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COMMUNICATIONS

A summation procedure that improves the accuracy of the fourth-order
Mdller—Plesset perturbation theory

David Z. Goodson
Department of Chemistry, Southern Methodist University, Dallas, Texas 75275

(Received 7 July 2000; accepted 24 August 2000

A procedure is demonstrated for summing théllete-Plesset many-body perturbation expansion
based on the ability of quadratic summation approximants to locate branch point singularities in the
complex plane of the perturbation parameter. Accuracy comparable to that from CCSDT
coupled-cluster calculations is obtained using fourth-order perturbation theor200® American
Institute of Physicg.S0021-9606800)31240-3

Fourth-order Mdler—Plesset perturbation theot¥P4) S,y ;) in powers ofz be equal to the corresponding coef-
is a widely used method for including electron correlation inficientsg; of the energy expansion. The functi& ;u n;(2)
guantum chemical calculations. It belongs to therMiirer-  has two branches connected by branch points at the roots of
archy, in which MP1 is the Hartree—Fock approximation.the discriminant polynomiaP?—4QyRy .
Each increase im significantly increases the computational The large-order behavior of the energy expansion is de-
cost and, in principle, the accuracy. However, serious contermined by thedominantbranch pointzy, which is the
cerns have been expressed about uneven convergence, andianch point o£(z) nearest the origin. It is useful to classify

some cases divergence, of the MBequencé:”’ systems according to whethey is in the positive half-plane
The MPn sequence for the energ, can be expressed (class A or the negative half-planglass B.>*~*3For class
as an asymptotic expansion A systems the branch point is expected to connect the eigen-

state under consideration with the next higher eigenstate of
the same symmetry in the physicat<{1) spectrum. For
class B systemg, is expected to lie on the negative real
axis. It connects the eigenstate under consideration with a
in terms of a variable, such thaE(0)=E; is the Hartree—  nonphysical autoionizing stafé:** Qualitative criteria have
Fock energy whileE(1)=E;+E,+---+E, is the M re-  peen formulated for determining the class of a given system
sult. The convergence of this sequence is strongly affectegased on the nature of the electron orbital structii@lass
by the presence of branch points of the functiefz) in the B contains systems with clustering of electrons pairs, such as
complex z plane®® These are nonphysical values ofat  glectron-rich atoms or molecules with multiple bonds. Class
which the energy eigenvalues of two different states with they contains systems with well-separated electron pairs. In
same symmetry become equal. Since @gexpresse&(z)  principle the class B singularity is best described by con-
as a polynomial, which is single valued at all there is a straining the polynomiaRy with the conditionRy(0)=0
limit to the accuracy with which that expression can describ&yhile for class A it is best to leavBy(0) unconstrained®
the trueE(z), which is double valued at the branch points. z4 can be shifted away from the origin by repartitioning
Here a summation procedure is proposed for mitigatinghe perturbation theory. This involves redefining the “pertur-
the effects of branch points on the MBequence. Thpar-  pation” in such a way that the solution for the energy re-
tial summation approximangiven by Eq.(1) is replaced mains the same at=1 but is changed elsewhere in tae
with a quadratic approximant®** which explicitly includes  plane. A particularly convenient repartitioning is the Feen-
square-root branch points. The locations in thelane at  perg transformatioh® which amounts to a simple rearrange-

which these approximants place the branch points are detefyent of Eq.(1) in terms of an arbitrary parameteywith the
mined, and then the perturbation theory is repartitioned so ag, replaced bj?

to shift the nearest branch point away from the origin.

E(z)~i§1 EZ ! (&)

Quadratic approximantsy v,;, are constructed from 1oy
three polynomialsP, (z), Qu(z), andRy(2), of degrees., EM=2 (k— 1))\"'(‘1(1—)\)"Ek+1 3
M, andN, respectively, according to k=1
1P, 1 for i=2, with E;N=E, . The effect on the singularity struc-
SmN =5 Q—MiQ—M\/ PL—4QuRy|- (2)  ture is shown in Fig. 1 for the BH molecule. The upper panel

shows the locations of the two branch points of &g 1;
The coefficients of the three polynomials are determined bypproximant while the lower panel shows the error in the
the condition that the coefficients of the Taylor expansion ofresult for the energy. This behavior Bf as a function ofx
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FIG. 1. Branch point locations and err@n units of E;) of the [1/0,1]

David Z. Goodson

for MP4 is typical. Foi\ sufficiently negativez, is found on
the negative real axis with a maximum jzy| typically
around\ = — 0.4 for class A and.=—0.2 for class B. As\
becomes more positivey eventually shifts to the positive
half-plane with a maximum ifzy| in the approximate range
—0.1<\<0.5 that is always the global maximum.

Table | shows results for various class A systems for
which full configuration-interactiofFCI) results are avail-
able for comparison. For class A th#&/0,1] unconstrained
quadratic approximant wittx corresponding to the maxi-
mum in the positive half-plang‘‘qu A +'") dependably
gives higher accuracy than partial summation and is usually
at least as accurate, and often much more accurate, than the
unshifted (=0) quadratic approximant. Also shown in
Table | are coupled-cluster results using the same basis sets.
The computational cost of MP4 scalesNiswith the sizeN
of the basis. This is roughly comparable to the cost of the
CCSOT) method(coupled-cluster with singles and doubles

and perturbative treatment of tripfés®, while CCSD
scales adN® and CCSDT ad\®. Although the MP4 partial
sums are comparable in accuracy to the less expensive
CCSD, the singularity-shifted quadratic sums are on average

slightly more accurate than CCSDT, which is considerably
more expensive. The one system in the table for which the
CCSOT) and CCSDT results are superior is the, state of
CH,, which has a relatively small gap between the highest
occupied molecular orbital and the lowest unoccupied mo-
lecular orbital of the same symmetty?

Results for class B systems are shown in Tables Il and
11, from the [1/0,2] constrained approximant. Also shown is
the[1/1,1] approximant, the value of which is independent of
\ at the pointz= 1. This approximant was studied in Ref. 11.
It is often extremely accurate but on average is less depend-

-1 -08-06-04-02 0 02 04 06 08 1
A

able than the singularity-shiftdd/0,2] approximants. These
tables also showe, for the[1/0,2] approximant at thé. that
shifts z4 as far as possible into the negative half-plane
(*‘gc N—""). For class B there is an approximate correlation

approximant for the ground state energy of BH, as a function of the reparhetween the accuracy of the quadratic approximant and how

titioning parametei. The dashed curve shows the error from MP4 partial
summation. The diamond marks the error corresponding to the valie of

far away from the origin the repartitioning is able to shift the

that maximizes the distance from the origin of the dominant branch pointSingularity, with a very significant decrease in accuracif

The perturbation series is from Leininget al. (Ref. 7 with the aug-cc-
pVQZ basis set.

cannot be shifted past 1. The results have been grouped as
“well-behaved” or “difficult” according to whether or not

TABLE |. Class A systemsAE=E p0x Epc in ME,.

Mean Median

Method BH  NH,%B," NH,2A® CH,%B,> CH,'A,° CH® |AE| |AE|
MP4 qur+¢ —0.155 —0.055 0.008 0.270 1.926 0.126 0.423 0.141
MP4 qif -2.060 —0.480 -0.332 0.297 1.925 0.129 0.871  0.406
MP4 sum 5.162 1.900 1.617 1.880 4.979 1981 2920 1.941
CCSsD 2.740 3.211 2.992 2.090 3.544 2790 2.895 2.891
ccsOT) 0.501 0.547 0.532 0.360 0.873 0499 0552  0.517
CCSDT 0.090 -—1.274 0.223 0.017 0.207 —0.744 0.426 0.215

8; and CC values from Ref. 7 with aug-cc-pVQZ bagigc,= — 25.235 84F,,.
PE;, from Ref. 16 with the DZP basis; CC values, Ref. Hgc=—55.742 620(NH?B;), —55.688 762

(NH,2A,), Ref. 18,—39.046 260 (CH®B,), —39.027 183 (CH'A,), Ref. 19, and—39.721 212 (CH),
Ref. 20, inEj,.

‘qu\ + and qu arg1/0,1] unconstrained approximants, the former with ihtat maximizes$zy| in the positive

half plane, the latter withA =0.
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TABLE II. Well-behaved class B systefs\E=E 50 Erc in ME,. The last row lists the position of the
dominant singularity in the MP4 ge— approximant.

Mean Median
ArP ClI™®  HcP Fe Ne  H,0¢  Ff HF®  |AE| |AE]|

MP4 gqca+9 0.226 0.120 0.152 0.029-0.947 0.675 —0.235 —0.599 0.373 0.231
MP4 gqch—9 0.229 0.140 0.174 0.102-0.857 0.784 —0.086 —0.447 0.352 0.202
MP4[1/1,1]9 0.216 —0.013 —0.007 —0.319 —1.447 0.200 —1.140 —1.684 0.628 0.268

MP4 sum 0.490 0.752 1.131 0.529-0.981 1.060 —1.016 —0.882 0.855 0.932
CCSD 2968 4.805 4.718 3432 2972 3.744 5109 4707 4.432 4.231
CCsOT) 0.443 0.689 0.695 0.219 0.181 0.658 0.208 0.536 0.454 0.490
CCSDT 0.253 0.370 0.340-0.015 0.061 0.493 0.232 0.335 0.262 0.294
Z4 -6.50 -332 -319 -249 -233 -232 -204 -190

A “well-behaved” class B system is defined as one for whigh< — 1.5 after singularity shifting.

PE;, CC, and FCI values from Ref. 7 with aug-cc-pVQZ bagisc,= —526.970 128(Ar), —459.738 991
(CI7), —460.272 76gHCI), —100.264 177HF), in E;,.

°E; from Ref. 16 with theg 5s4p2d] basis, CC values from Refs. 25 and B¢ = —99.594 877E,, from Ref.
19.

9E; and FCI values from Ref. 2 with aug-cc-pVDZ basis, CC values from RefEg8= —128.709 476&,,.
°E;, CC, and FClI values from Ref. 29 with the cc-pVDZ bagigg= —76.241 860E,,.

fE; and FCI values from Ref. 2 with the cc-pVTZ) basis, CC values from Ref. 28-c,= — 99.675 158F,,.
9gc A+ and qch — are the[1/0,2] approximants with the constraiR,(0)=0 andz, in the positive or negative
half-plane, respectivelyf1/1,1] is the N\-independent diagonal approximant with the constr&if{t0)=0.

z4 for the qch — approximant is shifted beyond 1.5. half-plane, with a rapid transition at an intermediate value of
The source of the difficulty appears to be the need to\- Apparently, as long as the dominant singularity is far
simultaneously model the nonphysical branch point on th@nough from_ the origin it is sufficient to model the singular-
negative real axis and a nondominant branch point in thdy structure in only one of the two regions.
positive half-plane. A good example of this is Ffor which The systems in Table 1l are difficult for MP4, but can
the tables contain results from three different basis sets. TH@S0 be difficult for the coupled-cluster methods. For such
worst gch— result comes from the aug-cc-pVDZ basls, systt_ams(_aqd for class A systems with physpal near degen-
which contains diffuse functions that easily describe autoion€racie$ it is perhaps best to use a multireference state
izing states. In this case the quadratic approximants do relgheory* %~ summed with quadratic approximants, or a
tively poorly at MP4 but are extremely accurate at MP6,more powerful repartitioning technlqﬁeather than to try to
which is the first order at which the approximants clearlyf&sum the conventional MP4 expansion coefficients provided
discern both kinds of singularities. At MP6 the maximum by standard software packages. However, for the well-
|z4| corresponds ta.=0.37, with equidistant branch points behaved class B systems the results at MP4 from the qc
at +1.8. For F with the cc-pVTZ4f) basis? which is the N=* approximants are somewhat better than the CO$D
same size as the aug-cc-pVDZ basis but omits the diffusgesults and comparab_le in accuracy to the CCsDT results.
functions, z4 is farther from the origin and the accuracy of G0od results are obtained at either of the two maxima.
the MP4 approximants is much higher. The MP4 quadratic
approximants, for all systems studied here, place all singufOr
larities either in the positive half-plane or in the negativeby
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