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Rational and algebraic Pade´ approximants are applied to Møller–Plesset~MP! perturbation
expansions of energies for a representative sample of atoms and small molecules. These
approximants can converge to the full configuration–interaction result even when partial summation
diverges. At order MP2~the first order beyond the Hartree–Fock approximation!, the best results are
obtained from the rational@0/1# Padéapproximant of the total energy. At MP3 rational and quadratic
approximants are about equally good, and better than partial summation. At MP4, MP5, and MP6,
quadratic approximants appear to be the most dependable method. The success of the quadratic
approximants is attributed to their ability to model the singularity structure in the complex plane of
the perturbation parameter. Two classes of systems are distinguished according to whether the
dominant singularity is in the positive half plane~class A! or the negative half plane~class B!. A
new kind of quadratic approximant, with a constraint on one of its constituent polynomials, gives
better results than conventional approximants for class B systems at MP4, MP5, and MP6. For CH3

with the C–H distance at twice the equilibrium value the quadratic approximants yield a complex
value for the ground-state electronic energy. This is interpreted as a resonance eigenvalue embedded
in the ionization continuum. ©2000 American Institute of Physics.@S0021-9606~00!30208-2#

I. INTRODUCTION

Møller–Plesset perturbation theory~MPPT!1 is currently
one of the most widely used methods ofab initio quantum
chemistry. However, recent studies have suggested that the
Møller–Plesset expansion might often be insufficiently con-
vergent to yield dependable results.2–8 The zeroth-order of
MPPT is the Hartree–Fock approximation, described by the
Fock operator,F̂. The HamiltonianĤ is partitioned as

Ĥ5F̂1zf̂, f̂5Ĥ2F̂, ~1!

wherez is treated as a perturbation parameter with the physi-
cal solution corresponding tozphys51. The resulting energy
eigenvalues are functions ofz with asymptotic expansions

E~z!5(
j 50

`

Ejz
j . ~2!

E(z) can be estimated frompartial summation of the
asymptotic series, in terms of the summation approximants

Sn~z!5(
j 50

n

Ejz
j . ~3!

S0 is the Hartree–Fock approximation.S1 is generally called
‘‘second-order Møller–Plesset theory’’~MP2!. Similarly, S2

is referred to as MP3,S3 as MP4, and so on. Computer
programs are available for direct calculation of theEj for j
from 0 to 5,9 although the computational cost increases sig-
nificantly with j . For j .5 the Ej can be extracted from
configuration–interaction calculations.4,10,11

The recent studies2–8 have demonstrated that the conver-
gence of the sequenceSn can be unsteady. In particular, the
studies by Olsen, Christiansen, and co-workers4,5 indicate

that Sn can be a divergent sequence, so thatSn will not
approach the correct result even in the limitn→`. Partial
summation is divergent if there exists a singularity in the
function E(z) ~a pole, a branch point, or an essential singu-
larity! within the circlez5uzphysu in the complexz plane.12

For MPPT, the singularity responsible for the divergence is
expected to be a two-sheet branch point5,13 connecting the
physical eigenvalue~i.e., the eigenvalue that approachesE0

in the limit z→0) to a branch ofE(z) corresponding to the
eigenvalue of an ‘‘intruder state.’’ The intruder state is an
excited state that becomes stabilized at nonphysical values of
z, becoming degenerate with the physical state at a valuezs

corresponding to a branch-point singularity. In the case of
MPPT for Ne, Christiansenet al.5 showed that atz'20.82
the ground-state energy is equal to the energy of a state de-
scribed by a wave function dominated by contributions from
quintuple and higher excitations.

The sequenceSn can have poor convergence because the
functionsSn(z) are polynomials, which are nonsingular at all
finite z and therefore can describe the singular functionE(z)
only with limited accuracy. It is reasonable to expect that
better results can be obtained by replacing theSn with ap-
proximants that have a singularity structure resembling that
of E(z). A class of multiple-valued approximants with
branch-point singularities was devised by Pade´ over 100
years ago.14 These arealgebraic approximants, which are
algebraic generalizations of the rational approximants usu-
ally associated with his name. Algebraic summation approxi-
mants are not widely known, although their mathematical
properties have been studied in some detail15–19 and they
have been applied in recent years to a variety of problems
including, for example, the calculation of complex eigenval-
ues for the H atom in an electric field20 and resonance ener-
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gies in molecular vibration–rotation spectra.21–23 Here qua-
dratic approximants~algebraic approximants of degree 2!
will be applied to MP6 expansions calculated by He and
Cremer3 for a representative set of atoms and small mol-
ecules and to large-order expansions of Olsenet al.4

II. METHOD

The familiar rational Pade´ approximants,

S[L/M ]~z!5PL~z!/QM~z!, ~4!

are ratios of polynomialsPL , QM , of degreesL, M , that
satisfy the linear equation14,24

QME2PL;O~zL1M11!. ~5!

The notation ‘‘;O(zm)’’ means that the asymptotic expan-
sion of the left-hand side of the equation contains no terms
proportional to powers ofz of degree less thanm. ~This
formulation of S[L/M ] differs slightly from that used by
Bartlett and Shavitt,25 in which the correlation energy,E
2E0 , is summed rather than the total energyE.) By con-
vention,QM(0) is defined to be 1. The remainingM coeffi-
cients ofQM and theL11 coefficients ofPL are determined
by the set of linear equations obtained by collecting terms in
Eq. ~5! according to powers ofz.

Suppose we replace Eq.~5! with the quadratic equation

QME22PLE1RN;O~zm!. ~6!

The approximants forE are then

S[L/M ,N]~z!5
1

2 F PL

QM
6

1

QM
~PL

224QMRN!1/2G . ~7!

The functionsS[L/M ,N] (z) have two branches connected by
branch-point singularities at the values ofz that are roots of
the discriminant polynomialPL

224QMRN .
Let

PL5(
i 50

L

piz
i , QM511(

i 51

M

qiz
i , RN5(

i 50

N

r iz
i . ~8!

The L1M1N12 coefficientspi , qi , r i can be determined
from Eq. ~6! with m5L1M1N12, by collecting terms ac-
cording to powers ofz. To calculateS[L/M ,N] the perturba-
tion expansion, Eq.~2!, must be known through ordern5L
1M1N11. This is the approach used in previous studies of
quadratic approximants. For the lowest-order approximant,
S[0/0,0] , the solution isp052E0 , r 05E0

2, which implies that
the discriminant is identically zero, andS[0/0,0]5E0 for both
branches. Branch points are present forn>2.

Alternatively, the value ofp0 or r 0 can be assigned as an
arbitrary parameter. Thenm in Eq. ~6! is L1M1N11 and
S[L/M ,N] is determined from ordern5L1M1N. If r 0 is the
parameter, then the zeroth-order solution is

S[0/0,0]5 H E0 ,
r 0 /E0

. ~9!

If the ordern is large, the performance of either of these two
approximant schemes should be about the same. At low or-
ders the performance may differ; presumably, the scheme
that at lowest order most accurately describes the qualitative

spacing atz5zphysof the energy levels involved in the domi-
nant branch point will be the one that gives the best results.
The singularity structure that has been identified for MPPT
for Ne,5 involving the ground state and a highly excited state,
suggests the use of a constrained approximant scheme with
r 050. Then, according to Eq.~9!, the ground-state energy
will be initially set to the Hartree–Fock value,E0 , while the
excited state will initially be assigned an energy of zero, so
that the energy of the excited state will be approached from
above. The conventional unconstrained approximants should
be best for cases in which the branch point involves states
that have nearly the same energy atz5zphys.

III. CONVERGENCE AT LARGE ORDER

To study the large-order behavior of MPPT, Handy
et al.10 and Laidig et al.11 carried out full configuration–
interaction ~FCI! calculations for various small molecules
and in the course of the computations took advantage of the
intermediate iterations to estimate the MP energy expansion
coefficients up to very large orders. They concluded that the
partial sums of the expansions were convergent, although the
initial convergence in some cases was slow and uneven for
eigenstates not dominated by a single configuration. Re-
cently, Olsen and co-workers4,5 carried out similar calcula-
tions but with augmented basis sets and found that the MP
expansions even for the single configuration dominated sys-
tems Ne, F2, HF, and H2O in fact diverged if the basis set
inluded functions capable of describing diffuse excited
states. The case of Ne was studied in detail5 and the diver-
gence was attributed to an avoided crossing between the
ground state and an excited state atz'20.82, with the
wavefunction for the excited state dominated by contribu-
tions from quintuple and higher excitations.

In principle, the MP expansion should converge to the
FCI energy. Figure 1 shows the quantity2 log10u(S
2EFCI)/EFCIu, which is a continuous measure of the number
of accurate digits, vs the ordern of the perturbation expan-
sion for Ne. Results are shown for four different summation
approximant sequencesS: the partial sums,Sn ; the rational
Padéapproximant sequenceS[0/0] , S[0/1] , S[1/1] , . . . ; the un-
constrained quadratic Pade´ approximant sequenceS[0/0,0] ,
S[1/0,0] , S[1/0,1] , S[1/1,1] , . . . ; and thequadratic approxi-
mants withr 050, in the same index sequence.

As stressed by Olsenet al.,4 the behavior of the partial
sums can depend strongly on the nature of the basis set. The
two panels of Fig. 1 correspond to results from different
basis sets. With the correlation-consistent polarized valence
double zeta basis~cc-pVDZ!26 the partial sums converge rea-
sonably well, but with the more accurate aug-cc-pVDZ
basis,27 which is augmented with diffuse functions, the par-
tial sums at first seem to converge, with closest approach to
EFCI at MP15, whereS142EFCI50.000 142 hartree, but then
gradually diverge. The rational approximants, the uncon-
strained quadratic approximants, and ther 050 quadratic ap-
proximants converge to the FCI limit for either basis set.

In the quadratic approximants the root of the discrimi-
nant polynomial nearest the origin of the complexz plane
should converge to the location of the dominant branch
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point, zs . For the aug-cc-pVDZ Ne expansion, the quadratic
approximants by ordern56 consistently placezs in the gen-
eral vicinity of 21. At n520 the branch point position be-
gins to stabilize at20.8. In contrast, with the cc-pVDZ basis
the root nearest to the origin is at approximately226 i .
Clearly, for this system the diffuse functions are needed to
describe the intruder state responsible for the branch point
within the circle of convergence. While this branch point

strongly affects the convergence of the partial sums, it has
little effect on the convergence of the three kinds of Pade´
approximants.

Figure 2 shows results for F2, with the aug-cc-pVDZ
basis. This is an especially difficult system for the partial
sums, which diverge rapidly forn.3. The quadratic ap-
proximants place a branch point at20.61.

He and Cremer28 have designated systems as ‘‘class A’’
or ‘‘class B’’ according to the sign patterns of theEi and
have offered an interpretation of this classification in terms
of patterns of electron localization.29 For class A systems the
Ei have same sign for alli while for class B systems theEi

at some point begin to alternate in sign. If theEj strictly
alternate in sign in the limit of largej then the dominant
branch point must lie on the negative real axis. If they have
the same sign then the branch point lies on the positive real
axis. If the dominant branch points are a complex-conjugate
pair in the negative half plane, then there will be regions of
alternating signs with the pattern broken periodically by con-
secutiveEj of the same sign.30 The period is

n05p/arctan~ uIzs /Rzsu!. ~10!

If the dominant branch points are complex conjugates in the
positive half plane, then there will be regions of only one
sign alternating with regions of only the opposite sign. It
seems reasonable to define class A systems as those for
which the dominant singularity is in the positive half plane
and class B systems as those for which the dominant singu-
larity is in the negative half plane, in order to extend the
classification scheme to systems with complex–conjugate
dominant branch points. Note that branch points that do not
lie on the real axis must occur in complex-conjugate pairs in
order to be consistent with the fact that theEj are real num-
bers.

FIG. 1. Convergence of summation
approximants for the ground-state en-
ergy of Ne. The curves show
2 log10u(S2EFCI)/EFCIu, where S is
the value of the summation approxi-
mant. The summation methods are par-
tial sums~dotted curve!, rational sum-
mation ~solid curve!, unconstrained
quadratic summation~dashed curve!,
and constrained (r 050) quadratic
summation ~dashed–dotted curve!.
The expansion coefficients are from
Ref. 4. The basis set used for the ex-
pansion in the left panel is the aug-cc-
pVDZ ~frozen core! basis, which is
augmented with diffuse functions.27

The right panel uses the cc-pVDZ~fro-
zen core! basis without the diffuse
functions.26 The FCI energies,EFCI ,
are 2128.709 476 hartree and
2128.679 025, respectively. The
dash-dot-dot lines indicate the preci-
sion of EFCI.

FIG. 2. Convergence of summation approximants for the ground-state en-
ergy of F2. The curves show2 log10u(S2EFCI)/EFCIu, whereS is the value
of the summation approximant. The summation methods are partial sums
~dotted curve!, rational summation~solid curve!, unconstrained quadratic
summation~dashed curve!, and constrained (r 050) quadratic summation
~dashed–dotted curve!. The expansion coefficients, from Ref. 4, were cal-
culated with the aug-cc-pVDZ~frozen core! basis set. The FCI result is
EFCI5299.669 369 hartree.
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Figure 3 shows results for CH2, which is a class A sys-
tem. The quadratic approximants place a branch point in the
neighborhood of 1.3.~At a few orders the approximants see
this as a complex–conjugate pair at approximately 1.2
60.1i .) Sincezs is outside of the circleuzu51, the partial
sums are convergent, but the convergence is rather slow. All
three kinds of Pade´ approximants converge much faster, but
the convergence of the quadratic Pade´ approximants forn
.8 is uneven. The reason for this seems to be the placement
of spurious branch points nearzphys. For example, for the
unconstrained quadratic results in Fig. 3 the accuracy is less
than or about equal to that of the partial sums only atn
513 and 19. Atn513 the quadratic approximant has spuri-
ous branch points at 0.913 and 0.917. Atn519 there is a
spurious branch point at 0.949.

In general, the number of branch points in theS[L/M ,N]

approximant will be either 2L or M1N, whichever is
greater. If there is only one branch point that is significantly
affecting the expansion divergence, then the remaining
branch points will be nonphysical. Ideally, they will be
placed far from the origin or they will occur in almost coin-
cident pairs. However, their positions can vary greatly from
order to order and a nonphysical branch point close tozphys

can seriously degrade the accuracy. There seems to be a
tendency for the spurious branch points to appear in the vi-
cinity of the dominant branch point, which implies that the
large-order convergence of quadratic approximants will in
general be steadier for class B systems than for class A sys-
tems. The rational approximants model a branch point by
tracing a branch cut with a sequence of poles.24 Spurious
poles affect the accuracy of rational Pade´ approximants, but

these are less likely because many poles can be employed to
model a single branch point.

Figure 4 shows results for the BH molecule. This is a
class A system. The dominant branch point of the quadratic
approximants is reasonably stable through 10th order, con-

FIG. 3. Convergence of summation approximants for the ground-state en-
ergy of CH2. The curves show2 log10u(S2EFCI)/EFCIu, where S is the
value of the summation approximant. The summation methods are partial
sums~dotted curve!, rational summation~solid curve!, unconstrained qua-
dratic summation~dashed curve!, and constrained (r 050) quadratic sum-
mation ~dashed–dotted curve!. The expansion coefficients, from Ref. 4,
were calculated with the aug-cc-pVDZ~frozen core! basis set. The FCI
result isEFCI5239.032 446 hartree.

FIG. 4. Convergence of summation approximants for the ground-state en-
ergy of CH2. The curves show2 log10u(S2EFCI)/EFCIu, where S is the
value of the summation approximant. The summation methods are partial
sums~dotted curve!, rational summation~solid curve!, unconstrained qua-
dratic summation~dashed curve!, and constrained (r 050) quadratic sum-
mation ~dashed–dotted curve!. The expansion coefficients, from Ref. 4,
were calculated with the aug-cc-pVDZ~frozen core! basis set. The FCI
result isEFCI5225.218 277 hartree.

FIG. 5. Convergence of summation approximants for the ground-state en-
ergy ofC2 . The curves show2 log10u(S2EFCI)/EFCIu, whereS is the value
of the summation approximant. The summation methods are partial sums
~dotted curve!, rational summation~solid curve!, unconstrained quadratic
summation~dashed curve!, and constrained (r 050) quadratic summation
~dashed–dotted curve!. The expansion coefficients, from Ref. 4, were cal-
culated with the aug-cc-pVDZ~frozen core! basis set. The FCI result is
EFCI5275.730 209 hartree.

4904 J. Chem. Phys., Vol. 112, No. 11, 15 March 2000 David Z. Goodson



verging to approximately 1.6. Starting at 11th order the po-
sition of the branch point becomes unstable. At 15th order
the unconstrained approximant, which gives full agreement
with the FCI energy, places the branch point at 1.560.2i .
Sinceuzsu is relatively large in this case,zphys is well within
the circle of convergence and hence the partial sums con-
verge rather well, although their accuracy is usually some-
what lower than that of the other approximants. The poor
result from the unconstrained quadratic approximant at order
5 is due to a spurious branch point at 1.006.

Figure 5 shows results for the C2 molecule. The singu-
larity structure of the quadratic approximants is quite stable
in this case with the dominant branch points at20.97
60.34i and another branch point pair at 1.1860.36i . Be-
causezphys is just barely inside the circle of convergence, the
partial sums can be expected to converge at large order but
the convergence will be very slow.

IV. CONVERGENCE AT LOW ORDER

In practice, the most important question is how best to
sum the MP expansion at low orders. The usual motivation
for using MPPT is that its computational cost is significantly
less than that of otherab initio methods that include electron
correlation. The large-order expansions considered in Sec. III
do not offer this cost advantage, since they require an FCI
calculation to obtain the MP expansion coefficients. Direct
calculations of theEi can currently be carried out through
MP6.29,31 He and Cremer3 have tabulated MP6 expansions
for a variety of atoms and small molecules. Table I compares
the convergence error from partial summation, rational Pade´
summation, and quadratic Pade´ summation for a representa-
tive sample of 16 of their expansions. The results are ana-
lyzed in Table II.

Table II compares the summation methods for the total
sample of systems but also breaks down the results according
the two classes. (H2O with R52Re has branch points on the
both the positive and the negative real axes, approximately
equidistant from the origin. It is grouped with class B be-
cause theEj alternate in sign, indicating that the singularity
at negativez is dominant at these orders.! For MP2 the ra-
tional approximants are in all cases the most accurate, al-
though, with the single exception of F2, the improvement
over the other methods is relatively small. For MP3 the ra-
tional and the quadratic approximants are about equal in ac-
curacy and almost always better than partial summation, al-
though in general this advantage is significant only for class
A systems. For class A systems at MP4 the quadratic and
rational approximants are about equal in accuracy and almost
always significantly better than partial summation. However,
for class B systems at MP4 the rational Pade´ summation is
consistently the worst of the methods while the constrained
quadratic summation is usually the best. At MP5 and MP6
partial summation is usually the worst of the methods, both
for class A and for class B. The constrained quadratic ap-
proximants are usually the best method for class B. For class
A systems at MP5 the unconstrained quadratic approximants
are best. For class A at MP6 all three Pade´ methods are about
equally successful.

For a class A system the intruder state can be expected
to be closer in energy to the physical state than in the case of
a class B system, where the crossing occurs at a highly non-
physical negative value ofz. Therefore, according to the
discussion in Sec. II, the unconstrained quadratic approxi-
mants at low orders should be relatively better for class A
systems while the approximants withr 050 will be relatively
better for class B. In practice, the advantage of ther 050
approximants for class B is not apparent until MP4. At MP2
and MP3, the contributions to theEj from the singularities
evidently are obscured by nonsingular contributions.

V. RESONANCE EIGENVALUES

For one of the systems studied by He and Cremer,3 CH3

with the C–H distance set at twice the equilibrium bond
distance, the quadratic approximants converge to a complex
number.~This case was not included in Tables I and II.! The
total energy for this system as given by the various summa-
tion methods is shown in Table III.

Vaı̆nberg et al.20 have demonstrated that perturbation
expansions for energy eigenvalues of the H atom in an ex-
ternal electric field converge to a complex energy when
summed with quadratic approximants, even though the ex-
pansion coefficients are real. The H atom is unstable in an
electric field. The real part of this complex energy eigen-
value is the energy of a resonance in thee21H1 scattering
continuum. The imaginary part is a measure of the resonance
width, G52uIEu, with the resonance lifetime given by
4\/G.37 Such resonances correspond to a complex-conjugate
pair of eigenvalues. One of the eigenvalues corresponds to
outgoing boundary conditions while the other corresponds to
incoming boundary conditions. These two solutions are con-
nected by a branch point on the positive real axis. Quadratic
approximants have also been used to calculate complex ei-
genvalues for shape resonances21 and molecular predissocia-
tion resonances.21,22

The convergence of the MPPT to a complex energy sug-
gests that CH3 with C–H distanceR52Re is a resonance in
the e21CH3

1 continuum, with energy239.172 hartree and
width 0.042 hartree. The convergence of the unconstrained
quadratic approximants is faster than that of ther 050 ap-
proximants, as expected from the discussion in Sec. II. There
is a stable branch point in the quadratic approximants at
0.71. Apparently, the stronger electron correlation in CH3

causes its energy to rise above that of the cation asz in-
creases.

VI. DISCUSSION

Comparison of the accuracy of various kinds of summa-
tion approximants, using MP6 expansions for 16 representa-
tive atoms and molecules, leads to the following recommen-
dations:

~a! MP2 should be summed with a rational@0/1# Padéap-
proximant.

~b! MP3 should be summed with unconstrained quadratic
Padéapproximants.
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TABLE I. S2EFCI , in hartree, whereS is a summation approximant of indicated type and order for Møller–
Plesset perturbation theory. Numbers in parentheses come from approximants that have a branch point within a
distance of 0.2 from the pointz51. The value shown forzs is the position of the branch point nearest the origin
in the most accurate of the quadratic approximants at MP6. The expansion coefficients are from Ref. 3.

Order
Partial
sum

Rational
Padé

Quadratic Pade´,
unconstrained

Quadratic Pade´,
r 050

BH, R5Re EFCI5225.2276a Ecorr50.102 355 zs51.4
MP2 0.028 627 0.028 410 0.102 355 0.028 842
MP3 0.011 049 0.005 546 (20.018 983) 0.005 662
MP4 0.005 048 0.001 932 0.000 227 0.001 079
MP5 0.002 514 0.000 316 20.000 078 0.000 288
MP6 0.001 293 20.000 039 20.000 195 0.000 008

BH, R52Re EFCI5225.127 33a Ecorr50.139 132 zs51.7
MP2 0.052 830 0.052 531 0.139 132 0.053 126
MP3 0.027 112 0.016 195 (20.005 67060.063 449i ) 0.016 449
MP4 0.013 328 20.002 672 (20.031 31460.047 400i ) 20.009 516
MP5 0.006 054 20.002 079 20.005 416 20.000 642
MP6 0.002 186 20.002 181 20.002 323 20.002 337

NH2
2B1 , R5Re EFCI5255.742 62b Ecorr50.165 438 zs52.1

MP2 0.022 172 0.021 802 0.165 438 0.022 539
MP3 0.006 215 0.004 215 0.001 202 0.004 273
MP4 0.001 900 0.000 283 20.000 480 0.000 438
MP5 0.000 765 0.000 360 0.000 259 0.000 344
MP6 0.000 336 0.000 301 0.000 104 0.000 129

NH2
2B1 , R52Re EFCI5255.505 52b Ecorr50.111 898 zs52.0

MP2 0.036 528 0.036 425 0.111 898 0.036 630
MP3 0.022 472 0.019 250 0.011 673 0.019 285
MP4 0.018 796 0.017 493 0.016 979 0.017 207
MP5 0.017 486 0.016 489 0.016 366 0.016 712
MP6 0.016 688 0.025 570 ~0.020 764! 0.017 317

NH2
2A1 , R5Re EFCI5255.688 76b Ecorr50.162 380 zs52.1

MP2 0.020 290 0.019 925 0.162 380 0.020 652
MP3 0.005 445 0.003 713 0.001 184 0.003 766
MP4 0.001 617 0.000 271 20.000 332 0.000 419
MP5 0.000 651 0.000 325 0.000 246 0.000 318
MP6 0.000 275 0.000 281 0.000 085 0.000 114

NH2
2A1 , R52Re EFCI5255.415 13b Ecorr50.154 402 zs51.3

MP2 0.065 312 0.065 168 0.154 402 0.065 455
MP3 0.047 064 0.042 364 0.029 370 0.042 422
MP4 0.040 303 0.036 314 0.033 295 0.035 619
MP5 0.037 016 0.033 392 0.032 110 0.033 336
MP6 0.034 810 20.017 356 0.036 710 0.033 255

CH3, R5Re EFCI5239.721 21c Ecorr50.150 583 zs52.3
MP2 0.025 262 0.024 864 0.150 583 0.025 656
MP3 0.006 361 0.003 004 20.003 199 0.003 101
MP4 0.001 981 0.000 655 0.000 129 0.000 428
MP5 0.000 770 0.000 273 0.000 216 0.000 240
MP6 0.000 346 20.000 025 (20.000 611) 0.000 172

CH2
3B1 EFCI5239.046 26d Ecorr50.113 215 zs51.5

MP2 0.020 925 0.020 706 0.113 215 0.021 143
MP3 0.005 547 0.002 472 20.003 794 0.002 535
MP4 0.001 880 0.000 730 0.000 297 0.000 501
MP5 0.000 784 0.000 242 0.000 188 0.000 260
MP6 0.000 364 20.000 028 20.000 080 0.000 349

CH2
1A1 EFCI5239.027 18d Ecorr50.140 886 zs51.2

MP2 0.031 056 0.030 745 0.140 886 0.031 364
MP3 0.010 590 0.005 903 20.005 105 0.006 010
MP4 0.004 979 0.002 855 0.001 925 0.002 404
MP5 0.002 949 0.001 514 0.001 315 0.001 687
MP6 0.001 977 0.000 501 0.000 203 ~0.003 444!

Ne EFCI52128.767 89e Ecorr50.224 066 zs522.1
MP2 0.003 830 0.003 452 0.224 066 0.004 206
MP3 0.005 377 0.005 366 0.005 356 0.005 364
MP4 20.000 650 0.003 919 0.004 146 20.000 854
MP5 0.000 827 0.000 440 0.000 346 0.000 337
MP6 20.000 368 20.000 100 0.000 560 20.000 102
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~c! MP4 and MP5 should be summed with quadratic Pade´
approximants. For class A systems unconstrained ap-
proximants are best while constrained (r 050) approxi-
mants are best for class B systems.

~d! Class B systems at MP6 should be summed with con-
strained (r 050) quadratic approximants.

For class A at MP6 it is best to use one of the Pade´ methods
rather than partial summation, but it is not clear which of the
methods will be most reliable.

Table IV, which lists median ratios of errors from the
recommended summation methods and from partial summa-
tion, gives an indication of how much improvement can be
expected. For MP2 the median increase in accuracy from
Padésummation is small. However, since the rational ap-
proximant S[0/1]5E0 /(12E1 /E0) is so easy to compute,
and is more accurate thanS1 for all 16 systems in Table I,
there is no excuse not to employ it. At higher orders there are
occasional cases in which the partial sum is the most accu-
rate result, but the median improvement from the recom-

TABLE II. Comparison of accuracies of summation approximants, from the
results in Table I. The summation methods are partial summation (S), ra-
tional Pade´ summation (R), unconstrained quadratic summation (Qu), and
constrained (r 050) quadratic summation (Qc). One method is counted as
more accurate than another if its summation error is at least 10% less. The
entries are the number of systems for which the given relation is true. For
example, ‘ ‘Qu.R,S’ ’ means thatQu is more accurate thanR andS. The
numbers in parentheses show the results for the nine class A and the seven
class B systems, respectively, considered separately.

MP2 MP3 MP4 MP5 MP6

Qu.R,S 0 6 ~6,0! 4 ~4,0! 12 ~6,6! 4 ~3,1!
Qc.R,S 0 0 8 ~4,4! 8 ~2,6! 8 ~3,5!
R.Qu ,S 2 ~0,2! 2 ~2,0! 2 ~2,0! 2 ~1,1! 6 ~3,3!
R.Qc ,S 2 ~0,2! 0 3 ~3,0! 2 ~1,1! 4 ~4,0!
S.Qu ,R 0 0 6 ~0,6! 0 3 ~1,2!
S.Qc ,R 0 0 2 ~0,2! 0 1 ~0,1!

Qu.S 0 9 ~8,1! 7 ~7,0! 14 ~8,6! 7 ~5,2!
Qc.S 0 8 ~8,0! 12 ~8,4! 13 ~7,6! 11 ~5,6!
R.S 2 ~0,2! 8 ~8,0! 8 ~8,0! 14 ~7,7! 11 ~6,5!

Qu.Qc 0 7 ~6,1! 5 ~5,0! 5 ~5,0! 5 ~4,1!
Qc.Qu 16 ~9,7! 2 ~2,0! 8 ~1,7! 6 ~2,4! 9 ~3,6!

TABLE I. ~Continued.!

Order
Partial
sum

Rational
Padé

Quadratic Pade´,
unconstrained

Quadratic Pade´,
r 050

F EFCI5299.594 88f Ecorr50.194 894 zs522.1
MP2 0.013 123 0.012 790 0.194 894 0.013 454
MP3 0.004 941 0.004 555 0.004 109 0.004 572
MP4 0.000 529 20.005 051 (20.007 031) 20.000 319
MP5 0.000 461 0.000 349 0.000 263 0.000 197
MP6 0.000 020 0.000 042 20.000 047 0.000 007

F2 EFCI5299.706 69g Ecorr50.262 994 zs520.65
MP2 0.000 588 20.000 106 0.262 994 0.001 277
MP3 0.013 851 0.013 213 0.012 659 0.013 183
MP4 20.005 398 0.005 777 0.006 064 20.005 213
MP5 0.006 671 0.001 833 0.001 458 0.001 611
MP6 20.006 928 20.003 697 0.000 529 20.002 733

HF, R5Re EFCI52100.250 97a Ecorr50.203 882 zs521.6
MP2 0.007 804 0.007 419 0.203 882 0.008 187
MP3 0.005 438 0.005 409 0.005 379 0.005 414
MP4 20.000 264 0.008 481 0.009 507 20.000 838
MP5 0.000 859 0.000 536 0.000 435 0.000 385
MP6 20.000 230 0.000 020 20.000 546 20.000 004

HF, R52Re EFCI52100.081 11a Ecorr50.263 536 zs521.1
MP2 0.024 045 0.023 469 0.263 536 0.024 617
MP3 0.026 959 0.026 924 0.026 890 0.026 917
MP4 0.004 840 0.023 946 0.024 385 0.000 718
MP5 0.008 103 0.006 043 0.004 069 0.003 878
MP6 20.001 131 20.003 477 0.010 759 20.004 897

H2O, R5Re EFCI5276.256 62a Ecorr50.216 083 zs522.2
MP2 0.012 966 0.012 422 0.216 083 0.013 506
MP3 0.007 223 0.007 056 0.006 873 0.007 073
MP4 0.000 820 0.035 588 0.023 70760.030 954i 20.000 206
MP5 0.000 704 0.000 493 0.000 288 0.000 247
MP6 0.000 078 0.000 045 20.000 142 0.000 005

H2O, R52Re EFCI52100.187 56a Ecorr50.369 984 zs521.7, 1.7
MP2 0.053 667 0.052 661 0.369 984 0.054 663
MP3 0.074 605 0.073 305 0.072 221 0.073 250
MP4 0.014 860 0.058 582 0.059 170 20.002 185
MP5 0.016 978 0.002 911 (20.050 052) (20.036 913)
MP6 0.004 058 0.000 173 (20.003 65260.072 216i ) 0.000 007

aReference 32. dReference 35. gReference 32, 5s3p2d basis set.
bReference 33. eReference 32, 6s4p1d basis set.
cReference 34. fReference 36, 5s3p2d basis set.
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mended summation method can be substantial.
The last column in Table IV addresses the question of

whether or not it is worth the effort to proceed to the next
higher order of perturbation theory. Alberts and Handy38

have suggested that MP3 does not give sufficient improve-
ment to justify the computational cost. Indeed, for the class
B systems considered here the accuracy of MP3 in the me-
dian case is lower than that of MP2, even with quadratic
summation. For class A systems, however, MP3 does appear
to be worth the effort, with median reduction of the error by
a factor of 6. Class B systems show substantial improvement
at MP4 and MP6. Both classes show only modest improve-
ment at MP5.

The relatively poor accuracy from partial summation is
due to the inability of the summation approximants, which
are nonsingular at finitez, to model the singularity structure
of the energy functionE(z) in the complex plane of the
perturbation parameterz. The dominant singularity is in gen-
eral expected to be a two-sheet branch point. The quadratic
approximants model this singularity explicitly, with a
square-root branch point, but the accuracy of a quadratic
approximant can be degraded by a spurious, nonphysical,
branch point nearzphys. A perusal of the roots of the dis-
criminant polynomial can indicate the likely quality of a par-
ticular approximant. Of the systems in Table I, the one with

branch point closest tozphys for MP6 in ther 050 approxi-
mant is CH2

1A1 , with branch point at 0.83260.018i . The
accuracy in this case is relatively poor. The same is true at
MP5 for H2O with R52Re , in which case there is a branch
point at 1.11. It is not always clear at low orders whether or
not a branch point is spurious. Therefore, unless one suspects
on physical grounds that there should be a branch point close
to zphys, a quadratic approximant with a singularity nearzphys

should be treated with suspicion. In the present study the
value ofr 0 , when treated as a parameter, was chosen as zero.
However, it may be feasible to shift spurious branch points
away fromzphys by varying the value ofr 0 .

Perhaps the most striking result described here is that for
CH3 with R52Re , which is predicted to be a resonance in
the ionization continuum. In such cases MPPT could be
more accurate than a full configuration-interaction calcula-
tion. If the basis set consists only of bound-state eigenfunc-
tions, the CI wave function will always correspond to a
bound state and this will always lead to a real, and incorrect,
result for a resonance energy. The calculation of large-order
Møller–Plesset expansions in the course of a CI
calculation4,10,11was developed as a method for studying the
large-order behavior of the expansion coefficients. However,
such expansions, summed with quadratic approximants,
could have practical utility as a means for obtaining highly
accurate energies and widths of autoionizing resonances.

Quadratic approximants may also prove useful for treat-
ing resonances betweenbound states involved in avoided
crossings. As the potential energy curves approach each
other, a pair of branch points ofE(z) at complex–conjugate
values ofz comes close tozphys. These singularities seri-
ously degrade the convergence of partial sums39 but will
have less of an effect on the convergence of quadratic ap-
proximants. This is closely analogous to a recent application
of quadratic and cubic approximants to resonances between
nearly degenerate molecular vibration eigenstates.23
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