have
also been used to calculate resonance energies for
anharmonic oscillators [19] and for quasibound mo-
lecular rotation eigenstates [23]. It remains to be
seen whether this approach could be applied to MP
perturbation theory to obtain molecular electronic
resonance energies. The other applications required
high orders of perturbation theory to obtain reason-
able results. One possibility would be to generate a
large-order perturbation expansion from a bound-
state FCI calculation [34, 35] and then use quadratic
or Padé–Borel approximants to obtain the complex
energy. For example, one might calculate the (pure
real) large-order MP perturbation series for a meta-
stable anion such as N2

�. The more familiar ap-
proaches to this problem are the complex scaling
(CS) method [45] and the complex absorbing poten-
tial (CAP) method [46]. Both of these methods use a
modified non-Hermitian Hamiltonian with an ex-
plicit imaginary part. Also, they introduce an arbi-
trary parameter, and repeated calculations are
needed to optimize its value. A large-order MP
calculation, which uses the original Hamiltonian
and involves no adjustable parameters, would be a
more direct approach. Whether its computational
cost will be competitive with the CS and CAP meth-
ods will depend on the rate of convergence of the
summation approximants.

CC Continued-Fraction Approximant

In recent years CCSD(T) has largely supplanted
conventional MP4 as the MP convergence problems
have became better known and as the relatively
greater reliability of CCSD(T) has been demon-
strated in various applications [14, 30–33]. The suc-
cess of summation approximants for perturbation
theory suggests that we search for a similar ap-
proach for CC theory.

The two theories have much in common. Both
use the SCF wave function as the initial approxima-
tion and then extrapolate to the FCI solution
through a sequence of approximations. Let us ex-
press the CCSD(T) energy in the form

ECC � �1 � �2 � �3, (29)

where �1 � ESCF is the Hartree–Fock energy and

�2 � ECCSD � ESCF, �3 � ECCSD�T� � ECCSD. (30)

Can Eq. (29) be summed using methods of pertur-
bation theory? The problem is that in this case we
do not have an asymptotic series. The MP series is
the unique asymptotic expansion of the function
E(z) and it is not clear what the relation is between
this function and the ECC sequence. Nevertheless, if
the ECC sequence has a characteristic convergence
pattern then it might be possible to extrapolate it
toward the FCI limit with an appropriate summa-
tion approximant.

Such an approximant was recently discovered
[3]. A comparison with a large number of bench-
mark FCI energies demonstrated that the contin-
ued-fraction approximant

ECCcf �
�1

1 �
�2/�1

1 � �3/�2

(31)

can significantly improve the accuracy of the
CCSD(T) method. This approximant is in particular
successful for class A systems, reducing the median
error of CCSD(T) for the 10 benchmark systems
from 0.506 mEh to 0.051 mEh, smaller than the
MP4-q
 error by a factor of 2. For class B systems
the accuracy is comparable to that from MP4-q
,
typically slightly less accurate when �zd� is large but
more accurate when it is small.

These accuracy comparisons are for total ener-
gies. For practical applications, accuracy of the total
energy is less important than accuracy of the Born–
Oppenheimer potential energy hypersurface, which
requires that the error from the calculation method
be reasonably independent of the molecular geom-
etry. Recent comparisons with FCI energies for the
BH, CH3, HF, and H2O molecules over a range of
bond distances show that the higher accuracy of the
total energy from CCSD(T)-cf does lead to a more
accurate potential energy curve for stretching of the
bond distance to at least 1.5Re, where Re is the
equilibrium bond distance [3, 47]. Table I compares
the total energy error, �Eapprox � Eapprox � EFCI,
from conventional CCSD(T) and CCSD(T)-cf at R �
Re and 1.5Re. The improvement from the cf method
is clearly significant. For H2O Table I also presents
results from the asymmetrical method, a-CCSD(T),
of Crawford and Stanton [48, 49]. This method,
based on Löwdin’s partitioning approach to pertur-
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bation theory [50], is formulated as a third-order
perturbation series and gives an expression for the
energy similar to that from conventional CCSD(T).
At Re, CCSD(T)-cf and a-CCSD(T)-cf are almost the
same and both give excellent accuracy. At 1.5Re,
they differ somewhat and a-CCSD(T)-cf is signifi-
cantly more accurate than CCSD(T)-cf, even though
a-CCSD(T) is less accurate than conventional
CCSD(T). This requires further study, but it sug-
gests that the continued fraction is describing the
behavior of the a-CCSD(T) perturbation series and
the reason it can also sum the CCSD(T) sequence is
simply that the numerical value of the CCSD(T)
energy is reasonably close to that of the a-CCSD(T)
energy.

Size Scaling

An important motivation for the adoption of MP
and CC theories by quantum chemists was the fact
that these methods scale properly as the size of the
system increases, in contrast to truncated CI meth-
ods [54]. Size scaling is described in terms of the
two related concepts size extensivity and size con-
sistency. The former is analogous to the thermody-
namic concept of a size-extensive property while
the latter describes the behavior of the theory as a
molecule is broken up into noninteracting frag-
ments.

Suppose a system consists of m identical units. A
size-extensive theory yields a result for the energy
that scales linearly with m [52]. The MP series co-

efficients are individually size extensive [53]. Be-
cause the 
 transformation, Eq. (16), is linear, the
coefficients Ei

(
) are also individually size extensive.
Let

E�
,m� � mE�
�. (32)

It follows from Eq. (11) that

QM � m2QM
�m�, PL � mPL

�m�, RN � RN
�m�. (33)

Substituting these into Eq. (12) gives

S�L/M,N�
�m� � mS�L/M,N�. (34)

Hence, the q
 method is size extensive.
The CCSD and CCSD(T) energies also are indi-

vidually size extensive [54]. Substituting

�i
�m� � m�i (35)

into Eq. (31) gives

ECCSD�T�cf
�m� � mECCSD�T�cf. (36)

Hence, the CCSD(T)-cf method is size extensive.
A theory is size consistent if an energy calcula-

tion for a molecule AB in which fragments A and B
are sufficiently far apart as to be essentially nonin-
teracting gives a result equal to the sum of the
energies given for the isolated fragments [54]. The
MP series coefficients and the CC sequence terms
are individually size consistent [51], and it follows
that the 
 transformation is also size consistent.
However, the quadratic approximant and the con-
tinued fraction are nonlinear transformations,
which will strictly preserve size consistency only
for dissociation into identical fragments.

The consequences of this lack of exact size con-
sistency for nonidentical fragments do not appear
to be significant. In contrast to a truncated CI cal-
culation, which can give qualitatively wrong results
as a consequence of size inconsistency, the size
extensitivity of the q
 and cf transformations en-
sures that the results for bond stretching will be
qualitatively correct {except, of course, for the RHF
symmetry breaking effects [55], which affect the
underlying MP4 and CCSD(T) methods as well,
and in practice usually prevent any of these meth-
ods from correctly describing homolytic molecular
dissociation}.

TABLE I ______________________________________
Error (mEh) from CC calculations.

Molecule Method �E(Re) �E(1.5Re)

BH CCSD(T) 0.521 0.731
CCSD(T)-cf 0.072 0.148

CH3 CCSD(T) 0.527 1.942
CCSD(T)-cf �0.138 0.652

HF CCSD(T) 0.496 0.931
CCSD(T)-cf 0.041 0.328

H2O CCSD(T) 0.658 1.631
a-CCSD(T) 0.698 2.131
CCSD(T)-cf 0.010 0.394
a-CCSD(T)-cf 0.032 0.038

�E is the difference from the corresponding FCI result. The
FCI energies are from Ref. [47] (BH, CH3, and HF) and Ref.
[30] (H2O). The a-CCSD(T) energies are from Ref. [48]. For the
open-shell system CH3 spin-unrestricted CC calculations are
used.
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This is illustrated by the following simple model
problem. Consider the functions

fA�z� � ae�z � �1 � z/zA�1/ 2, (37)

fB�z� � be��z � �1 � z/zB�
1/ 2, (38)

which are sums of a function with no singularities
at finite z and a function with a square-root branch
point, and let

fAB�z� � fA�z� � fB�z�. (39)

The parameter values a1 � b1 � � 12,  � � � 0.005,
zA � 2.0, zB � 2.5, lead to Taylor series with behav-
ior comparable to that of typical class A MP Ẽ
energy series. fA and fB differ only in the locations
zA and zB of their branch points. Table II compares
the accuracy of quadratic approximants with that of
partial summation of the Taylor series. The qua-
dratic approximant for fAB places its dominant
branch point between the true branch points and
therefore gives a result that is slightly less accurate
than that from separate quadratic summation of fA
and fB, but is still good. The conventional partial
sum is strictly size consistent but not accurate be-
cause it makes no attempt to model the branch
points.

Thus, the size inconsistency of MP4-q
 is funda-
mentally different from that of truncated CI. For CI,
the “supermolecule” analysis, treating the separate
fragments as a single system, includes fewer excited
configurations than does the separate treatment of
the fragments, which leads to a wave function that
has less flexibility for describing the electron corre-
lation. MP4-q
 uses the same wave function as

MP4, with the same level of correlation for the
supermolecule and for the separate fragments. The
functional analysis for the CC energy is less
straightforward. However, CCSD(T) and CCSD(T)-
cf are based on the same wave function. Therefore,
CCSD(T)-cf can also be expected to be qualitatively
size consistent.

Discussion

It is clear that conventional CCSD(T) is more
dependable than conventional MP4, but with both
methods improved by summation approximants
the comparison becomes more complicated. With
class A systems CCSD(T)-cf seems to be superior to
MP4-q
, but for class B, for systems with typical
class B singularity structure, MP4-q
 seems to be
slightly better. “Typical” class B structure is a
branch point in the negative half plane that can be
shifted beyond approximately �1.5 by the 
 trans-
formation. Class B systems for which this is not the
case are perhaps best thought of as belonging to a
class “AB,” for which an accurate series summation
would require the simultaneous modeling of
branch points in both half planes. In such cases
MP4-q
 fails because the approximant places a sin-
gle branch point somewhere between the true
branch points.

However, the main advantage of the perturba-
tion theory is probably not the higher accuracy for
certain cases because CCSD(T)-cf seems to also give
consistently reliable results for the typical class B
systems, even if the average accuracy is slightly
lower [3]. Rather, the advantage is the transparent
mathematical structure of the perturbation theory,
which makes it possible to use the singularity struc-
ture of the quadratic approximant as a diagnostic
for predicting the accuracy of the energy result.
Without a variational principle to rely on, such a
diagnostic is in particular useful to have. The sin-
gularity structure can also be used to identify cases
in which methods based on single-reference Har-
tree–Fock determinants are inappropriate. Results
in Ref. [3] suggest that if the class B singularity
cannot be shifted beyond approximately �1.2 then
poor results will be obtained even with single-ref-
erence CCSD(T)-cf.

The functional analysis of the MP energy func-
tion points the way toward possible further im-
provements by illuminating the causes for failure of
the summation in difficult cases. Consider the prob-
lem of homolytic bond cleavage for class A mole-

TABLE II ______________________________________
Summation accuracy and singularity analysis of
Taylor series of the model functions of Eqs. (37),
(38), and (39).

Function �Esum �E[1/0,1] zd

fA 3.831 0.167 2.067
fB 1.682 0.107 2.536
fA � fB 5.513 0.274
fAB 5.513 0.367 2.233

Results are shown for third-order partial summation, the
[1/0, 1] quadratic approximant, and the position zd of the
dominant singularity in the quadratic approximant. �E is the
difference between the summation and the exact value.
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cules. As the bond distance approaches dissociation
the ground state of the physical (z � 1) Hamilto-
nian becomes nearly degenerate with the first ex-
cited state. This means that a complex-conjugate
pair of branch points in the positive half plane will
gradually approach the point z � 1 as the bond is
stretched. This decreases the accuracy of the sum-
mation in two ways. First, it makes the placement of
the approximant’s singularities less accurate,
through the class AB phenomenon. Second, the
closer the true singularity structure is to the phys-
ical point the more important it becomes to model it
precisely because that is the point where the ap-
proximant will be evaluated. A small error in the
singularity structure in the neighborhood of z � 1
will have a much larger effect than it will elsewhere
in the complex plane.

A multireference perturbation theory is the ob-
vious choice for dealing with this situation. If the
determinants corresponding to the two states con-
nected by the branch points are both included in the
reference space, then these branch points should
disappear. As an illustration, consider the complete
active space (CAS) perturbation series for the HF
molecule that Olsen and Fülscher [56] extracted
from an FCI calculation. With bond distance at
twice the equilibrium value, the single-reference
MP4-q
 has maximum zd in the positive half plane
close to 1 while for CAS perturbation theory at
fourth order the maximum zd is almost 5.

The arbitrariness involved in choosing the ref-
erence space for a multireference calculation is
sometimes cited as a disadvantage. This arbitrari-
ness could be removed by choosing the reference
space according to singularity analysis of the per-
turbation series. For example, the reference space
could be chosen so as to shift the dominant
branch point as far as possible from the origin of
the complex plane. A first step in this direction
was taken by Warken [59] in a study of several
electronic eigenvalues of H2O. That study used
fourth-order perturbation theory with the �
transformation [58], a multireference generaliza-
tion of the 
 transformation of Eq. (16). Warken
used the closest approach of avoided crossings
along the real axis to estimate the real part of the
branch point locations. Quadratic approximants
offer a more direct and computationally less de-
manding way to locate the branch points and give
values for the imaginary part as well as for the
real part.
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