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Msller-Plesset perturbation calculations (MPn) up to fiftieth order, within both the restricted (RHF) and unrestricted Har- 
tree-Fock (UHF) frameworks, have been used to examine the He:+ ground-state potential curve. The bond lengths of the equi- 
librium and transition structures have been optimized at all orders of perturbation theory. It is found that RMPn describes the 
homolytic dissociation better than UMPn for all n > 2. This unexpected behaviour may be attributed to spin contamination in the 
UHF wavefunction. The UMPn barriers deceptively appear convergent for small n and the results may be indicative of dangers 
inherent generally in using the UMP approach with significantly spin-contaminated wavefunctions. 

1. Introduction 

One of the major contemporary procedures for 
incorporating electron correlation into molecular- 
orbital calculations is the use of M&er-Plesset (MP ) 
perturbation theory [ 1,2]. Because the MP expan- 
sion is truncated at some finite order, use of this pro- 
cedure is predicated on a rapid convergence of the 
MP series. 

Efficient methods have been devised for calculat- 
ing the Msller-Plesset energy to second (MP2), third 
(MP3) or fourth (MP4) order [ 2,3] and it is of 
interest to enquire how close the MP4 results are to 
the limiting values. This has been done in a small 
number of cases by comparison with results of full 
configuration interaction (CI) calculations (see, for 
example, refs. [ 4,5]), but the latter are available for 
only a very limited number of molecules. 

An alternative, less rigorous means of assessing 
convergence involves examining the changes that 
occur in progressing from Hartree-Fock (HF) 
(which is equivalent to MPI ) to MP2 to MP3 to 
MP4. If these changes decrease in magnitude 
smoothly towards small values, this might be taken 
as an indication of a close approach to the limiting 
value. 

One situation where the full CI result is readily 
accessible is for two-electron systems since, in these 
cases, full CI is achieved through straightforward 

CISD (CI with all single and double excitations) cal- 
culations. The MP2, MP3 and MP4 results may also 
be obtained routinely and compared with the full CI 
result. We have found, in this manner, an example of 
deceptive convergence of the Meller-Plesset ener- 
gies for one such two-electron system, namely the 
recently observed [ 61 dihelium dication (He:+). 
Results relevant to this point are presented here. 

In addition, recursion formulae have been derived 
which allow the evaluation of MBller-Plesset ener- 
gies to any finite order for minimal-basis-set calcu- 
lations on the He:+ system. This enables a critical 
examination of the convergence behaviour of 
restricted (RMP) and unrestricted Msller-Plesset 
(UMP) calculations. 

2. Method and results 

Using a modified version [ 71 of the GAUSSIAN 
82 system of programs [ 81, standard ab initio calcu- 
lations were carried out for He:+, both for the equi- 
librium structure and for the transition structure 
linking the molecule to two He’ ions. 

In an initial set of calculations, the equilibrium 
bond length in He: + was optimized at each of twenty 
different levels of theory. These arise from combin- 
ing successively each of four different basis sets with 
each of live different methods of incorporating elec- 
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tron correlation. The basis sets used were: 
(1) a minimal basis * containing a single s function 

on each helium atom (3s) -+ [ Is]; 
(2) a double-zeta basis, 3-21G [ 91, with two s 

functions on each helium atom: (3s) + [ 2~1; 
(3) a double-zeta plus polarisation basis, 6-3 1 G** 

[lo] with two s and a set of p functions on each 
heliumatom: (4slp)+[2slp]; 

(4) a “large” basis consisting of the 6-3 11 G set 
which includes three s functions [ 111 supplemented 
by three sets of p and a set of d functions [ 121 on 
eachoftheheliumatoms: (5s3pld)-+[3s3pld]. 

These were used in conjunction with restricted 
Hartree-Fock theory (RHF), Moller-Plesset pertur- 
bation theory terminated at second, third and fourth 
order (RMP2, RMP3 and RMP4), and full contig- 
uration interaction (CI). 

In a second set of calculations, the bond length of 
the transition structure which leads to the dissocia- 
tion of the dication into two monocations was 
obtained. The He:+ system is RHF-tUHF unstable 
when the He-He distance exceeds about 0.85 8, and 
since the transition structure has a bond length sig- 
nificantly greater than this, we can use either the 
restricted or unrestricted Hartree-Fock molecular 

Formed by contraction of the 3-21G basis set, the coefficients 
being derived from a 3-21G calculation on He:+ at a bond 
length of 0.7 A. 

Table 1 
Calculated barrier heights using RHF orbitals (kJ mol- ’ ) 

orbitals (RHF and UHF, respectively) as the start- 
ing point for the Mnrller-Plesset perturbation calcu- 
lations. We have explored both possibilities and, in 
so-doing, have calculated the bond length and energy 
of the transition structure at 36 different levels. These 
arise from all possible combinations of each of our 
four basis sets with each of RHF, RMP2, RMP3, 
RMP4, UHF, UMP2, UMP3, UMP4 and CI. The 
computed barriers at each of these levels of theory 
are summarized in tables 1 and 2. 

The potential curve for He:+ has been accurately 
calculated via the James-Coolidge method by 
Yagisawa et al. [ 131. Their results indicate that the 
curve possesses a local minimum at r= 0.70 8, and a 
local maximum (the transition structure) at r= 1.15 
A and that the energy difference between the two 
extrema is 145 kJ mol- I. We use these values as the 
standards by which to judge the predictions of each 
of the levels of theory which we have used. 

Finally, we derived recursion formulae which 
enable us to calculate fifth-order and higher terms in 
the Mnrller-Plesset energy expansion for He:+ with 
an arbitrary minimal basis set. In this way, we have 
calculated (for our smallest basis set) RMPn and 
UMPn potential curves for He:+ (0.55 < r=G 1.45 A) 
for n ranging from 2 to 50, and have constructed an 
optimizer to locate the local minimum and maxi- 
mum on each of these curves. Some of the results of 
these calculations are summarized in table 3 and 
fig. 1. 

Basis set RHF RMP2 RMP3 RMP4 Full CI 

(3s) +llsl 924 313 145 96 102 
(3s) +12sl 610 191 82 46 33 
(4SlP) +]2slPl 794 337 199 147 130 
(%3pld)-+[3s3pld] 805 345 210 157 139 

Table 2 
Calculated barrier heights using UHF orbitals (kJ mol-‘) 

Basis set UHF UMP2 UMP3 UMP4 Full CI 

(3s) -r1ts1 161 228 250 252 102 
(3s) -+12sl 108 160 175 173 33 
(4SlP) +[2slpl 164 237 256 257 130 
(5s3pld)+[3s3pld] 166 251 266 266 139 
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Table 3 

Optimized bond lengths (A) and barrier heights (kJ mol- ’ ) at minimal-basis-set RMPn and UMPn levels 

n f-, RMP UMP 

1 0.6759 

2 0.6985 

3 0.7140 

4 0.7219 

5 0.7248 

6 0.7255 

7 0.7254 
8 0.7253 

9 0.7252 

10 0.7252 

11 0.7251 

12 0.725 1 

13 0.725 1 

14 0.7251 

15 0.7251 

16 0.7251 

17 0.7251 

18 0.7251 

19 0.7251 

20 0.7251 

c1) 0.7251 

rTs barrier rTs barrier 

2.1434 924.1 0.9211 161.0 

1.2497 312.5 0.9671 228.3 

1.0809 145.1 0.9874 250.4 

1.0284 96.3 1.002 1 251.8 

1.0211 85.5 1.0143 245.7 

1.0362 88.4 1.0248 237.6 

1.0643 95.9 I .0342 229.6 
1.0957 102.9 I .0426 222.3 

1.1015 105.7 I .0505 215.5 

1.0884 105.0 1.0579 209.3 

1.0775 103.5 I .0648 203.7 

1.0716 102.4 1.0715 198.4 

1.0699 101.9 1.0778 193.6 

1.0707 101.8 1.0838 189.1 

1.0727 102.0 1.0895 184.9 

1.0745 102.2 1.0950 181.0 

1.0752 102.3 1.1002 177.3 

1.0750 102.4 1.1052 173.9 

1.0744 102.3 1.1099 170.6 

1.0740 102.3 1.1146 167.5 

1.0740 102.3 1.0740 102.3 

300 - 

200 - 

100 - 

a 

Bond Length (A) 

Fig. 1. Potential curves for He:+ at (a) minimal-basis-set RMPn (n= I, 2, 3, 4, 6 and 8) and (b) minimal-basis-set UMPn (n= 1, 2, 3, 
4, 10 and 15) levels. 
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3. Discussion 

Restricted Hartree-Fock theory gives a correct 
qualitative description of the heterolytic dissocia- 
tion of He:+ into He + He2+ but is incapable of cor- 
rectly describing the lower-energy homolytic fission 
(to He’ + He+) in which we are interested. In con- 
trast, the unrestricted theory provides a qualitatively 
correct account of the energetics of both processes. 
However, when the RHF and UHF wavefunctions 
differ, only the former is an eigenfunction of the S2 
operator. The ground state ( ’ Cz ) of He:+ is a sin- 
glet, ( S2) = 0, for all internuclear distances through 
to the dissociation limit [ 131, but as the bond is 
stretched beyond 0.85 A the UHF wavefunction 
becomes progressively more and more contaminated 
by a (higher-energy) triplet state ( 3E: ) with (S*) 
=2. At infinite separation, where the RHF wave- 
function is still a singlet, the UHF wavefunction has 
become an equal mixture of singlet and triplet states 
and consequently ( S2 ) = 1. It is important therefore 
to realize that while the UHF wavefunction “disso- 
ciates correctly” in an energetic sense, the wavefunc- 
tion itself becomes a progressively poorer and poorer 
approximation as the bond length increases. That 
crucial distinction lies at the heart of this paper. 

We see initially that full electron correlation, within 
a sufficiently large basis set, gives a satisfactory 
account of the barrier height. The values shown in 
tables 1 and 2 closely approach the result of Yagisawa 
etal. [13]. 

Restricted Hartree-Fock theory itself, even with 
our largest basis set, overestimates the barrier by more 
than a factor of five (table 1). However, when sec- 
ond-order perturbation theory based on these 
restricted orbitals is used, the barrier is reduced dra- 
matically to less than half of the RHF value. Third- 
and fourth-order treatments continue the improve- 
ment to the point where the RMP4 estimate of the 
barrier height differs from the full CI value by only 
13%. 

Table 2 tells a very different story. The barrier is 
overestimated using unrestricted Hartree-Fock the- 
ory by about 20°h with our best basis set and by larger 
proportions with the smaller sets. However, in stark 
contrast to the results of table 1, second- and third- 
order perturbation treatments based on these UHF 
orbitals serve only to increase the estimate of the bar- 

rier height, and this peculiar effect occurs in a quali- 
tatively similar fashion irrespective of which of our 
basis sets is used. The fourth-order correction is very 
small (O-2 kJ mol- ’ ) and it too is almost indepen- 
dent of the particular basis set chosen. Moreover, so 
small are all the fourth-order corrections in table 2, 
and so smooth is the variation in barrier height from 
UHF to UMP4 (fig. 2)) that it would be very tempt- 
ing indeed to interpret these as evidence that the 
UMP series has converged and that, for example, the 
barrier using our largest basis set and a full correla- 
tion treatment is close to 266 kJ mol-‘, when in fact 
it is only 139 kJ mol-! 

The explanation for this deceptive convergence is 
clear from fig. lb. In progressing from UMP3 to 
UMP4, the energies of the equilibrium and transi- 
tion structures are lowered by almost exactly the same 
amount, so that the barrier height remains virtually 
unchanged. However, while almost all (96.5O/6) of the 
minimal-basis-set correlation energy at the equilib- 
rium structure has been recovered by the fourth-order 
treatment, a very much smaller fraction (28. lo/o) has 
been recovered at the transition structure. The energy 
of the transition structure will therefore continue to 
drop as higher-order perturbation terms are included, 
leading ultimately to the substantial decrease in bar- 
rier height required to give the full CI result. 

To what can we attribute these difficulties? In 
Moller-Plesset perturbation theory, the starting point 

c \ ,oop~~, 
15 20 

MP Order 

Fig. 2. Barriers to homolytic fission of He:+ using minimal-basis- 
set MPn theory (n = l-20). 
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is a Hartree-Fock wavefunction, and the energy 
expansion will converge rapidly only if that wave- 
function is sufficiently similar to the exact wavefunc- 
tion. While the Hartree-Fock orbitals are a good 
starting point for He:+ at its equilibrium geometry, 
no single-determinant, restricted or unrestricted, 
offers a completely satisfactory zeroth-order wave- 
function at the transition structure. The UMP per- 
turbation series for the energy of the transition 
structure converges smoothly, but also slowly com- 
pared with that for the minimum that estimates of 
the barrier height drastically exaggerate it, even when 
many terms in the series are included. Conversely, as 
we shall see below, the RMP series for the transition 
structure, while converging much more quickly, does 
so in an oscillatory fashion. One consequence of this 
is that the sequence of RMP estimates of the barrier 
height also oscillates. Similar patterns of behaviour 
have been observed for the RMP and UMP expan- 
sions by Handy and co-workers [4] in the cases of 
stretched H,O and NH2 molecules. 

These conclusions may be demonstrated quanti- 
tatively by an analytical examination of the conver- 
gence properties of both the restricted and 
unrestricted MP series beyond MP4. To do this 
requires non-standard methods since current state- 
of-the-art general-purpose programs such as 
GAUSSIAN 82 offer MP calculations only up to and 
including fourth-order. Although, in the general case, 
the calculation of higher-order energies is computa- 
tionally very demanding and the programming of the 
specific formulae for the MPn energies is extremely 
complex [4,5], it turns out that, in the special case 
of a system with just two electrons and two basis 
functions, the task becomes comparatively simple. 
Fortunately, such a treatment is sufficient for our 
problem since the qualitative behaviour of MP the- 
ory with large basis sets is reproduced by our mini- 
mal set (tables 1 and 2). We have, in this way, been 
able to develop exact recursion formulae for the per- 
turbation energies of He: + with a minimal basis set. 
The computational effort required to evaluate the 
&h-order perturbation energy using such formulae 
increases only linearly with n compared with the 
exponential dependence on n in the previously used, 
more general procedures [ 4,5 1. 

In a UHF framework, the interaction of two helium 

s orbitals results in two bonding spin orbitals ~7 and 

20 

w{ (both with orbital energy cl) and two antibond- 
ing spin orbitals I& and & (both with orbital energy 
e2). The full correlation energy in this model is found 
as the lowest eigenvalue of the matrix 

0 0 K2 

H= 0 al-x-’ K, , 

K2 KI 2a,-2x-l 

which arises from expanding the CI wavefunction 
1 Y) as a linear combination of the ground, (spin- 
adapted) singly excited and doubly excited configu- 
rations 

I~>=I~o>+~,I~~>+~2I~2> (1) 

and then removing the Hartree-Fock energy. We use 
K,, K2, ol and cy2 to represent combinations of 
appropriate molecular integrals and x= ( el - t2) - ‘. 

The eigenvalue problem reduces to a cubic equa- 
tion for the correlation energy E: 

(1 -a,x+xE)[xE2 +(2-2a,x)E-K:x] 

=K2x2E I > (2a) 

which, in the special case of RHF (where K, = 0 by 
symmetry), reduces to 

xE2+(2-2a2x)E-K;x=O. (2b) 

The term in xk in the Maclaurin expansion of E(x) 

is then the (k+ 1 )th-order perturbation correction to 
the Hartree-Fock energy, i.e. 

E=c,x+c2x2 +c3x3 +... 

=E2 +E, +E4 +... . (3) 

The E, are most conveniently evaluated using recur- 
sion formulae. Defining 

T,=a,+a,, T2=t(K:+K:)-c~,a2, 

T3=;a, +a2, 

n-2 n-4 

in= C WL, , 
r=2 

an= 1 E,Y,-, , 
r=2 

it eventually follows that the nth-order Moller-Plesset 
correction to the energy is given by 
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E,,=xT,E,_, -IxY,+T,x*E,_,+T,x*Y,_, 

-jx*a, , n>3, (3a) 

which, in the RHF case, becomes the much simpler 

E,,=x(a&_, -1~~) , n>2. (3b) 

Using these formulae (once K1, K2, a,, a2 and x 
are known for a chosen bond length), the terms in 
the RMP and UMP series become almost trivial to 
evaluate. 

The results of table 3 show that the equilibrium 
bond length in He:+ is a very heavily damped oscil- 
lating function of n, the order of MP theory used. The 
value at MP4 differs from the full CI length by only 
0.003 8, and at MPS this difference is reduced by 
another order of magnitude. 

In contrast, the bond length in the transition struc- 
ture either oscillates over a much greater range (in 
the RMP case), or progresses very slowly up to, 
beyond, and finally back to its limiting value (in the 
UMP case). For example, UHF gives a bond length 
which is 0.15 A too short, UMP4 still underestimates 
the CI value by more than 0.07 A, the UMP 12 length 
is almost correct, and the UMPZO estimate is 0.04 8, 
too long! 

The barrier height (table 3 and fig. 2) plunges very 
rapidly over the first five orders of RMP theory and 
then oscillates with a rapidly decreasing amplitude 
about the full CI value. So-called “chemical accu- 
racy” is attained above RMP7. However, with UMP 
theory, as we observed earlier, the barrier actually 
increases over the first four orders and only beyond 
UMP4 does it begin its extremely slow descent to the 
correct value. One unfortunate consequence of this 
unexpected behaviour is that the worst estimate by 
any order of UMP theory (including UHF itself) is 
that given by UMP4 and, compounding the prob- 
lem, the fourth-order term E., is sufficiently small 
that, given only the barriers at levels up to and 
including UMP4, one could easily reach the false 
conclusion that convergence had been achieved. 

The problems associated with the UMP treatment 
may undoubtedly be attributed to spin contamina- 
tion in the UHF wavefunction. The (S*) values in 
the vicinity of the transition structure are typically 
0.5-0.8 compared with the 0.0 required for a pure 
singlet. Spin-projected Msller-Plesset theory, as 
recently introduced by Schlegel [ 141, may offer a 

promising mechanism for overcoming the spin-con- 
tamination problem. In the case of our minimal-basis 
He:+ system, the full spin-projected formalism is 
particularly easy to apply since there is only triplet 
contamination, and such calculations are in progress. 

4. Conclusions 

Moller-Plesset perturbation theory provides a 
practically useful method of incorporating electron 
correlation only when the Hartree-Fock wavefunc- 
tion upon which the theory is based is a sufficiently 
good zeroth-order approximation to the true wave- 
function. In cases where a UHF wavefunction is sig- 
nificantly contaminated by states of higher 
multiplicities this proviso is not satisfied. In the 
example which we have studied, more accurate esti- 
mates of both geometries and barriers are obtained 
by using RMPn uniformly along the entire potential 
curve than by using UMPn for any n greater than 2. 
That this is found to be the case indicates that the 
“incorrect dissociation” behaviour of RHF does not 
impede the rapid convergence of the Moller-Plesset 
series as much as the presence of a triplet contami- 
nant in the UHF wavefunction does. We believe that 
this is likely to be true in general and that caution 
should be exercised before applying UMP theory to 
heavily spin-contaminated wavefunctions. 
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