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Abstract

Full configuration–interaction calculations for BH, HF, and CH3 are used as benchmarks for determining the ac-

curacy of summation approximants for CCSD(T) coupled-cluster theory and fourth-order Møller–Plesset perturbation

theory as function of bond distances. A continued-fraction approximant [the CCSD(T)-cf method] reliably improves

CCSD(T). The MP4-qk procedure, in which repartitioned perturbation theory is summed with a quadratic approxi-
mant, is much more accurate than conventional MP4 but more sensitive to bond stretching than is CCSD(T)-cf. Di-

agnostics for estimating the accuracies of the methods, based on singularity analysis of perturbation series, are

developed and discussed.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Ab initio methods with a high-level treatment of

electron correlation, having a computational cost

scaling proportional to N 7 where N is a measure of

the size of the system, fill an important niche in the

collection of quantum chemistry tools. The cost is

low enough that with present-day computational

resources it is feasible to use these methods with
large basis sets to accurately characterize the

chemistry and spectroscopy of small molecules

[1]. The principal N 7 methods are MP4 (fourth-

order Møller–Plesset perturbation theory) [2] and

CCSD(T) (coupled-cluster theory with single and
double excitations and noniterative treatment of

triple excitations) [3]. These are the focus of the

present study.

The popularity of MP4 has been waning, in

favor of CCSD(T), on account of problems that

have been encountered with the convergence of the

perturbation series [4–9]. These problems become

especially severe as bonds are stretched. However,
two recent developments make it necessary to re-

evaluate this situation. First, a summation proce-

dure for MP4 has been devised that significantly

improves the accuracy obtainable from the per-

turbation theory [10]. This approach, the MP4-qk
method, involves summing the perturbation series

with a quadratic approximant and repartitioning

the Hamiltonian using the k transformation
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[11,12]. Comparison with a set of benchmark full

configuration–interaction (FCI) energies showed

that this procedure reduced the difference between

the MP4 and FCI energies by an order of magni-

tude, making MP4 on average for typical systems

more accurate than CCSD(T) [10]. The second
development is the discovery of a summation ap-

proximant for coupled-cluster theory, in the form

of a continued fraction [13]. This ‘CCSD(T)-cf’

method seems to reasonably dependably extrapo-

late the sequence SCF, CCSD, CCSD(T) toward

the FCI limit, so that the coupled-cluster results

become at least comparable in accuracy to the

MP4-qk results and often significantly more
accurate.

The MP4-qk and CCSD(T)-cf studies focused
primarily on atoms and on molecules at their

equilibrium geometries. The CCSD(T)-cf study,

however, did include an analysis of the calcula-

tions by Olsen et al. [7] for the water molecule with

the geometry distorted along the symmetric

stretch. This analysis indicated that the CCSD(T)-
cf method continued to give excellent results with a

moderate amount of stretching. Presented here is a

more systematic study of the effects of bond

stretching on the accuracy of these methods. We

have carried out FCI calculations for the mole-

cules BH, HF, and CH3 over closely spaced in-

tervals of bond stretching as a benchmark for

comparing the MP4, CCSD(T), MP4-qk, and
CCSD(T)-cf methods. Our primary goal is to de-

termine which of these methods would be the best

choice for practical applications. We will also ex-

amine the way in which the various methods fail in

response to the symmetry breaking effects that

occur in spin-restricted treatments of homolytic

bond cleavage and develop diagnostics for pre-

dicting the magnitude of these effects.

2. Methods

The MP4-qk method is based on functional

analysis of the MP energy in the complex plane of

the perturbation parameter. The Møller–Plesset

partitioning of the Hamiltonian is [2]

HðzÞ ¼ H0 þ zH1; H1 ¼ Hphys � H0; ð1Þ

where Hphys is the physical Hamiltonian and H0 is
the sum of one-electron Fock operators. This

construction introduces the parameter z in order

to have an analytic continuation from the Har-

tree–Fock self-consistent field (SCF) solution at
z ¼ 0 to the true solution at z ¼ 1. The energy is
obtained as a power series, EðzÞ � E0 þ E1zþ
E2z2 þ � � �, which is the unique asymptotic expan-
sion of a function EðzÞ. The zeroth-order approx-
imation, E0, is the sum of one-electron orbital

energies. The Hartree–Fock approximation for the

total energy is ESCF ¼ E0 þ E1.
The conventional approach to MP4 is simply to

add up the truncated power series, in terms of the

‘partial summation’ approximant

SnðzÞ ¼
Xn

i¼0
Eizi: ð2Þ

The usual MP4 result is S4ð1Þ. However, the true
functional form of EðzÞ is multiple valued, with
branch-point singularities that can strongly affect
the convergence of Eq. (2) [14–18].

The qk method uses a quadratic summation

approximant,

S½L=M ;N 	ðzÞ ¼
1

2

PL
QM


 1

2QM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P 2L � 4QMRN

q
; ð3Þ

to explicitly model the most important branch

point. PL, QM , and RN are polynomials in z of de-

grees L, M, N, respectively, such that the Taylor

series of S½L=M ;N 	 agrees with the perturbation series

of E up to the desired order. The effectiveness of

quadratic approximants for MP4 is improved by
using them in conjunction with Hamiltonian rep-

artitioning. The idea is to define a new partitioning

of the operator HðzÞ so that the energy function
EðzÞ has a singularity structure in the complex z
plane that is more amenable to summation. This is

accomplished by changing the way in which the

Hamiltonian is divided between the operators H0
and H1. One way to do this is the Feenberg re-
partitioning [11],

H ðkÞðzÞ ¼ 1

1� k
H0 þ z H1

�
� k
1� k

H0

�
; ð4Þ

where k is an arbitrary parameter. At the physical
point z ¼ 1 Eq. (4) yields Hphys, but elsewhere in
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the z plane different values of k give a different
Hamiltonian. An advantage of this particular

repartitioning is that the perturbation series coef-

ficients for arbitrary k can be expressed as a linear
combination of the k ¼ 0 series coefficients [12],

EðkÞ
i ¼

Xi�1
k¼1

i� 2
k � 1

� �
ki�k�1ð1� kÞkEkþ1 ð5Þ

for iP 2, with the Hartree–Fock energy,

ESCF ¼ E0 þ E1, left unchanged. As implemented
in [10], the quadratic approximant is applied to a

series ~EE0 þ ~EE1zþ ~EE2z2 þ ~EE3z3 where ~EE0 ¼ ESCF and
~EEi ¼ Eiþ1 for iP 1.

MP series can be grouped into two classes ac-

cording to their large-order behaviors [12,19–21].
Class-A series characteristically have Ei mostly of

the same sign while class-B series have Ei that al-

ternate in sign. These behaviors depend in princi-

ple on the location of the dominant singularity zd,
which is the singularity of EðzÞ closest to the origin
of the z plane. If zd is in the positive half plane then
class-A behavior is expected and if it is in the

negative half plane then class B is expected. The
MP class of a given system can be predicted in

advance from the qualitative nature of the orbital

structure according to criteria developed by Cre-

mer and He [21]. Systems with crowded orbitals,

such as closed-shell systems with highly electro-

negative atoms or molecules with multiple bonds,

are in class B, while radicals and systems such as

alkanes with well-separated orbitals are in class A.
The class-A singularity structure typically arises

from a near degeneracy between the ground state

and the first excited state of the same symmetry.

The energy functions for these two states cross at a

complex–conjugate pair of branch points with real

part greater than 1 and imaginary part close to

zero [14,15,18,22]. Class-B singularity structure

seems to usually be due to a phase transition at a
critical point on the negative z axis, where the

ground-state energy function crosses the energy of

an autoionizing state [16–18]. The operator H1, in
Eq. (1) contains the interelectron potential energy

1=r12. When z is negative the interaction between
electrons is attractive, and as jzj increases there
comes a critical point at which the lowest-energy

state of the system corresponds to a bound cluster
of electrons dissociated from the nuclei.

The class-A branch points connect states that

have almost equal energies at the physical point

z ¼ 1, while the class-B branch point connects the
ground state energy with an energy function that

represents a highly excited state at z ¼ 1 [6]. In
principle [23], the case of the ground state crossing
a highly excited state is best described by an ap-

proximant with the constraint r0 ¼ 0 on the poly-
nomial RðzÞ. For MP4 the approximant index
[1/0,2] is used, because the [1/1,1] approximant

gives a result that is independent of k. The value of
k will be chosen to maximize jzdj in the negative
half plane. This summation method will be desig-

nated MP4-qkð�Þ. The case of class-A physically
nearly degenerate states is best described with the

unconstrained [1/0,1] approximant with k chosen
to maximize jzdj in the positive half plane. This
method will be called MP4-qkðþÞ.

The functional analysis for coupled-cluster

theory is less straightforward than that for per-

turbation theory. However, an empirical analysis

of the convergence of the sequence ESCF, ECCSD,
ECCSDðTÞ toward the FCI limit has been carried

out [13] and comparison with a benchmark set of

FCI energies for a variety of atoms and small

molecules indicated that the continued-fraction

approximant

ECCSDðTÞcf ¼
d1

1� ðd2=d1Þ=ð1� d3=d2Þ
; ð6Þ

where

d1 ¼ ESCF; ð7Þ

d2 ¼ ECCSD � ESCF; ð8Þ

d3 ¼ ECCSDðTÞ � ECCSD; ð9Þ

significantly improves the accuracy of the total

energy, especially for systems with class-A per-
turbation series.

For the analysis that follows we calculated FCI

energies with the MOLPROOLPRO 2000 software package,

which uses the algorithm of Knowles and Handy

[24]. For the closed-shell systems BH and HF the

CCSD(T) and MP4 calculations were done with

MOLPRO’s spin-restricted algorithms [25], and

for the open-shell system CH3 we used MOL-
PRO’s spin-unrestricted UCCSD(T) and partially
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spin-restricted RCCSD(T) algorithms [25,26].

MP4 calculations for CH3 were done with

GAUSSIANAUSSIAN 98 [27]. Spin-unrestricted results were

obtained from the UMP4 algorithm and spin-re-

stricted results were obtained from the PMP4 spin

state projection algorithm [28].

3. Results

Our FCI results are presented in Table 1. The

basis set was cc-pVTZ for BH and cc-pVDZ for

HF and CH3. The calculations were carried out at

evenly spaced multiples of the equilibrium bond
distances, Re, with the values of Re for HF and BH
taken from FCI calculations [9] and for CH3 de-

termined from RCCSD(T) calculations. These

values were then used with all of the calculation

methods, so that comparisons of different methods

always use the same molecular geometry.

Fig. 1 compares the accuracy of the various

calculation methods as a function of bond dis-

tance, R, for the HF molecule. This is a class-B

system. The first panel shows the error in the total

energy, Eapprox � EFCI, while the second shows the
error in the energy relative to the values at R ¼ Re.
Since these are spin-restricted calculations with a

single reference determinant, they cannot correctly

describe the molecule in the dissociation limit [29].

However, the CC methods and the MP4-qkðþÞ

method give good results for total energy up to

approximately 2Re. For the relative energy, the
best results are from MP4-qkðþÞ up to 1:5Re and
then CCSD(T)-cf up to 1:9Re. MP4-qkð�Þ and
conventional MP4 work well enough at Re but
their accuracies are very sensitive to the value of R,

which leads to poor results for the relative energy.

The two lower panels of Fig. 1 show the error,

compared to FCI results, in the gradient, E0 ¼
dE=dr, r ¼ R=Re, and in the second derivative,

Table 1

Full configuration–interaction energies in units of Eh for hydrogen fluoride, boron hydride, and the methyl radical as a function of
bond distance, R

R=Re a 1Rþ HF 1Rþ BH 2A00
2 CH3

0.90 �100:21671960 �25:22456740 �39:67784787
0.95 �39:70568869
1.00 �100:22865236 �25:23113558 �39:71632504
1.05 �39:71421359
1.10 �100:22110308 �25:22686904 �39:70277149
1.15 �39:68462676
1.20 �100:20401683 �25:21708645 �39:66180734
1.25 �39:63588366
1.30 �100:18283498 �25:20479316 �39:60807607
1.35 �39:57933582
1.40 �100:16062248 �25:19169500 �39:55040586
1.45 �39:52186687
1.50 �100:13913011 �25:17875751 �39:49417235
1.55 �39:46767546
1.60 �100:11932658 �25:16651594
1.70 �100:10169672 �25:15525860
1.80 �100:08642887 �25:14513621
1.90 �100:07353095 �25:13622036
2.00 �100:06289468 �25:12852903
2.10 �100:05432915 �25:12203546
2.20 �100:04758473 �25:11667257
2.30 �100:04237901
2.40 �100:03842539
2.50 �100:03545825
aRe is the equilibrium bond distance. The values used are 0.920250, 1.235602, and 1.078813 �AA, respectively, for HF, BH, and trigonal

planar CH3.
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Fig. 1. Accuracy of energy approximant as function of bond

distance for the hydrogen fluoride molecule. The calculation

methods are conventional CCSD(T) (dotted curve), CCSD(T)-

cf (solid curve), conventional MP4 (dash–dot curve), MP4-qkð�Þ

(dash–dot–dot curve) and MP4-qkðþÞ (dashed curve). The

total energy error is Eapprox � EFCI. The relative energy error
is DEapprox � DEFCI, where DE ¼ EðRÞ � EðReÞ. The E0 error is

E0
approx � E0

FCI, where E0 ¼ dE=dr, r ¼ R=Re. The E00 error is

E00
approx � E00

FCI, where E
00 ¼ dE0=dr.

Fig. 2. Accuracy of energy approximant as function of bond

distance for the BH molecule. The calculation methods are

conventional CCSD(T) (dotted curve), CCSD(T)-cf (solid

curve), conventional MP4 (dash–dot curve), and MP4-qkðþÞ

(dashed curve). The y axes are defined as in Fig. 1.
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E00 ¼ d2E=dr2. These values were calculated from
finite differences of the energy values. The best

results for E0 are from MP4-qkðþÞ up to about

1:3Re and from CCSD(T)-cf between 1:3 and

1:6Re. However, both of the CC methods give

better results for E00 than does MP4-qkðþÞ, and
CCSD(T)-cf is better than conventional CCSD(T).

Fig. 2 shows results for the boron hydride

molecule, a class-A system. Here the CCSD(T)-cf

method is remarkably accurate, for the energy and

for the derivatives. The total energy error is on the

order of 0.1 mEh for R up to 1:9Re. All of the MP4
methods work poorly for this system. Although

the qkðþÞ summation method significantly reduces
the MP4 error in the total energy, its accuracy

shows a strong sensitivity to the value of R, and its

results for E0 and E00 are not good. CCSD(T)-cf

gives excellent accuracy for E0 and E00 (in the re-

gion before the dissociation failure sets in) and is a

significant improvement over CCSD(T).

In Fig. 3 we present results for the ground state

of the methyl radical, an open-shell system. The
curves are labeled ‘r’ or ‘u’ to indicate that

the calculations are spin-restricted or spin-un-

restricted, respectively. R is the C–H bond distance

for a trigonal planar symmetric stretch. The cf

approximant improves the accuracy of both the

total and relative CCSD(T) energies. The qk ap-
proximant greatly improves the UMP4 accuracy

of the total energy and, in contrast to the case of
BH, also improves the accuracy of the relative

energy, so much so that UMP4-qk here gives the
most accurate relative potential-energy curve up to

about 1:4Re, after which it fails quite rapidly. In
the vicinity of the equilibrium geometry, UMP4-

qk gives about the same accuracy as CCSD(T)-cf
for E0 and E00. We also considered the spin-

restricted PMP4 method [27,28]. (The results are
not included in Fig. 3.) The conventional PMP4

results are slightly better than the conventional

UMP4 results, but PMP4-qk is much less accurate
than UMP4-qk.

4. Discussion

We have considered here a representative sam-

ple of molecule types (the class-B system HF, the

Fig. 3. Accuracy of energy approximant as function of bond

distance for the CH3 molecule. The calculation methods are

conventional CCSD(T) (dotted curve), CCSD(T)-cf (solid

curve), conventional UMP4 (dash–dot curve), and UMP4-qkðþÞ

(dashed curve). The coupled-cluster curves are labeled ‘r’

for spin-restricted calculations and ‘u’ for spin-unrestricted

calculations. The y axes are defined as in Fig. 1.
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closed-shell class-A system BH, and the open-shell

class-A system CH3) and have found that in all of

these cases the CCSD(T)-cf method, proposed in

[13], gives more accurate results than conventional

CCSD(T) for total energies and relative energies as

bond lengths are stretched, and for energy deriv-
atives. This is consistent with previous tests of the

method for a large variety of small atoms and

molecules at their equilibrium geometries [13].

Once one has computed the SCF, CCSD, and

conventional CCSD(T) energies, the CCSD(T)-cf

energy is trivial to calculate, according to Eq. (6).

Therefore, this is an easy way to significantly in-

crease the accuracy of ab initio results with high-
level electron correlation, and it can be readily

implemented using output from standard software

packages.

Figs. 1–3 show that MP4-qk is sometimes more
accurate than CCSD(T)-cf but often is consider-

ably less accurate. This can be understood in terms

of the singularity structure of EðzÞ. Fig. 4 shows
the position zd of the dominant singularity of the
MP4-qkðþÞ approximant as a function of R. This is

a square-root branch point, connecting Riemann

sheets corresponding to the ground state and the

first excited state of the same symmetry. (In prin-

ciple, there is a complex–conjugate pair of branch

points slightly displaced from the real axis, but at

fourth order the approximant models these with a

single branch point on the real axis.) For calcula-
tions based on a single spin-restricted Hartree–

Fock reference state, these two eigenstates become

degenerate in the limit of large R. As R increases,

zd approaches the physical point z ¼ 1, which is
where the approximant is to be evaluated. This

means that a small inaccuracy in the description of

the branch point will cause a relatively large error

in the energy value.
In previous studies [10,13] it was found that the

qkð�Þ summation approximant was the appropri-

ate MP4 approximant for calculating total ener-

gies of class-B atoms and of class-B molecules at

equilibrium geometries. Here, however, we find

that for the HF molecule the qkð�Þ approximant is

quite sensitive to distortions of the molecular ge-

ometry and therefore gives poor results for the
potential-energy curve while the qkðþÞ approxi-

mant gives excellent results up to about 1.5 Re. The

qkðþÞ approximant was originally developed as an

approximant for class-A systems, and in practice

gave on average slightly less accurate results for

total energies of class-B systems than did qkð�Þ in

the previous studies. As R increases, the relative

energy accuracy is affected by the singularity

structure in the positive half plane, which is shift-
ing. The singularity structure in the negative half

plane can depend on the choice of basis set [10,13],

but is apparently not as sensitive to the molecular

geometry. This would explain why better results

for the shape of the potential-energy curve are

obtained from the approximant that models the

singularity structure in the positive half plane than

from the approximant that models the structure in
the negative half plane.

At fourth order in perturbation theory the

branch point location is not yet fully converged,

and the closer the branch point is to the point

z ¼ 1 the more important it is to describe it pre-
cisely. This effect is illustrated by Fig. 5, which

shows the error in the MP4-qkðþÞ value for the

Fig. 4. Position of dominant singularity zd in the MP4-qkðþÞ

quadratic approximant for BH, HF, and CH3, with the repar-

titioning parameter chosen to maximize jzdj in the positive half
plane.
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energy as a function of zd. The energy values are
unreliable when zd is less than about 1:6. Thus, the
value of zd provides a diagnostic of the accuracy of
the MP4-qkðþÞ approximant, indicating the region

of the potential-energy hypersurface in which the
results of the calculation will be dependable. For

BH, zd is less than 1:6 over the full range of R. This
is presumably related to the small HOMO–LUMO

gap for this molecule [8]. The extremely accurate

MP4-qkðþÞ result for the energy at Re would ap-
pear to be fortuitous. For the other two molecules

there are significant regions, in Figs. 1 and 3, with

zd > 1:6, and throughout these regions MP4-qkðþÞ

gives a smaller error in the relative energy curve

than do the coupled-cluster methods.

The results presented here and in [13] demon-

strate that the continued-fraction approximant can

significantly improve the accuracy of the CCSD(T)

method. Nevertheless, the justification for this

approximant is essentially empirical. The func-

tional analysis of CC theory is more complicated
than that for perturbation theory. Although the

CC method is usually formulated as a rearrange-

ment of the configuration–interaction expansion,

it is possible to formulate the CC expression for

the energy in terms of the MP energy series [30].

The CCSD truncation contains all the terms that

make up the MP3 partial sum plus additional

terms that appear only at higher order in the MP

series. The CCSDT truncation contains all the

terms in the MP5 partial sum plus higher-order
terms. However, on account of the presence of

incomplete higher-order contributions, the CC

energy expressions are not asymptotic series. A

further complication comes from the use of the

CCSD(T) approximation to the full CCSDT en-

ergy. Stanton [31] has shown that a similar ap-

proximation can be expressed in the form of a

series expansion. The Hamiltonian is partitioned
as an infinite series of operators that leads to a

perturbation series for E such that truncation at

third-order yields an expression similar to the

CCSD(T) energy [32]. In principle, a singularity

analysis of this series could lead to a theoretically

derived summation approximant. However, sum-

mation of the series d1 þ zd2 þ z2d3 with a qua-
dratic approximant, which would be perhaps the
simplest way to accomplish this, in practice gives

less accurate results than the continued fraction

[13].

All of the methods considered here fail as bonds

are stretched toward dissociation. For the MP4

methods, this can be explained in terms of the

position of the dominant branch point. CCSD(T)

is more resistant to this effect, but it too eventually
fails, presumably because of the fact that the MP4

wavefunction is used to calculate the (T) correc-

tion. [CCSD(T) fails somewhat earlier than CCSD

and CCSDT, which do not rely on MP calcula-

tions.] The CCSD(T)-cf curves in Figs. 1 and 2 fail

slightly earlier than do the CCSD(T) curves, but

this is probably due to cancellation of errors. The

CCSD(T) results are initially too high but in
the dissociation limit the energy plunges below the

correct value.

For the molecules considered here, CCSD(T)-cf

continues to be accurate up to at least 1:5Re.
Therefore, the method can be expected to be ade-

quate for describing transition states, which typi-

cally involve geometry distortions no more severe

than this. Multireference methods are probably
necessary for describing the process of molecular

dissociation, but on account of the relatively

Fig. 5. Accuracy of the MP4-qkðþÞ approximant for total en-

ergy as function of the position of the dominant singularity of

the approximant.
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greater expense of such a calculation, it would be

useful to have a diagnostic that would indicate

how long it is safe to continue to use single-refer-

ence CCSD(T)-cf. Such a diagnostic, for class-B

systems, was suggested in [13], based on the sin-

gularity structure of the MP energy function in the
negative half plane. It was noted that the

CCSD(T)-cf total energy error exceeded 1 mEh if
the nearest branch point in the MP4-qkð�Þ ap-

proximant on the negative z axis lay closer to the

origin than approximately �1:2. For the HF
molecule, we find that this branch point starts at

�2:7 for R ¼ Re and steadily approaches the origin
as R increases, passing through �1:2 at 2:05Re.
The top panel of Fig. 1 shows that the magnitude

of the cf error rises above 1 mEh at 2:02Re, in re-
markable agreement with the diagnostic. We have

not yet identified a comparably successful diag-

nostic for class-A systems.

The results for energy derivatives in Figs. 1–3

were calculated from finite differences using the

spacing of R values in Table 1. This spacing is too
coarse to give quantitative values for molecular

properties such as vibrational frequencies, but it is

good enough to indicate the trends in the accura-

cies of the various methods. The cf approximant

consistently improves the accuracies not just of E

but also of E0 and E00. This means that the amount

by which the approximant lowers the CCSD(T)

value varies correctly with R, which suggests that
the approximant is actually modeling the under-

lying convergence pattern of the theory. The re-

sults for the MP4-qk derivatives emphasize the

sensitivity of that method to the position of the

branch points. The advantage of such sensitivity is

that if the branch-point diagnostic is favorable

then one can have added confidence in the accu-

racy of the results. The disadvantage is that, at
least for the cases considered here, the diagnostic is

often unfavorable.

The cf and qk methods can both be used with
analytical values of energy derivatives. For the cf

method, one could simply differentiate Eq. (6) with

respect to R and then substitute the analytical

values of the SCF, CCSD, and CCSD(T) deriva-

tives into the resulting expression. Alternatively, it
might be possible to find an approximant that

directly extrapolates the sequence E0
SCF, E0

CCSD,

E0
CCSDðTÞ. For MP4, the best approach is probably

to apply the qk summation procedure to the as-
ymptotic series of the derivative,

E0ðzÞ � E0
SCF þ E0

MP2zþ E0
MP3z

2 þ E0
MP4z

3: ð10Þ

If EðzÞ has a branch point at a point zd, then E0ðzÞ
will also have a branch point at zd. Therefore, the
same summation procedure ought to work for

either function.
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