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COMMUNICATIONS

A summation procedure that improves the accuracy of the fourth-order
Mo” ller–Plesset perturbation theory

David Z. Goodson
Department of Chemistry, Southern Methodist University, Dallas, Texas 75275

~Received 7 July 2000; accepted 24 August 2000!

A procedure is demonstrated for summing the Mo” ller–Plesset many-body perturbation expansion
based on the ability of quadratic summation approximants to locate branch point singularities in the
complex plane of the perturbation parameter. Accuracy comparable to that from CCSDT
coupled-cluster calculations is obtained using fourth-order perturbation theory. ©2000 American
Institute of Physics.@S0021-9606~00!31240-5#

Fourth-order Mo” ller–Plesset perturbation theory~MP4!
is a widely used method for including electron correlation in
quantum chemical calculations. It belongs to the MPn hier-
archy, in which MP1 is the Hartree–Fock approximation.
Each increase inn significantly increases the computational
cost and, in principle, the accuracy. However, serious con-
cerns have been expressed about uneven convergence, and in
some cases divergence, of the MPn sequence.1–7

The MPn sequence for the energy,E, can be expressed
as an asymptotic expansion

E~z!;(
i 51

n

Eiz
i 21 ~1!

in terms of a variablez, such thatE(0)5E1 is the Hartree–
Fock energy whileE(1)5E11E21¯1En is the MPn re-
sult. The convergence of this sequence is strongly affected
by the presence of branch points of the functionE(z) in the
complex z plane.8,9 These are nonphysical values ofz at
which the energy eigenvalues of two different states with the
same symmetry become equal. Since Eq.~1! expressesE(z)
as a polynomial, which is single valued at allz, there is a
limit to the accuracy with which that expression can describe
the trueE(z), which is double valued at the branch points.

Here a summation procedure is proposed for mitigating
the effects of branch points on the MPn sequence. Thepar-
tial summation approximantgiven by Eq. ~1! is replaced
with a quadratic approximant,10,11 which explicitly includes
square-root branch points. The locations in thez plane at
which these approximants place the branch points are deter-
mined, and then the perturbation theory is repartitioned so as
to shift the nearest branch point away from the origin.

Quadratic approximants,S[L/M ,N] , are constructed from
three polynomials,PL(z), QM(z), andRN(z), of degreesL,
M , andN, respectively, according to

S[L/M ,N]5
1

2 F PL

QM
6

1

QM
APL

224QMRNG . ~2!

The coefficients of the three polynomials are determined by
the condition that the coefficients of the Taylor expansion of

S[L/M ,N] in powers ofz be equal to the corresponding coef-
ficientsEi of the energy expansion. The functionS[L/M ,N] (z)
has two branches connected by branch points at the roots of
the discriminant polynomialPL

224QMRN .
The large-order behavior of the energy expansion is de-

termined by thedominant branch pointzd , which is the
branch point ofE(z) nearest the origin. It is useful to classify
systems according to whetherzd is in the positive half-plane
~class A! or the negative half-plane~class B!.9,11–13For class
A systems the branch point is expected to connect the eigen-
state under consideration with the next higher eigenstate of
the same symmetry in the physical (z51) spectrum. For
class B systemszd is expected to lie on the negative real
axis. It connects the eigenstate under consideration with a
nonphysical autoionizing state.3,9,14 Qualitative criteria have
been formulated for determining the class of a given system
based on the nature of the electron orbital structure.13 Class
B contains systems with clustering of electrons pairs, such as
electron-rich atoms or molecules with multiple bonds. Class
A contains systems with well-separated electron pairs. In
principle the class B singularity is best described by con-
straining the polynomialRN with the conditionRN(0)50
while for class A it is best to leaveRN(0) unconstrained.11

zd can be shifted away from the origin by repartitioning
the perturbation theory. This involves redefining the ‘‘pertur-
bation’’ in such a way that the solution for the energy re-
mains the same atz51 but is changed elsewhere in thez
plane. A particularly convenient repartitioning is the Feen-
berg transformation,15 which amounts to a simple rearrange-
ment of Eq.~1! in terms of an arbitrary parameterl, with the
Ei replaced by12

Ei
(l)5 (

k51

i 21 S i 22
k21Dl i 2k21~12l!kEk11 ~3!

for i>2, with E1
(l)5E1 . The effect on the singularity struc-

ture is shown in Fig. 1 for the BH molecule. The upper panel
shows the locations of the two branch points of theS[1/0,1]

approximant while the lower panel shows the error in the
result for the energy. This behavior ofzd as a function ofl
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for MP4 is typical. Forl sufficiently negative,zd is found on
the negative real axis with a maximum inuzdu typically
aroundl520.4 for class A andl520.2 for class B. Asl
becomes more positive,zd eventually shifts to the positive
half-plane with a maximum inuzdu in the approximate range
20.1,l,0.5 that is always the global maximum.

Table I shows results for various class A systems for
which full configuration-interaction~FCI! results are avail-
able for comparison. For class A the@1/0,1# unconstrained
quadratic approximant withl corresponding to the maxi-
mum in the positive half-plane(‘‘qu l1 ’ ’) dependably
gives higher accuracy than partial summation and is usually
at least as accurate, and often much more accurate, than the
unshifted (l50) quadratic approximant. Also shown in
Table I are coupled-cluster results using the same basis sets.
The computational cost of MP4 scales asN7 with the sizeN
of the basis. This is roughly comparable to the cost of the
CCSD~T! method~coupled-cluster with singles and doubles
and perturbative treatment of triples21–23!, while CCSD
scales asN6 and CCSDT asN8. Although the MP4 partial
sums are comparable in accuracy to the less expensive
CCSD, the singularity-shifted quadratic sums are on average
slightly more accurate than CCSDT, which is considerably
more expensive. The one system in the table for which the
CCSD~T! and CCSDT results are superior is the1A1 state of
CH2, which has a relatively small gap between the highest
occupied molecular orbital and the lowest unoccupied mo-
lecular orbital of the same symmetry.9,24

Results for class B systems are shown in Tables II and
III, from the @1/0,2# constrained approximant. Also shown is
the@1/1,1# approximant, the value of which is independent of
l at the pointz51. This approximant was studied in Ref. 11.
It is often extremely accurate but on average is less depend-
able than the singularity-shifted@1/0,2# approximants. These
tables also showzd for the @1/0,2# approximant at thel that
shifts zd as far as possible into the negative half-plane
(‘‘qc l2 ’ ’). For class B there is an approximate correlation
between the accuracy of the quadratic approximant and how
far away from the origin the repartitioning is able to shift the
singularity, with a very significant decrease in accuracy ifzd

cannot be shifted past21. The results have been grouped as
‘‘well-behaved’’ or ‘‘difficult’’ according to whether or not

FIG. 1. Branch point locations and error~in units of Eh! of the @1/0,1#
approximant for the ground state energy of BH, as a function of the repar-
titioning parameterl. The dashed curve shows the error from MP4 partial
summation. The diamond marks the error corresponding to the value ofl
that maximizes the distance from the origin of the dominant branch point.
The perturbation series is from Leiningeret al. ~Ref. 7! with the aug-cc-
pVQZ basis set.

TABLE I. Class A systems:DE5Eapprox2EFCI in mEh .

Method BHa NH2
2B1

b NH2
2A1

b CH2
3B1

b CH2
1A1

b CH3
b

Mean
uDEu

Median
uDEu

MP4 qul1c 20.155 20.055 0.008 0.270 1.926 0.126 0.423 0.141
MP4 quc 22.060 20.480 20.332 0.297 1.925 0.129 0.871 0.406
MP4 sum 5.162 1.900 1.617 1.880 4.979 1.981 2.920 1.941
CCSD 2.740 3.211 2.992 2.090 3.544 2.790 2.895 2.891
CCSD~T! 0.501 0.547 0.532 0.360 0.873 0.499 0.552 0.517
CCSDT 0.090 21.274 0.223 0.017 0.207 20.744 0.426 0.215

aEi and CC values from Ref. 7 with aug-cc-pVQZ basis,EFCI5225.235 843Eh .
bEi from Ref. 16 with the DZP basis; CC values, Ref. 17;EFCI5255.742 620(NH2

2B1), 255.688 762
(NH2

2A1), Ref. 18,239.046 260 (CH2
3B1), 239.027 183 (CH2

1A1), Ref. 19, and239.721 212 (CH3),
Ref. 20, inEh .

cqul1 and qu are@1/0,1# unconstrained approximants, the former with thel that maximizesuzdu in the positive
half plane, the latter withl50.
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zd for the qcl2 approximant is shifted beyond21.5.
The source of the difficulty appears to be the need to

simultaneously model the nonphysical branch point on the
negative real axis and a nondominant branch point in the
positive half-plane. A good example of this is F2, for which
the tables contain results from three different basis sets. The
worst qcl2 result comes from the aug-cc-pVDZ basis,31

which contains diffuse functions that easily describe autoion-
izing states. In this case the quadratic approximants do rela-
tively poorly at MP4 but are extremely accurate at MP6,
which is the first order at which the approximants clearly
discern both kinds of singularities. At MP6 the maximum
uzdu corresponds tol50.37, with equidistant branch points
at 61.8. For F2 with the cc-pVTZ-~f! basis,2 which is the
same size as the aug-cc-pVDZ basis but omits the diffuse
functions,zd is farther from the origin and the accuracy of
the MP4 approximants is much higher. The MP4 quadratic
approximants, for all systems studied here, place all singu-
larities either in the positive half-plane or in the negative

half-plane, with a rapid transition at an intermediate value of
l. Apparently, as long as the dominant singularity is far
enough from the origin it is sufficient to model the singular-
ity structure in only one of the two regions.

The systems in Table III are difficult for MP4, but can
also be difficult for the coupled-cluster methods. For such
systems~and for class A systems with physical near degen-
eracies! it is perhaps best to use a multireference state
theory24,32–34 summed with quadratic approximants, or a
more powerful repartitioning technique,8 rather than to try to
resum the conventional MP4 expansion coefficients provided
by standard software packages. However, for the well-
behaved class B systems the results at MP4 from the qc
l6 approximants are somewhat better than the CCSD~T!
results and comparable in accuracy to the CCSDT results.
Good results are obtained at either of the two maxima.
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