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3. APPLICATIONS OF THE UHF THEORY TO MOLECULES AND CHEMICAL 

1. Introduction 

The Hartree-Fock (HF) theory is the most basic approximation for fermion 
many-body systems that is based on the independent particle picture for motion 
of fermions. At an early stage of its development, it was considered indispensable 
to impose a symmetry restriction on its orbitals and total wave function, a Slater 
determinant, in order to make the theory consistent to the symmetry principle 
of quantum mechanics; namely, only the orbitals and the Slater determinants 
which are irreducible representations of the symmetry group were considered 
physically allowable. The HF theory with this symmetry restriction is called the 
restricted HF (RHF) theory. The HF theory which does not impose the symmetry 
restriction and allows broken symmetry orbitals and Slater determinants is called 
the unrestricted HF (UHF) theory. We use the term UHF when a broken symmetry 
is involved and the term HF in the wide sense including both the RHF and UHF 

cases. 
The HF equation is a nonlinear equation owing to its self-consistent field 

(SCF) character and its solution may not be unique. It has been rather slowly 
recognized that the HF equation without the symmetry restriction may have 
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solutions with energies lower than the RHF ground state and the broken symmetry 
wave functions of such solutions are able to well describe physical properties 
which arise from correlation effects beyond the RHF approximation. Existence 
and importance of such broken symmetry solutions were firstly suggested by 
Mott (1949) and Slater (1951). Mott pointed out for a linear array of hydrogen 
atoms that the state of electrons moving in delocalized Bloch orbitals is of the 
lowest energy and the system is a conductor when the interatomic distances are 
small, while the state with each electron bound to an atom is lower in energy 
and the system becomes an insulator when the interatomic distances become 
large. Based on this argument he predicted the existence of conductor-insulator 
phase transitions due to changes of interatomic distances. Slater pointed out 
that for the hydrogen molecule when the interatomic distance is large, the state 
in which the two electrons of different spins are localized toward different atoms 
is lower in energy than the RHF state with the two electrons occupying the same 
symmetric orbital because such localization of electrons decreases the Coulombic 
repulsion between them. He suggested that such spin polarized localization of 
electrons due to their Coulombic repulsion may be the origin of antiferromagnet- 
ism. Slater’s idea was substantiated by the Matsubara-Yokota (1954) split band 
model for antiferrornagnets. 

The fact that a large part of correlation effects in molecules can be described 
by a single determinantal wave function with broken symmetry orbitals and 
projection to an eigenstate of total spin was pointed out first by Coulson and 
Fisher (1949) and Kotani (1951) in the semilocalized molecular orbital theory 
for hydrogen molecule. Their idea was generalized as the alternant orbital theory 
by Lijwdin (1954, 1955), Yoshizumi and Itoh (1955), and Itoh and Yoshizumi 
(1955). The alternant orbitals in alternant hydrocarbons are of the same character 
as the split band orbitals in antiferromagnets. Lowdin (1963) called the puzzling 
situation in the HF theory, in which introduction of broken symmetry orbitals 
may bring about lowering of the variational energy, the symmetry dilemma. His 
proposal for the projection of broken symmetry UHF wave functions, Ltjwdin 
(1955), opened later developments of the extended HF theory (for a review see 
Pauncz, 1967). 

Concerning the problem whether the broken symmetry cofnponents of a UHF 

wave function are a mere mathematical artifact to be eliminated or have a 
physical significance, Peierls and Yoccoz (1957) proposed an ingenious idea. 
The ground state 01 deformed nuclei can be described by a UHF wave function 
breaking the rotational symmetry. They pointed out that making the symmetry 
operation of rotation on the UHF wave function is equivalent to rotating all 
nucleons retaining their relative positions unchanged, namely, making rigid 
rotation of a deformed nucleus. They showed that the projection of the UHF 

wave function to eigenstates of angular momentum is just equivalent to selecting 
out eigenstates of rigid rotation. Based on these facts they concluded that the 
components with different angular momenta in the UHF wave function represent 
a series of rotational excited states of a deformed nucleus. The microscopic 
foundation of the Peierls-Yoccoz theory has not been established for long, but 
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we shall show that it has a universal foundation on the group theoretical structure 
of fermion many-body systems that arises from the canonical anticommutation 
relation. 

A demonstration for the ability of broken symmetry wave functions in 
describing important physical phenomena was also provided by the BCS theory 
of superconductivity (Bardeen et al., 1957). The breaking of electron number 
conservation in the BCS wave function was shown to arise from the essence of 
superconductivity, the coherence in the phases of superconducting electrons. 
The formalism by Bogoliubov (1958) indicated that the BCS wave function has 
the character of an extension of the HF approximation. Bogoliubov’s formalism 
is now called the Hartree-Bogoliubov theory. The Hartree-Bogoliubov theory 
was also applied successfully to the description of superconducting nuclei 
(Belyaev, 1959). 

The finding of Overhauser (1960) that the HF equation of one dimensional 
electron gas always has solutions with helical spin arrangements, the helical spin 
density waves (SDW), which are lower in energy than the RHF ground state, 
stimulated many studies on the nature and origin of antiferromagnetism from 
the itinerant picture of electrons. In the same year, Thouless (1960) gave the 
mathematical condition for instability of a HF state which is nothing but the 
condition for the appearance of a new solution of the HF equation. His condition 
was applied to studies on antiferromagnetic states including the helical SDW in 
three dimensional electron gases (for a review, see Herring, 1966). HF instabilities 
and UHF solutions in solids, in particular the charge density wave (CDW) solutions 
which have modulations of the electron charge density, were also studied in 
connection with Mott’s conductor-insulator phase transition and Wigner’s crys- 
talized electron gas (for a review, see Halperin and Rice, 1968). 

Early applications of the UHF theory to molecules were made for open shell 
systems without consideration for HF instabilities. Studies of molecules with 
strong enough electronic correlation to yield instabilities of the HF ground state 
were first undertaken by Misurkin and Ovchinnikov (1967), &ek-Paldus 
(1967), and Fukutome (1968) for long polyenes. Misurkin and Ovchinnikov 
showed that the HF ground state of infinite nonbond alternated polyene is a SDW 

with alternating modulation of the spin density. &ek and Paldus showed 
that the RHF ground state of long polyenes is unstable but the instabilities 
considered by them were not the ones leading to the UHF ground state. The 
author showed that the instability leading to the SDW ground state occurs first 
with an increase in the chain length. The SDW ground state leads to a finite 
energy gap in electronic excitations even in the absence of bond alternation 
which is of the same nature as the band gap in antiferromagnets. It was pointed 
out that the energy gap of the electronic origin may contribute to the finite 
energy gap observed in absorption spectra of long polyenes as well as the gap 
due to bond alternation proposed by Longuet-Higgins and Salem (1959). After 
these works, many UHF theoretical studies were made about conjugated 
molecules by Paldus-&ek (1969, 1970a, 1970b, 1970c, 1971), &ek and 
Paldus (1970, 1971), Harris and Falicov (1969), Tric (1970), Cazes et al. (1970), 
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Andre and Leroy (1971), Laidlaw (1973), Laforgue et al. (1973), Paldus and 
Veillard (1978), BCnard and Paldus (1980), and the Russian group (for reviews 
of the works of the Russian group and related works, see Ovchinnikov et al. 
(1973) and Misurkin and Ovchinnikov (1977)). 

Application of the UHF theory to chemical reactions was first made by Salotto 
and Burnelle (1970) in the calculation of the ground state potentials of the 
diatomic molecules Hz, HF, and LiH. Significance of HF instabilities and the 
UHF ground state of SDW types in chemical reactions were first recognized by 
the author (Fukutome, 1972, 1973a, 1973b). The author pointed out that the 
UHF wave functions of SDW type well represent states of the diradical nature in 
chemical reactions and the instability of the RHF ground state leading to the 
SDW ground state can be used as a theoretical criterion for the diradical character 
of chemical reactions. The author also developed a theory for complete 
classification and characterization of HF wave functions and their instabilities 
(Fukutome, 1974a, 1974b). Using this theory, the author and his collaborators 
showed that surprisingly plentiful instabilities occur in the HF ground state of 
chemical reactions and the resultant UHF ground state represents states of a 
multiradical nature with beautiful spin structures of many varieties including 
alternating, helical, and three dimensionally modulated ones. The UHF theory 
opened a new viewpoint about previously unknown aspects of chemical reactions 
with strong correlation of electrons. 

In this paper, we review works of the author and his collaborators and 
intimately related works about the UHF theory and its applications to molecules 
and chemical reactions. The review consists of three additional sections. In 
Section 2 we review mathematical aspects of the UHF theory. The HF approxima- 
tion has a deep group theoretical foundation that is intimately connected with 
the group theoretical structure of fermion many-body systems that arises from 
the canonical anticommutation relation of annihilation-creation operators of 
fermions and the spin, time reversal, and spatial symmetries. Emphasis is on 
clarifying the group theoretical foundation of the UHF theory. Construction of 
HF wave functions and their orbitals is made on the U ( N )  (N dimensional 
unitary) group generated by particle-hole type pair operators of fermions. 
Classification and characterization of HF wave functions and their instabilities 
are made on the subgroup structure of the symmetry group consisting of spin 
rotation, time reversal and a spatial point symmetry group. We also discuss the 
bifurcation structures of HF adiabatic potential surfaces in the vicinity of instabil- 
ity thresholds and on a direct optimization algorism for a HF calculation that 
has secured and efficient convergence in the SCF procedure. Finally, we discuss 
the relation of HF wave functions to exact ones and the physical significance of 
broken symmetry components in UHF wave functions. 

In Section 3 we review applications of the UHF theory to molecules and 
chemical reactions. Emphasis is on demonstrating chemical significance of HF 
instabilities and UHF wave functions and discussing the new concepts about 
electronic structures of molecules and electronic mechanisms of chemical reac- 
tions with strong electronic correlation revealed by the UHF theory using concrete 
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examples. We also compare results of UHF calculations with those of configuration 
interaction (CI) calculations to demonstrate the ability of the UHF theory in 
incorporating important correlation effects. 

In Section 4 we discuss some basic problems related to the UHF theory. The 
topics discussed are the relation of UHF spin and charge structures to exact 
correlation structures, the problem of how to describe excited states in systems 
with the HF ground state of UHF type, and the presence of systems whose ground 
state cannot be approximated by a UHF wave function. 

2. Mathematical Theory 

A. U ( N )  Group Formulation of the HF Theory 

There are various ways to formulate the HF theory. Usually it is formulated 
by the variational method to minimize the energy expectation value by a Slater 
determinant (the HF energy functional) and to obtain the variational equation 
for the orbitals in the Slater determinant (the HF equation). We consider here 
the U ( N )  group formulation of the HF theory in order to clarify the group 
theoretical foundation of the HF theory. The U ( N )  group governs not only the 
structure of HF wave functions, but also the structure of exact wave functions 
as we shall discuss in Section 2.E, so that the U ( N )  group formulation is the 
most suitable in elucidating the relation of the HF approximation to the exact 
theory. 

i. Preliminaries. In this paper we use the second quantization formalism for 
electrons. Let a (i) = a(xi, si) and a t ( i )  = a t ( ~ i ,  si) be the annihilation and creation 
operators of electron in the coordinate representation. The variable i denotes 
the coordinate xi  and the spin si of electron and the dagger (t) represents the 
Hermitian conjugate. rhey satisfy the canonical anticommutation relation 

{a(l), at(2)1= S(1,2), {a(l), a(2))={at(1), at(2))=0, (1) 

where the curly brackets represent the anticommutator and S(1 ,2)  = 
S ( x l  - x ~ ) S ~ ~ , ~ ~ .  We consider a molecular system with the nonrelativistic spin 
independent Hamiltonian 

where h(1)  is the single particle Hamiltonian of the electron, V is the Coulombic 
potential between nuclei, and the integration for the variable i includes both 
the integration for xi  and the summation for si. 

We introduce a finite and given basis set CLr(l), 5 = 1,2, . . . , N for spin orbitals 
satisfying the orthonormal condition 
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where the asterisk represents a complex conjugate. We do not specify *c’s here. 
We restrict the Hilbert space of spin orbitals to the N dimensional space spanned 
by t,hc’s. The number N must be an even number 2 M  for the subspaces of up 
and down spins to be of the same dimension M. The annihilation and creation 
operators of the electron in the t,hc basis are given by 

They satisfy the anticommutation relation 

( 5 )  
t t  

{a&J=&,, {aoaTll={adra.~=0. 

The Hamiltonian in the qbc basis is 

(6) 
t t  H =  V + h c , U ; U ,  + a [ l T / I L K ] U @ Z , U , a , ,  

where hcT is the matrix element of the single particle Hamiltonian and [ [ T / ~ L K ]  

is the antisymmetrized Coulomb repulsion integral 

We use in the following formulas the dummy index convention to sum up 
repeated indices. 

We introduce a reference Slater determinant with n electrons occupying the 
spin orbitals a = 1 , 2 , .  . . , n, 

19) = a - . a 10) = det [ JI, ( i ) ] ,  (8) 

where 10) is the vacuum satisfying 
aclO> = 0, (9) 

and det represents determinant. We denote the occupied spin orbitals in the 
reference Slater determinant by the indices a, p, 7 , .  . . and the unoccupied ones 
by the indices p, u, 6,. . . . We use the indices 5, q, L, K ,  . . . to denote spin orbitals 
without specification of occupancy. The Slater determinants with single, double 
and multiple excitations of electrons are given by 

(10) t t  
ITwa)= aLa,Iw>, 1 9 w v a p )  = a,a,a,uplS~, * * * . 

The Slater determinants 19w,.. . 

an orthonormal complete set of the space with n electrons. 
.), a < p < * * - , and p < v < * * constitute 

Let +c, [ = 1,2 ,  . . . , N be another set of orthonormal spin orbitals 
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The N dimensional matrix u = (uc,) is unitary and belongs to the U ( N )  group 

(13) t u u = u u t = l .  

The creation operator of the electron in the spin orbital +e is given by I a t ( l ) + c ( l ) m  = a b s c  = (atu)c9 (14) 

where a t  is the row vector (a:). The Slater determinant with n electrons 
occupying the spin orbitals &, a = 1,2, . . . , n is therefore given by 

I @ ) =  ( ~ ~ u ) ~  * * * (atu),lO)=det [&( i ) ] .  (15) 

ii. U ( N )  Lie Algebra and U ( N )  Canonical Transformation. We define the 
pair operators of particle-hole type by 

E: = aia,. (16) 

E i t  = E;, (17) 

[Eb,, E: ]=S , ,Ef  -ScKE;, (18) 

They satisfy the relations 

where the term in square brackets represents the commutator. Equation (18) is 
an important consequence of the canonical anticommutation relation (5) and 
shows that the set of the pair operators E$, is closed under the Lie multiplication 
forming a basis of a Lie algebra. The Lie algebra spanned by Ek’s is the Lie 
algebra of the U ( N )  group. This fact was utilized in many-body theories of 
nuclei (for review see Moshinsky, 1968) and molecules (for review see Paldus, 
1976). 

The U ( N )  Lie algebra of the pair operators generates a set of canonical 
transformations which forms a representation of the U ( N )  group. We call it the 
U ( N )  canonical transformation. It was introduced firstly by Thouless (1960) 
and sometimes is called the Thouless transformation. Let r be an anti-Hermitian 
operator in the U ( N )  Lie algebra 

= Yc,a:a,, YT7l = - Y d .  

Using the relations 
t [r, acl = aiy.c, [r, as] = a , ~ %  

and the operator identity 

eXAe-X=A+[X,A]+(1/2!)[X,[X,A]]+* 

we obtain 
r t -r- t -r e ace -a,,uVc, era$ =a,u:c, 

where u = (ut,,) is the U ( N )  matrix given by 
t u = ey,  y = (ye, ) ,  utu  = uu = I. 
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Thus, the U ( N )  canonical transformation er  induces a linear transformation of 
the creation operators by a U ( N )  matrix u. Hence, we denote it by u as 

~ ( u )  = er. (24) 

The U ( u )  satisfies the group property 

U(u)U(u ' )  = U(uu') ,  

and is a representation of the U ( N )  group. Operating U ( u )  on the Slater 
determinant I"), we obtain 

(26) 

Thus, the U ( N )  canonical transformation transforms a Slater determinant to 
another Slater determinant and any Slater determinant is obtained by a U ( N )  
canonical transformation of a given Slater determinant. This was proved first by 
Thouless (1960) and is known as the Thouless theorem. It is the group theoretical 
basis to construct the HF theory. A U ( N )  group formulation of the HF theory 
was given by Matsen and Nelin (1979). In the following, we shall derive a 
particle-hole formalism of the HF theory using the Thouless theorem, which is 
equivalent to the density matrix formalism given by the author (Fukutome, 1971). 

iii. Particle-Hole Formalism. The pair operators EE annihilate an electron 
in an occupied orbital and create an electron in an unoccupied orbital, namely, 
they are the creation operators of a particle-hole pair. Their Hermitian conju- 
gates EZ annihilate a particle-hole pair. On the other hand, the operators E i  
and Er transform an electron within occupied orbitals and within unoccupied 
ones, respectively. Hence, they do not change the number of particle-hole pairs. 
The operators E;  and EZ, respectively, are closed under the Lie multiplication 
and form U(n)  and U(N - n )  subalgebras of the U ( N )  Lie algebra. 

We decompose the generator of the U ( N )  canonical transformation into the 
components unchanging and changing the number of particle-hole pairs 

u(u)~Y)=  (a+u) l  - . . (a+u),(o)  = I@). 

- - - t  c = taps lap + t W v a  &av, 

A =  AWaa:a, -Acaaha,. 

t% = - t o a ,  tEV = -SYClr 
(27) 

By the same way as the derivation of Eq. (22), we obtain 

where w =(we@) and G = ( G F V )  are the U ( n )  and U ( N - n )  matrices given by 

w = e , t = ( t a p ) ,  G = e , f =  (fWV). (29) 5 F 

As seen from Eq. (14), the transformation (28) is equivalent to the following 
transformation of the orbitals cLs which does not mix the occupied and unoccupied 
ones: 
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Using the relations 

963 

(31) 

and Eq. (21), we obtain 

The transformation (32) is equivalent to the following transformation of the 
orbitals $L to mix the occupied and unoccupied ones: 

The S(A), C(A), and e(A) are the ( N - n ) x n ,  n x n ,  and ( N - n ) X ( N - n )  
matrices defined from the (N - n )  x n matrix A = (A by 

where 1, is the unit matrix of n dimension. They are matrix functions having 
properties similar to the triangular functions. A tA and AA are positive definite 
Hermitian matrices and there are U ( n )  and U ( N - n )  matrices o = ( u a A )  and 
u’ = ( CwA) to diagonalize them 

where AA’S are real and K = min(n,N - n). Since the maximal rank of A is K, 
we can put AA = 0 for A > K. From Eq. ( 3 9 ,  we have the following diagonalization 
of A :  
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Substituting Eq. (36) into Eq. (34), we have 

A = l  

From Eq. (37), the following relations are satisfied: 

We define the U ( N )  matrices uA and ug by 

The U ( N )  character of uA follows from Eq. (38). The above arguments show 
that a U ( N )  matrix u and a U ( N )  canonical transformation U(u)  can be 
decomposed as 

u =uAuC, u (u)=  U(uA)U(uc)=eAeE. (40) 

We next determine the structure of the U ( N )  transformed Slater determinant 
U(u)lYr). Since the transformation U(u,) induces a unitary transformation of 
the orbitals I(ls restricted within the space of occupied orbitals, it leaves the 
Slater determinant lYr) unchanged, while U(U, )  which mixes the occupied and 
unoccupied orbitals produces a nontrivial change: 

U ( ~ ~ ) l V ) = ( a ~ w ) ~  * * (atw).lO)=det (w)lYr), (414  

U(U.4 )I*) = fl {aL[C(A )]Dm + a:[S(A ) l f i m } l o )  = I@). 
" 

(41b) 
m = l  

The Slater determinant I@) has the occupied orbitals & given by Eq. (33). It 
can be expressed as 
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We can express (*II(U(uA)(*) also in terms of the matrix p = ( p F a ) .  Multiplying 
C-’(A) to Eq. (38a) from both the left- and right-hand sides, we obtain 

1, + p t p  = C-’(A), 

(‘PIU(uA)l*) = [det (1 +ptp) ] -”’ .  

Expanding the product in Eq. (42a), we can rewrite I@) as 

I@) = (*I U(uA)\*) 

(43) 

x( l* )+PFal*Fm)+ c ~ ( P F m P F B ) I * F d ) + *  - a ) ,  (44) 
a<P 
F < V  

where I is the antisymmetrizer for the indices p, v, . . . , which brings about 
simultaneous antisymmetrization for the indices a, p, . . . . By using the relation 

Equation (44) can be rewritten 

l @ ) = ( ~ l ~ ( u A ) l * )  C?p*ma’amlw). (46) 

This expression of a Slater determinant was obtained by Thouless (1960). 
The Thouless theorem indicates that the Slater determinant of a UHF solution 

can be obtained by a U ( N )  canonical transformation of the Slater determinant 
of the RHF solution. Let us identify I@) and I*) with the Slater determinants of 
a UHF and the RHF soutions, respectively. Then, Eq. (46) shows that when the 
Slater determinant of a UHF solution is expanded by the RHF orbitals it contains 
RHF configurations with from one to n particle-hole pairs. All the particle-hole 
pairs, however, are in the same pair state specified by p/ lp l ,  where p = (p , )  and 
lpI2 = p z a p P a .  Therefore, a UHF wave function represents a Bose condensation 
of RHF particle-hole pairs into a pair state. The Bose condensation of RHF 
particle-hole pairs in a UHF wave function endows a collective character of the 
electronic correlation incorporated into a UHF wave function and produces an 
ordered spin and charge structure as we shall show later. 

iv. HF Density Matrix and Energy Functional. The density matrix of an HF 

solution with occupied orbitals q5m is given in the $< orbital basis by 

* 
Qttl =($~Ida)(‘PaI$(s)= uA,<auA,sm, 

UA,<a = ($CluAl$a). 
(47) 

Let EA be the N x n matrix 
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The density matrix Q = (Q,,) can be expressed 

Using the following formulas analogous to twice-angle formulas of triangular 
functions 

2C2(A) - 1, = C(2A), 

2S(A)C(A) = S(2A), (50)  

IN-, -2S(A)St(A) = c(2A), 
we obtain 

(51) 
1 1, + C(2A), St(2A) 

Q = - [  2 S(2A), IN-, - C"(2A) 

where P = 1, is the density matrix composed of the occupied reference orbitals 
&, and F,, and E H ( 9 )  are the Fock operator and the HF energy functional for 
the reference Slater determinant 19). The HF energy functional changes its value 
only for transformations of orbitals to mix occupied and unoccupied ones. Hence, 
the parameters A,, are the independent parameters to affect the value of the 
HF energy functional and the variational space of the HF energy functional can 
be identified with the space of A,,'s. Formula (53) with (51) is very useful in 
analysis of the energy functional since it gives a clear cut dependence of the 
energy functional on the independent variational parameters. 

We can introduce the representation of orbitals to diagonalize the matrix A. 
We define 

The orbitals defined in Eq. (54) satisfy 
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We obtain, from Eqs. (33) and ( 5 9 ,  

~ A = I , ~ A  f o r n > M  and n ? A > N = n ,  

& A = J A  f o r n < M  and N - n ? A > n .  

The density matrix (5 1) in this representation becomes 

Substitution of Eq. (57) into Eq. (53) yields 

(57) 

(58) 

where the indices A and A represent the orbitals $A and JA, respectively. 
Expressions (58) are useful in direct optimization of the energy functional as we 
shall show later. 

B. Group Theoretical Classification and Characterization of HF Wave Functions 

The HF equation may have many solutions owing to its nonlinear character. 
In fact, many solutions of the UHF type with different characters in the manner 
breaking the symmetry have been found as mentioned in Section 1. However, 
there is a rather simple group theoretical rule to determine possible types of 
broken symmetry in HF wave functions. We consider here the group theoretical 
classification and characterization of HF wave functions according to Fukutome 
(1974a) and Ozaki and Fukutome (1978). 

i. Subgroups of the Symmetry Group Consisting of Spin Rotation and Time 
Reversal. Hamiltonian (2) or (6) of molecules is always invariant to the symmetry 
group consisting of spin rotation and time reversal. We consider here the structure 
of the symmetry group. The case of systems with a spatial point symmetry will 
be considered in Section 2.B.i~. Spin orbitals & are in general two component 
spinors and can be represented in terms of the up and down spin eigenfunctions 
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Spin rotation and time reversal are defined on the space of two component 
spinor orbitals as follows. 

(a). Spin rotation: Let vi, i = 1, 2, 3 be the Pauli spin matrices 

Q=[ l  " 0 1  0 1 9  4; 3, ,,=[1 0 -1 O] 

They satisfy 

{q, mi} = 2&,, cimi = i u k  for cyclic i, j ,  k .  (61) 

s = +ha ,  (62) 

where a = (wl,  g2,  m3). The spin rotation around an axis e by an angle f3 is defined 
by the following 2 x 2 matrix operating on two component spinors 

The spin vector on the space of two component spinors is given by 

s(e, 0) = exp [i(13/2)(e a)] = cos (19/2) + i sin (6/2)(e a), (63) 

where e = (el, e2, e3 )  is a unit vector, e2 = 1. The matrix s(e, 0) induces a rotation 
of the spin vector: 

s(e, e)(e a)s- ' (e ,  e) = (e * a), 

s(e, e)(e' - a)s-l(e, 0) = cos e(er * a) +sin e(er' a), 

s(e, e)(e" a)s-'(e, 0)  = cos O(efr * a)-sin e(e' - a), 
(64) 

where e, e', and err are orthogonal unit vectors forming a right-hand coordinate 
system and we have used Eq. (61) and 

(65) s-'(e, 6) = s(e, -6). 

s(e, e)as- ' (e ,  O) = R(e, 0 ) a .  

We denote the three dimensional rotation (64) of the spin vector as 

(66) 

All the spin rotations (63) form a group S that is identical with the SU(2) 
(two dimensional special unitary) group. The range of the angle 8 must be taken 
to be 0 5 6 5 47r because s(e, 0) and -s(e, 0) = s(e, 0 + 27r) induce the same 
rotation of the spin vector that is the well known double value correspondence 
of the SO(3) (three dimensional special orthogonal) group to the SU(2) group. 
We denote the operation of spin rotation on spin orbitals as 

4: = s4e (67) 
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(b). Time reversal: The operation of time reversal t on spin orbitals is defined 
by 

The twice operation of t leads to inversion of the phase of spin orbitals 

(69) 2 (4;)'=-&t t =-I .  

The group T generated by time reversal t therefore consists of four elements, 
T ={l, -1, t, -t}. 

The operation of t on the spin vector is given by 

Of = p a * p - '  = u 2 ( u 1 ,  - u 2 ,  ff&2 = -a, (70) 

namely, time reversal inverts the direction of the spin vector. Time reversal does 
not affect spin rotation 

(71) 

and the group T is commutable with the group S. Therefore, we can write the 
symmetry group consisting of spin rotation and time reversal in the direct product 
form S x T. 

(c). Subgroups of the symmetry group S x T :  The set A(e)'= {s(e ,  e), 0 I 8 < 
4 ~ )  of all the spin rotations around a fixed axis e forms a continuous subgroup 
of S. No other continuous subgroup of S exists except the subgroups of this type. 

The presence of a discrete element t yields the following subgroups in S x T. 
The product of t and a spin rotation s(e', 7r) by the angle T is a twofold element 

[ts(e', T)]' = I, (72) 

because t2  = -1 and s2(e', T )  = s(e', 27r) = -1. So that the set M(e')  = (1, ts(e', T ) }  
consisting of two elements is a subgroup of S x T. 

In connection with this subgroup, we define a symmetry operation me called 
the magnetic operation by 

s'(e, e )  = ps*(e, e)p-' = s(e, e), 

2 me = ts(e, T )  = i(e * a)t, me = 1, 
(73) 

The operation of me on the spin vector does not affect its component parallel 
to e but inverts its component orthogonal to e, 

4 p  = i(e * a)&;. 

am= = (e - a)pa*p-'(e a), 

(e' * a"=) = -(e' * a). 
(74) 

(e * urn.) = (e * a), 

We note that when e = y = (0, 1,O) the magnetic operation my is identical with 
complex conjugation 

4;".=4;. (75) 
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The product A(e)M(e’) = {s(e, e) ,  ts(e’, T)s(e, 0 ) ;  0 s  8 < 4 ~ }  of the two 
subgroups A(e) and M(e’) with orthogonal e and e‘ is also a subgroup of S x T 
owing to the relation 

s(e’, .rr)s(e, e)  = s(e, -e)s(e’, T), e e’ = 0. (76) 

It is evident that S,  T, A(e) x T, and E = (1, -1) are subgroups of S x T. The 
groups listed above exhaust all the subgroups of S x T. We show in Figure 1 the 
structure of the symmetry group S x T, namely, its subgroups and their inclusion 
relations. The group structure of S x T determines group theoretically distin- 
guishable classes of HF wave functions and their interconnection relation via 
instabilities as we shall show in the Section 2.B.ii and in Section 2.C. 

S x  T 5 

T E u 
Figure 1. Subgroups of S x T. Arrows indicate the inclusion relation of the sub- 

groups. 

ii. Classification of HF Wave Functions by Their Invariance Groups. Let g 
be an element of the symmetry group S x T to leave a Slater determinant I@) 
invariant except for a change in the phase of I@), 

= eiSI@). (77) 

It is easy to see that all the g’s  used to satisfy condition (77) form a subgroup 
G of S x T. We call group G the invariance group of I@). This fact provides the 
basis for group theoretical classification of HF wave functions. Since the groups 
of eight kinds given in Figure 1 exhaust all the subgroups of S x T, the invariance 
group G of an HF wave function must be either one of them. Therefore, HF 

wave functions are classified into eight classes with distinct responses to spin 
rotation and time reversal according to the type of their invariance groups. We 
show in Table I the names of the eight classes of HF wave functions, which have 
the invariance groups at the corresponding positions of Figure 1, proposed by 
the author (Fukutome, 1974a). 

The eight classes of HF wave functions listed in Table I exhaust all the group 
theoretically possible ways to break spin and time reversal symmetries forming 
a hierarchy of broken symmetry. The classes invariant to all spin rotations are 
called S invariant. The classes invariant only to the spin rotations in the subgroup 
A(e) are called S,  axial. The classes not invariant to any spin rotation are called 
S torsional. These namings are due to the spin structures of the classes as we 
shall discuss below. The S invariant, S axial, and S torsional classes have wave 
functions of closed shell type, of different orbitals for different spins (DODS) 

type, and with general spin orbitals (GSO), respectively, as we shall show in 
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TABLE I. Classification of HF wave functions. 

T invariant M invariant 

S invariant 
(closed shell) 

Time reversal invariant 
closed shell 

(TICS) 

S axial Axial spin Axial spin 
(DODS) current wave density wave 

S torsional Torsional spin Torsional spin 
(GSO) current wave density wave 

(ASCW) (ASDW) 

(TSCW) (TSDW) 

TM noninvariant 

Charge current 
wave 
(ccw) 

Axial spin 
wave 
(Asw) 

Torsional spin 
wave 
(TSW) 

Section 2.B.iii. The classes invariant to time reversal are called T invariant. The 
classes invariant to the magnetic operation me are called Me invariant. The 
classes invariant neither to t nor me are called TM noninvariant. The names of 
the eight classes also are due to their spin and charge structures. 

The first concrete example of ASDW wave function was Slater’s (1951) 
“antiferromagnetic” solution in the hydrogen molecule. The Matsubara-Yokota 
(1954) split band model for antiferromagnets and the Lowdin (1954) and Itoh- 
Yoshizumi (1955) alternant orbitals also belong to this class. Overhauser’s 
(1960,1962) helical SDW was the first example of TSDW. UHF solutions belonging 
to ccw and ASCW classes were obtained first by &iek and Paldus (1967) in 
polyenes and also by Halperin and Rice (1968) in solid. ccw and ASCW solutions 
in two electron system were obtained by Pople (1971), Ostlund (1972), Fukutome 
(1973b), and Jordan and Silbey (1973). First examples of the HF ground state 
of TSW and ASW types in molecular systems were obtained by Fukutome et al. 
(1975) and Takahashi and Fukutome (1978). The five classes TICS, ASDW, TSDW, 

ASW, and TSW have been known to appear as the HF ground state in molecules 
and chemical reactions. Examples of those UHF ground states will be discussed 
in Section 3. 

The physical properties characterizing the eight classes of HF wave functions 
can be obtained from the structure of the density matrix. Here, we use the spin 
orbital basis separable to spatial orbitals i+bi and spin eigenfunctions v,, 

lJli=(Clivn i = l , 2  ,..., M, r = 1 , 2 .  (78) 

Then, the density matrix Q = (QL,,) = (Qir,is)  can be decomposed into the number 
density matrix N = (Nij)  and the spin density matrix S = ( S , )  as 
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where Q, is the M x M  matrix (Qi r , j s ) .  We may use real spatial orbital basis & 
without loss of generality. The electron density N ( x ) ,  the spin densitity S(x), 
the electron current density j(x) and the spin current density Jk(x), k = 1,2,  3 
in an HF state 10) are given by 

N ( x  1 = 4i (x )4j (x )Nij, 

J k  (x) = ( f i / im )(v'ki (x) * (!'j(x) - $i ( x ) v $ j ( x ) ) s k , i p  

Hence, the symmetric parts of N and S contribute to the electron and spin 
densities, respectively, but their antisymmetric parts to the electron and spin 
current densities. Since N and S are hermitian their symmetric parts are real 
and the antisymmetric ones are imaginary. 

The density matrix is transformed by spin rotation, time reversal and magnetic 
operation as follows: 

spin rotation: 

time reversal: 

magnetic operation: 

Q"= = (e o )Q ' (e  - a) = N* -S*  (e a ) a ( e  a), 

= N * - S * .  e(e * a ) + S *  ( a - e ( e .  a)), (83) 

sp = -sf, s,". = sT, 
where SII and S, are the components of the vector S parallel and transverse to 
e, respectively. From Eqs. (81) and (83), we see that invariance requirements 
impose the following restrictions on N and S: 

invariance to S: S = 0; 

invariance to A(e):  

invariance to t :  

SI = 0; 

N* = N, S* = -S; 
(84) 

invariance to me: N* = N, ST = SI, S$ = -SII. 

Combining the conditions in Eqs. (84), we have the structures of the density 
matrix in the eight classes as summarized in Table 11. We use in Table I1 the 
following notation for real and imaginary parts of N and S, 

N = n + i E ,  S = s + i k  ( 8 5 )  
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TABLE 11. Density matrix in the eight classes of HF wave functions.a 

T invariant Me* invariant 7’M noninvariant 

S invariant n N 

S, axial n + G ( e * a )  n + s ( e . a )  N + S ( e .  a) 

S torsional n + i i . a  n + i s ’ ( e ‘ . a ) + s , * a  N + S . o  

a n, s, sL: real symmetric; 6,: orthogonal to e’, e’.s, = 0;  s’, i: real antisymmetric; N, S, S: complex 
Hermitian: e . e’ = 0.  

The real parts n and s contribute to the electron and spin densities, while 
the imaginary parts n’ and j: to the electron and spin current densities. Only the 
TM noninvariant classes have an electron current density. The S invariant classes 
have neither spin nor spin current densities. The T invariant classes, ASCW and 
TSCW, have a spin current density but have no spin density. The ASDW class has 
a spin density but has no spin current density. The three classes, ASW, TSDW, 

and TSW, have both spin and spin current densities. 
We show in Figure 2 schematically the ways of spin modulation in the S 

axial and S torsional classes. The S axial classes have one dimensional modulation 
of spin vector in the direction of the vector e. The TSCW class has three 
dimensional modulation of spin current density vector. The TSW class has three 
dimensional modulations of spin density and spin current density vectors. In 
TSDW class, the spin density vector is modulated two dimensionally in the 
directions orthogonal to the vector e’, while the spin current density vector is 
modulated one dimensionally in the direction of the vector e’. We summarize 
in Table I11 the properties of the eight classes. 

iii. Structure of the Orbitals. The condition (77) for invariance of a Slater 
determinant I@) means that I@) spans a one dimensional irreducible representa- 
tion of the invariance group G. This condition implies that the occupied spin 
orbitals cpu span a, in general reducible, representation of G, namely, there is a 
unitary matrix W ( g )  within the space of occupied orbitals for every g in G such 

e e e 

A S C W  A S D W  A S W  

e’ 

S-torsional 

T S C W  T S D W  T S W  

Figure 2. Modes of spin modulation in the six UHF classes. Arrow and dashed 
arrow represent spin density and spin current density vectors, respectively. Circle 

and sphere represent two and three dimensional modulations, respectively. 
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TABLE 111. Spin and charge properties of the eight classes of HF wave func- 
tions.= 

Charge current Spin density Spin current 

TICS 
ccw 

ASCW 

ASDW 

ASW 

TSCW 

TSDW 
TSW 

'0 and x represent the presence and absence of the relevant property, 
respectively. 

that 

Therefore, the set of occupied orbitals, after a suitable unitary transformation, 
consists of irreducible representations of G. This fact enable us to determine 
the structure of orbitals in the eight classes of HF wave functions. 

Determination of irreducible representations for the four groups S, T, A ( z )  
and M ( y )  is sufficient for determining the structure of orbitals in all the eight 
classes. 

S :  It is well known that 771 and 772 are the bases of the irreducible two 
dimensional spinor representation of S. Hence, a pair of spin orbitals 

with a common spatial orbital 4i forms an irreducible two dimensional representa- 
tion of S.  No other kind of irreducible representation of S can be constructed 
in the space of spin orbitals with t spin. Therefore, Slater determinants of S 
invariant classes have to be of closed shell type. The spatial orbitals 4i are in 
general complex. 

A ( z )  is an Abelian group, all its irreducible representations are one 
dimensional. v1 and q2, respectively, are the bases of one dimensional irreducible 
representations of A ( z ) .  The representations on ql and q2 are inequivalent. 
Hence, each spin orbital with up (+) and down (-) spin 

belongs to a one dimensional irreducible representation of A(z ) .  Because of 
the inequivalence of the representations on 771 and 772, the spatial orbitals 4; 
and 47 for up and down spins can be chosen independently and the numbers 
of up and down spin orbitals in a Slater determinant may be different. Therefore, 
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Slater determinants of the S axial classes are of DODS type. The spatial orbitals 
4; are in general complex. 

T: We note that there is no spin orbital belonging to one dimensional 
irreducible representation of T because if such a cp exists then it must satisfy 
cp' =ei*cp but-cp =(cpf)f=(e'Scp)'=eiScp' =cpsothatcp =O.Thespineigenfunctions 
v1 and v2 are transformed by t as 

77: = 772, 77: = -771, (89) 

so that they span a two dimensional irreducible representation of T. Con- 
sequently, a pair of spin orbitals in the form 

(90) 

span a two dimensional irreducible representation of T because cpil and cpiz are 
transformed by t in the same manner as ql and 772 

* 
cpil=xivl+xI*772, V i 2 = x i  772-X:q1, 

The orthonormal conditions 

must be satisfied by the spatial functions xi and x:. Slater determinants of the 
T-invariant classes therefore consist of pairs of spin orbitals in the form (90) 
and the number of electrons n must be even. 

M ( y ) :  Since the magnetic operation My is identical with complex conjuga- 
tion, Eq. (75), a real spin orbital spans a one dimensional irreducible representa- 
tion of M ( y ) .  No irreducible representation of other type exists as can be easily 
verified. Hence, Slater determinants of the My- invariant classes consist of real 
spin orbitals. 

Irreducible representations of A ( e )  and M(e')  are obtained from those of 
A ( z )  and M ( y )  by making a spin rotation to bring z and y axes to e and e' axes. 

Combining the above results, we obtain the characterization for the structure 
of orbitals in the eight classes as shown in Table IV. We note that ASCW is the 
complex DODS whose up and down spin spatial orbitals are complex conjugate 
of each other. 

We next derive standard forms of orbitals which are useful in later applica- 
tions. 

GSO: The spatial functions of GSO'S have to satisfy the normalization condition 
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TABLE IV. Structure of orbitals in the eight classes of HF wave functions." 

Closed shell TICS real n = even 
ccw complex n =even 

DODS ASCW complex n =even 4- 1 '  =4" 
ASDW real n =even, odd 
ASW complex n =even, odd 

GSO TSCW complex n=even Eq. (98) 
TSDW real n =even, odd 
TSW complex n = even, odd 

a n is the electron number. Real and complex mean that the orbitals can be 
and cannot be brought into real ones by a unitary transformation within occupied 
orbitals, respectively. The last column shows the constraint for ASCW and TSCW 

orbitals. 

The matrix ( ( x l ,  1 x 1 ~ ) )  composed of the occupied orbitals is hermitian and positive 
definite, so that there is a U ( n )  matrix V = ( V a p )  such that 

Then we obtain the spatial orbitals 42, which are orthonormal within + and - 
families, respectively, 

Making the unitary transformation by V, we obtain the standard form of GSO'S 

cp, = 4: cos K , T ~  + 4: sin K , T ~ .  (96) 

In the TSW and TSDW classes, 4: are complex and real, respectively. 
In the TSCW class, orbitals are in the form of (90) and the orbital indices a's  

are in pairs of a1 and a2,  a = 1, . . , n/2. Substitution of Eq. (96) into Eq. (90) 
and use of Eq. (92) shows 

4 ir = 4 i:, K a 2  = K a  1 + iT. (97) 

We then obtain the standard form of TSCW orbitals 

where K ,  = K,I and 4ar = q5:r. 
DODS: In DODS cases, the numbers nl  and n2 of occupied up and down spin 

orbitals may be different and we denote the occupied up and down spin spatial 
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orbitals by the indices a1 = 1, .  . . , nl  and a2 = 1,. . . , n2. The n2xn1 matrix 
((4,214:1)) can be diagonalized in the same manner as Eq. (36), 

k 

(4;214:l)= 1 ct,2.A cos 2KAWXI,A, 

4: =4: lWal ,A,  '$2 =4:2@a2.A. (100) 

(4: 14;) = SAB cos 2KA. 

(99) 
A=l 

where k ='min(nl, n2). We define 

These orbitals satisfy 

(42 14;) = 6AB, (101) 

Equation (101) shows that the following orbitals are orthonormal: 

4~ = (4; -I- COS KA, 

&A = (42 - 4 i ) / 2  sin KA, 
(102) 

(4Al4B) = (&A/&) = sAB, (4AI&B) = 0. 

Then we get the standard form for DODS spatial orbitals 
- 

42 COS KAf4A Sin K A ,  A = 1,. . . , k, 
4 ; = 4 ~  fornl>nz and n l > A > n 2 ,  (103) 

4: =&A for nl<n2 and n z > A > n l .  

This representation for DODS orbitals was obtained by Amos and Hall (1961). 
The orbital pair 42 is called the corresponding orbitals and the orthonormal 
orbitals the DODS natural orbitals (NO). In the ASW and ASDW classes, 
DODS NO'S are complex and real, respectively. In the ASCW class, nl=n2 and 
4: and 42 are complex conjugate to each other, so that ~ A ' S  are real but 
are imaginary. 

We note that a closed shell RHF wave function belongs to either of TICS or 
ccw class and an open shell one to ASDW or ASW. 

iv. Classification of HF Wave Functions in a System with a Spatid Point 
Symmetry. Here we consider classification of HF wave functions in a system 
with a spatial point symmetry group P. The symmetry group of such a system 
is S x T x P. According to the principle mentioned in Section 2.B.ii, classification 
of all possible types of HF wave functions with distinct broken symmetries can 
be achieved by listing up all subgroups of the symmetry group S x T x P. The 
problem was solved by Ozaki and Fukutome (1978). To list up all subgroups of 
S x T x P is not so simple as the case of S x T and we give here only an outline. 

Ozaki and Fukutome's listing up procedure bases on the fact that the O(3) 
(three dimensional orthogonal) group is isomorphic in a double valued manner 
to the group S x T because a proper rotation R in O(3) can be corresponded 
to spin rotations s and -s and inversion in O(3) to time reversal t which inverts 
the spin vector. Since P is a discrete subgroup of 0(3), it can be homomorphically 

and 
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embedded into S x T. Let h, be a double valued homomorphism of P into S x T 
and g ( h , ( p ) )  be the element in S x T which is the image of an element p in 
P by the homomorphism h,. Note that g ( h - ( p ) )  = - g ( h + ( p ) ) .  The set 

IIPh = {pg(hr(p)); P E PI, (104) 

obviously forms a subgroup of S X T X P. In the group I&,, the spin vector is 
rotated jointly with spatial rotations P in a manner homomorphic to P. Let P’ 
be a subgroup of P. The set 

IIPL = { p ’ q ( h * ( p ’ ) ) ;  P ‘ E  P’) (105) 

constructed from P’ with the same manner as IIPh is also a subgroup of S x T x P. 
The subgroups in the forms of (104) and (105) exhaust all the subgroups of 
S x T x P which do not contain elements consisting only of spin rotation and 
time reversal. We call these subgroup the subgroups of TSW type because the 
HF wave functions having the invariance groups of this type belong to the TSW 

class. The subgroups of TSW type include as special cases the double groups and 
magnetic groups constructed from P or P’ (for double groups and magnetic 
groups see, Bradley and Cracknell, 1972) and may be called generalized magnetic 
double groups. The left-hand side index I1 denotes the double group nature of 
the groups. 

The well known homomorphism theorem shows that the set N of p ’ s ,  

N = { p ;  U p )  = *l), ( 106) 

whose homomorphic image in S x T is the subgroup E = (1, -1) with no rotation 
of the spin vector, is a normal subgroup of P and the homomorphism h, for P 
becomes an isomorphism I* of the factor group F = PIN into S X T. Therefore, 
the group IIPh can be specified by a normal subgroup N of P, the factor group 
F = P I N  and an isomorphism I of F, 

IIPh = { P N ,  fg(I*(f)); P N  E N,  f E F )  IIP(N,  F, I ) .  (107) 

Isomorphisms I’ and I of F are physically equivalent if there is an element 
g’ E S x T such that 

gu: (f)) = g ’ g u * ( f ) ) g ’ - l 7  (108) 

because an HF wave function with the invariance group IIP(N, F, 1’) can be 
transformed by the symmetry operation g’ to the one with the invariance group 
IIP(N, F, I). Therefore, listing up of all invariance groups in the form of IIPh is 
achieved by listing up all normal subgroups N of P and all inequivalent isomorph- 
isms of the factor groups F = PIN. Inequivalent isomorphisms of a point group 
F consist of outer automorphisms of F and isomorphic mappings of F to the 
other point group P with isomorphic structure to F, for instance, the point groups 
Czmr SZm, and Cmh have isomorphic structures. The same situation holds also 
for the group IIPL and it is specified by a normal subgroup N ’  of P’, the factor 
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group F’ = P I N ’  and an isomorphism I’  of F‘, 

1IP)h ={ph , f ’g ( IL  (f’)); P L E N ’ ,  f ’ ~  F’}“IIP’(N’, F‘, 1‘). (109) 

It is to be noted that a normal subgroup N‘ of P‘ may not be a normal subgroup 
of P. Complete listing up of normal subgroups and outer automorphisms of all 
point groups were given by Ozaki and Fukutome (1978). 

All subgroups of S x T x P  are obtained as the intersections of the eight 
subgroups of S x T  listed in Figure 1 with the groups xIP(N, F , I )  and 
IIP(N’, F’, I f ) .  For an intersection to be a group, an admissibility condition must 
be satisfied, but we do not enter into the problem here. 

An HF wave function with the invariance group IIP(N, F, I )  is invariant to 
the spatial rotations in the normal subgroup N but not invariant to the ones not 
included in N. However, it becomes invariant if the spin rotation by g(I f (f)) 
is made simultaneously with the spatial rotations in the form of P N f ,  p N € N ,  
f~ F, and # 1. This shows that the HF wave function has an ordered spin structure 
determined by N, F, and I. 

The spin structure can be visualized as follows. Put a spin vector S on an 
atomic orbital x. The AO which is obtained from ,y by a spatial rotation p E P is 
denoted px .  Put the same spin vector S on the AO’S pNx,  p~ E N ,  while put the 
spin vector Sg rotated by g = g(I,(f)) on the AO’S P N f X ,  p N  E.N, f €  F, and # 1. 
Select another AO x‘ which is not contained in the set of AO’S { p x ;  p E P } ,  put 
a spin vector S’ on x’ and repeat the same procedure as the above. The spin 
arrangement on the AO’S which are transformed by spatial rotations in P to each 
others is completely determined by the invariance group IIP(N, F, I), while the 
magnitudes and relative orientations of the reference spin vectors S, S’, . . . on 
the AO’S which are not connected by spatial rotations in P are not determined 
by the invariance group. In the classes other than TSW, a restriction is imposed 
on the possible spin structures and relative orientations of the reference spin 
vectors S, S’, . , . , but we do not mention about the restriction here. We illustrate 
in Figures 3 and 4 the possible inequivalent HF spin structures in the systems 
with C6 and Cs symmetries determined by the above rule. 

A HF wave function with the invariance group IIP’(N’, F’, 1‘) is invariant to 
the spatial rotations in N’  and has an ordered spin structure among the AO’S 

phf’x, p h  E N’ ,  f’ E F‘, and # 1. The range of the AO’S with the ordered spin 
structure is narrower than the systems with the invariance group IIP(N, F, I ) .  
Furthermore, in this case, the HF wave function is not invariant to the spatial 
rotations not contained in P and has no spin order among the AO’S p x ,  p~ P’, 
and E P. The charge densities on the AO’S p’x ,  p ’  E P’, are the same because the 
densities of up and down spin electrons on these AO’S are transformed to each 
others by a spatial rotation p ’  and spin rotation g(h: ( p ’ ) ) .  On the other hand, 
no such symmetry operation exists among the set of AO’S { p x ;  p E  P’, and E P} .  
Therefore, there is a difference in the charge densities on these AO’S and 
consequently a charge density modulation exists among the AO’S px,  p E P, which 
are originally equivalent with respect to the spatial symmetry group P. The HF 
wave functions with the invariance group in the type of IIP’(N’,F’,I‘)  are 
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TSW, 
(a) I 

X 

Figure 3. Possible UHF spin structures in a C, symmetry system. Spin vectors 
drawn by heavy and dotted arrows are inclined to up and down directions, respec- 
tively, against the paper plane. Those drawn by light arrow are in the paper plane. 
0 and 0 represent vertical spin vectors with up and down directions, respectively. 

classified as the charge density wave (CDW) category. If N ‘  = P’, then there is 
no spin modulation and the CDW is called a pure CDW. If N’ # P‘, then there is 
a spin modulation as well as the charge density modulation and the CDW is called 
a mixed CDW. 

Structure of orbitals in a system with the symmetry group S x T x P can be 
determined by the principle mentioned in the preceding section, namely, occupied 
orbitals must consist of irreducible representations of the invariance group 
IIP(N, F, I) or IIP’(N’, F‘, 1’). Determination of all double valued irreducible 
representations of a generalized magnetic double group was carried out by Ozaki 
(1979). The mathematic4 procedures involved, however, are rather complicated 
and readers who have interest in the subject should refer to the original paper. 

TSW, TSWz TSWa 

Figure 4. Possible UHF spin structures in a c, symmetry system. 
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C. Instabilities of HF Wave Functions 

A solution of the HF equation guarantees the condition that it represents an 
extremum point of the HF energy functional. However, it does not necessarily 
represent the minimum of the HF energy functional. The condition for a HF 
solution to be a local minimum was given by Thouless (1960). If this condition 
is violated, the solution is not a local minimum and unstable and another solution 
with lower energy exists. There is also a simple group theoretical rule for possible 
type of HF instabilities and interconnection relation of HF wave functions via 
instabilities. We consider here the problem according to works of the author 
(Fukutome, 1974b, 1975). 

i. Instability Criterion. We now let the reference spin orbitals t,91 be a solution 
of the HF equation. Then, from Eqs. (53), (51), and (34) we can calculate the 
variation of the HF energy functional around the solution 'I' up to any desired 
order. For small A, Eq. (34), up to the second order of A, becomes 

S(A) = A ,  C(A) = r. -+A +A, C(A) = lN-,, -+AA + (110) 
and the variation of the HF energy functional up to the second order is given by 

EH(@)-EH(*)=FsaAra +F,aA:a + A ; a ( ~ a I I l v P ) A v p  + ~ : , ( c L ~ I I I P ~ ) A : ~  

+;A fia(Pa I I IPv)*A up, (111) 
where 

(112) 
( ~ ~ a I ~ I v P ) = F , v S a p - F p a S , v + [ ~ c a I P v l ,  

(ELaIIIPv)= CEL4JPI. 
Since 'I' is a HF solution, the first order variation SEH('I') is zero for any A, 

SEH('I') = F,A + Fa,A ;a = 0, 

F,, = F a ,  = 0. 

The second order variation can be written in the form 

S2E,('I') = +A+RI, (1 14) 
where 1 and R are the 2(N - n)n dimensional vector and matrix defined by 

((ELaIIlvP)), ((ELalm)) (115) 

The matrix R is called the instability matrix of the HF solution 'I'. 
If the instability matrix R has no negative eigenvalue, then the second order 

variation S2EH('I') is positive definite. This means that the solution 'I' is a local 
minimum in the variation space, but not necessarily the absolute minimum, of 
the HF energy functional and is stable for any small variation. On the other 
hand, if the instability matrix has negative eigenvalues 

01, = wpxp, wp < 0, (116) 
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then the second order variation S2EH(W) is negative and consequently the value 
of the HF energy functional decreases for the variations of A in the directions 

where h,’s are the A’s contained in the eigenvectors x, and 1,’s are small 
parameters. This means that the solution 9 is a saddle point or a maximum and 
is unstable and there must be at least a solution with lower energy than q. 

A point in the space of adiabatic parameters where an eigenvalue of the 
instability matrix becomes zero and changes its sign from positive to negative is 
called an instability threshold. If only an eigenvalue of the instability matrix 
becomes zero at an instability threshold, then the instability is called nondegener- 
ate. If two or more eigenvalues become zero simultaneously at an instability 
threshold, then the instability is called degenerate. 

If a HF solution q is unstable, then there is at least one other solution @. 
There are three different situations for the relation of the two solutions. An 
instability is called interconnecting if a new solution @ which connects con- 
tinuously with the original solution @ appears from the instability threshold. 
Interconnecting instabilities are of a character similar to second order phase 
transitions and are the ones most frequently met in molecules and chemical 
reactions as shown in Section 3. There are also instabilities which are not 
interconnecting but represent a crossing of two HF states, called crossing 
instabilities. An example of crossing instability will be shown in Section 3. The 
last type of HF instability is neither interconnecting nor crossing but represents 
the situation that a lower energy solution 0 separated by a finite energy gap 
exists below q even at the instability threshold. This case is similar to first order 
phase transitions but in finite systems like molecules the occurrence of such an 
instability in the HF ground state appears to be an indication for a breakdown 
of the HF approximation. 

ii. Classification of HF Instabilities and Interconnection Relation of HF Wave 
Functions via Instabilities. Let us consider a nondegenerate interconnecting 
instability of a HF solution q. Then, there is another HF solution @ which connects 
with q at the instability threshold. Let the invariance group of q be G. The 
problem we consider here is the kind of invariance group the solution @ can 
have. The orbitals cpL of @ can be expressed in terms of the orbitals Jls of 9 in 
the form of Eq. (33). As we shall show in the next section, in the vicinity of the 
instability threshold, the matrix A to connect the orbitals qr with tJL is proportional 
to the matrix A1 that is the components of the eigenvector of the instability 
matrix corresponding to the instability 

va = *L?[C(A )I& + *,[SO )IW> 
A = /A l ,  axl = ~ 1 x 1 ,  w 1  < O ,  

where 1 is a small parameter to become zero at the instability threshold. 
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An eigenvector of the instability matrix behaves as a second order tensor 
for the invariance group G of V because it depends on two spin orbital indices 
p and a. Owing to the invariance of V to G, the instability matrix can be 
decomposed into a direct sum of smaller matrices which are irreducible to G 
and an eigenvector of it belongs to an irreducible representation of G. The same 
situation holds also for the matrix A derived from an eigenvector X I  as given in 
Eq. (118). In the region of the adiabatic parameter space not close to the 
instability threshold, the matrix A is in general no more proportional to AI. 
However, the symmetry of A with respect to G is preserved unless the solution 
Q, passes another interconnecting instability threshold. The HF equation to 
determine A is covariant to G, so that the symmetry of a solution is retained 
until it meets an interconnecting instability threshold that is a singular point 
where bifurcation of HF solutions takes place. 

We call the symmetry of an eigenvector of the instability matrix of an HF 
solution 9, which has a negative eigenvalue and produces an instability of 9, 
the symmetry of the instability. Eigenvectors of instability matrix depend on 
occupied and unoccupied orbitals i,bm and i,bw of V, namely on transitions from 
&, to i,bw or equivalently particle-hole pairs i,bpi,b2. The symmetry of an instability 
represents the symmetry of the transitions or particle-hole pairs to cause the 
instability. The Slater determinant I@) of the new solution @ appearing from an 
interconnecting instability of V has the form of Eq. (46). All the particle-hole 
pairs involved in IQ,) has the same symmetry as the symmetry of the instability. 
This coherence in the symmetry of particle-hole pairs in I@) leads to a collective 
and ordered character of the correlation incorporated into I@). 

The group theoretical principle to determine the invariance group G' of 
the new solution Q, is very simple. If the symmetry of the instability to 
produce Q,, or equivalently that of the matrix A, belongs to identity repre- 
sentation of G, then Q, is invariant to G. If the symmetry of A belongs to a 
nonidentity representation of G, then @ is invariant to the subgroup G' of G 
which leaves A invariant. Thus, the invariance group G' of @ must be 
either G or a subgroup of G. Therefore, we get the interconnection 
relation for the eight classes of HF wave functions as shown in Figure 5 
that shows HF wave functions of what classes may be produced as new 
solutions appearing via nondegenerate interconnecting instabilities of an 
HF solution. The interconnection relation shown in Figure 5 is identical 
with the subgroup structure of the symmetry group S x T except for the 
presence of the arrows connecting the same classes. Nondegenerate interconnect- 
ing instabilities give rise to new solutions with the invariance groups which are 
either G or maximal subgroups G' of G as proved below. 

Next, we determine instabilities with what symmetry correspond to each 
interconnecting line in Figure 5 .  In order to do this, we need to know the 
generators of each invariance group. The generators of the continuous group S 
are vl, u2, and v3 as seen in Eq. (63). The generator of the group A ( z )  is v3. 
The discrete groups T and M ( y )  are generated by t and m2 (= my), respectively. 
Combining these generators, we get the generators of each invariance group as 
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3 T- 
T I C S  - CCW 

AJ+C ASCW ASDW '-'I i A-M f 

M- 
T+ c TSCW 

\ f 

I 3s 
ASW 

TSW 

T- 

Figure 5 .  Interconnection relation of the eight HF classes via nondegenerate inter- 
connecting instabilities. Possible interconnections are indicated by arrows. The type 

of instabilities is indicated beside arrows. 

shown in Table V. Twofold elements which are not generators of an invariance 
group are also listed in Table V. 

Spin rotation transforms the matrix A as 

2 0  e o  
s(e, 8 ) A s - l  (e, 13) = cos - A  + i cos - sin - [(e - a), A ]  

2 2 2  

e 
+sin2 - (e * a ) A  (e . a). 

2 

Equation (119) shows that A is invariant to the spin rotation s(e, 0) if, and only 
if, 

(e a ) A  (e a) = A,  (120) 

because [(e * a), A ]  = 0 follows from Eq. (120). We define the operation A"' for 
A by 

A"' = g i A g i ,  ( A  ";)"; = A.  (121) 

TABLE V. Generators and twofold elements in the subgroups of 
S X T. 

Group Generators Other twofold elements 
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The operation A"' is twofold because (T? = 1. Time reversal and magnetic oper- 
ation for A are given by 

A '  = p ~ * p - l ,  (A')' = 1, 

A ~ ~ = ( T J ' ( T ~ ,  (A ) = I .  mi mi 

The time reversal for the matrix A becomes a twofold operation because A is a 
second order tensor having two spinor indices g and a. Since these operations 
are twofold the matrix A irreducible to the group generated by them must satisfy 

A"'=*A,  A ' = * A ,  A""=*A. (123) 

(A u')uL = Auk, A m1 = (A I),', (124) 

The following relations hold 

so that the following restrictions are imposed for possible combinations of the 
sign factors cur, E ~ ,  and E,, in Eq. (123): 

E u i E w ,  = Eck ,  &mi = ErEu,.  (125) 

The above discussion shows that all possible kinds of A irreducible to an 
invariance group G can be listed by assigning plus or minus signs to the generators 
and the twofold elements of G listed in Table V under the restriction of Eq. 
(125). The symmetry operations which have plus sign leave the matrix A invariant 
and form the invariance group G' of the new solution a. We show the result in 
Table VI. We see in Table VI that the invariance group G' of the new solution 
ypearing from a nondegenerate interconnecting instability is either G or a 
maximal subgroup of G. The notation for the instabilities given in Table VI 
represents the followings: S and 3S represent the instabilities caused by spin 
singlet and triplet excitations, respectively. A+ and A- represent conservation 
and violation of the axial spin invariance of DODS wave functions. A+ and A- 
instabilities are caused by spin unflipping and flipping excitations, respectively. 
T+ and T- (M+ and M-) represent conservation and violation of the time reversal 
invariance (magnetic invariance). In 3S and A-M instabilities the different 
combinations of signs shown in Table VI lead to different UHF wave functions 
but those wave functions are transformed to each other by a spin rotation and 
physically equivalent so that further distinction is unnecessary. 

The fact that instabilities of a TICS wave function can be subdivided into four 
different types leading to UHF wave functions of different kinds was pointed out 
first by Paldus and &ek (1970a-1970~). 

In the case of a doubly degenerate interconnecting instability with two 
eigenvalues w1 and o2 of the instability matrix to become negative at the same 
time over an instability threshold, at least three different solutions with the A 
matrices in the forms of 

1 

A = IlAl, A ' =  12A2, A " =  l l A l +  12A2, 
(126) ax, = 0 1 x 1 ,  ax2 = 02x2, 0 1 ,  0 2  = 0 
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TABLE VI. 
them.  

(a) TICS: 

Symmetry of nondegenerate instabilities and the type of UHF solutions appearing from 

u 1  0 2  @3 t m l  m2 m3 

(b) CCW: (C) ASCW: 

u1 u 2  u 3  u 3  t m3 

‘S + + + ccw A+T+ + + + ASCW 

ASW 
TSCW + 

- + A - T -  - + TSDW 

- - + - - A + T -  + 
- + - ASW A-T+ - 3s - 

- - 

(d) ASDW: (e) ASW: 

A +M+ + + + ASDW A+ + ASW 
TSW - A+M-  + - - ASW A- 

A - M  - + - 

+ TSDW - - 

(f)  TSCW: (g) TSDW: 

t m2 
T+ + TSCW M+ + TSDW 

TSW - T-  - TSW M- 

appear simultaneously from the instability threshold as we shall show in the next 
section. In order for a degenerate instability to occur, the symmetries of A 1  and 
Az either in spin, time reversal, or spatial point group must be different. The 
new solutions and Q2 with A and A’, respectively, obey the interconnection 
rule same as nondegenerate instabilities. On the other hand, the matrix A’’ breaks 
symmetry more than A and A’. It is invariant only for symmetry operations in 
order to leave both A and A ’  invariant, so that the solution @12 with A ”  has the 
invariance group GiZ that is the intersection of the invariance groups G ;  and 
G; of the solutions 

G ; ~  = G ;  n G;.  (127) 

and @ 2 ,  
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Therefore, the solution @I* obeys an interconnection rule different from the one 
of nondegenerate cases. We show in Figure 6 the interconnection relation of a 
HF wave functions realizable via doubly degenerate instabilities. 

TICS ccw. 

Figure 6. Interconnection relation realizable via doubly degenerate instabilities. 
The degenerate instabilities leading to the interconnections shown this figure are 
(1) (3ST+, 3ST+); (2) (3ST-, 3ST-) and (3ST+, 3ST-); (3) (3ST+, 3ST-), ('ST-, 
3ST+), and ('ST-, 3ST-); (4) (3S, 3S); ( 5 )  (A-T,, A_?-),  (A+T-, A-T+), and 

(A+T-, A-T-); (6) (A-M, A - M )  and (A-M, A+M-).  

The instability matrix of a HF solution 9 can be decomposed into submatrices 
which are irreducible to the invariance group G of 9 and correspond to the 
instabilities of different symmetries listed in Table VI and Figure 5 .  The explicit 
forms of all the irreducible submatrices were given in Fukutome (1974b). We 
quote here only the results for TICS and ASDW cases which are the most important 
in application to molecules. 

A TICS solution is a closed shell with real orbitals. We denote its occupied 
and unoccupied orbitals by the indices a, b,. . . and m, n, .  . . , respectively. An 
irreducible A matrix is separable into the spatial and spin parts and is a spin 
scalar or a spin vector. Its spatial part is either real or pure imaginary. The 
assignment of irreducible A matrices to the four kinds of TICS instability is 

$6 = $ iqrr  = A mr,as, 

3ST+ T imaginary, 
real. 3 ] Amr,as = A m a ( g i ) r s ,  A f a  { ST- 

We note that the spin scalar and spin vector A's arise from singlet and triplet 
excitations, respectively. The irreducible instability matrices fi corresponding to 
the four kinds of TICS instability are 

fi = ((maISllnb)), 
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Note that the ‘ST- and 3ST+ instability matrices are identical and these 
instabilities occur always simultaneously. Furthermore, the ccw and ASCW 
solutions appear simultaneously and are always degenerate in energy as can 
be proved from the identity of their energy functional. 

An ASDW solution is a DODS with real orbitals. We denote its occupied and 
unoccupied orbitals by the indices a,, b,, . . . and m,, n,, . . . , respectively, which 
have the spin subscripts r, s, . . . because the orbitals for up and down spins are 
different. The irreducible A matrices for the A+ and A -  type instabilities are a 
scalar and a two dimensional vector for, say, A ( z )  rotation. The spatial com- 
ponents in the irreducible A ( z )  scalar A is either real or pure imaginary while 
those in the irreducible A ( t )  vector A may be complex. The assignment of 
irreducible A’s to the three kinds of ASDW instability is 

CLc = 4 a r V r ,  A,, = A m r , a s ,  

A + M + ] .  . A =  [ A l l  
0 1  A+M-  0 A 2 2  ’ imaginary, 

A rr .[real, . 

0 A12 A - M :  A = [A21 1, A,: complex, 

iii. Bifurcation Structures of HF Potential Surfaces. At an interconnecting 
instability threshold, a new solution (or solutions) of the HF equation appears 
and a bifurcation occurs in the HF potential surface. All the possible bifurcation 
structures arising from nondegenerate and doubly degenerate instabilities were 
obtained by Fukutome (1975). We outline here the theory of bifurcations of HF 

potential surf aces. 
The HF equation contains nuclear coordinates as adiabatic parameters. Let 

T(R) be a HF solution at a nuclear conformation R and @ be the HF solution(s) 
at the nuclear conformation R +SR with a small displacement SR of nuclear 
coordinates which connects with T(R) in the limit SR = 0. Let To(R + SR) be 
the Slater determinant which is obtained from q ( R )  by the continuation of the 
AO bases from R to R +SR but with the LCAO MO coefficients unchanged. 
qo(R + S R )  is not a HF solution at R + SR but is an approximation of @. Let 
n(R) be the instability matrix of q ( R ) .  We can expand the A matrix to connect 
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the orbitals of @ with those of 'Po(R + SR) by the eigenvectors of R(R), 

with small real parameters xP Expanding Eq. (53) with (51) into the power series 
of A up to the fourth order and substituting Eq. (132), we obtain the expansion 
of the HF energy of @ in terms of the parameters x,, 

AEH = EH(0) -EH('P(R)) = SER +$ C SFPxp + Q C (w, 8, + SR,)X,X, 

+ a  C C p q r X p X q X r  + Q C dpqrsxpxqxrxs. (133) 
The quantities 

SER = EH('Po(R + S ~ ) ) - E H ( W ( R ) ) ,  

SF, = 2 Re HF:, (R  + SR 1 -Fa,  ( R  )}A p.,A 
SR, = X,'(R0(R + SR) - fl(R)}Xq, 

(134) 

which are constructed from the differences of the HF energy, Fock operator and 
instability matrix of 'Po@ +SR) and 'P(R),  are small in the order of SR while 
the quantities c,, and dwrs are of zeroth order in SR and not small. From the 
variation of Eq. (133), we get the algebraic equation to determine x,'s, 

SFp + !i C ( u p s ,  + 6Rpq)xq + C CpqrXqXr + C dpqrdqxrxs = 0 (135) 
9 q r  qrs 

If R is not an instability threshold, i.e., wp # 0 for all p ,  Eq. (135) can be 
solved perturbationally and has only one solution which is the continuation 
'P(R + SR) of 'P(R) to R + SR. If R is an instability threshold, i.e., wp = 0 for 
some p's ,  then Eq. (135) has more than one solution. We quote here only the 
results for nondegenerate and doubly degenerate instabilities that occur in the 
HF ground state. Let w 1  = 0 and wp # 0 for p # 1 in the nondegenerate case and 
wl, w2 = 0 and wp # 0 for p # 1,2 in the doubly degenerate case. We denote the 
p's  with w, = 0 by the indices i, j ,  . . . . The xp's  with wp # 0 can be eliminated 
from Eq. (133) by using Eq. (135) for the xp's .  By also using symmetry properties 
that are to be satisfied by ground state instabilities, AEH becomes a function 
depending only on the xi's with wi = 0, 
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where 1' is the summation over the p's with wp # 0. Then Eq. (135) for xi's 
becomes 

(Sv, +: aijxj xi = 0. '> (137) 

Equation (137) always has the solution x i  = 0 that represents the continuation 
W(R + SR) of W(R). In the nondegenerate case i, j = 1, and the inequality al l  > 0 
must be satisfied in order for A E '  to have a lower bound. Equation (137) has 
another doubly degenerate solution @, 

XI= *(-SV11/a11)1'2, AE'= -(SV11)2/8a11, (138) 

with lower energy than the solution W(R +SR)  in the region of SR determined 
by the inequality 

-SV*1> 0. (139) 

We show in Figure 7(a) the x1 dependence of A E '  which is nothing but the 
profile of the HF energy functional in a direction of the variation space and in 
Figure 7(b) the bifurcation behavior of the adiabatic potentials of the solutions 
W and @. 

a E' A E' 

A E' 

0 

-----u 
- sv 0 

( b )  

Figure 7.  Ground state bifurcation by a nondegenerate instability. (a) and (a') 
Structures of the HF energy functional before and after instability, respectively. (b) 

Bifurcation of HF potential. 
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In the doubly degenerate case, i, j = 1,2  and the inequalities all ,  aZ2, a12 > 0 
and a l l a ~ 2 - a &  > O  must be satisfied in order for A E '  to have a lower bound. 
Equation (137) has the following three solutions: 

2 
a1: x2=0, x1 =-SVll/all=SUl>O, 

2 
x2 = -(allSV22-al26V~l)/(alla22-a:2) =Su12>0, 

with lower energies than 9 ( R  + SR). Their existence domains are given by the 
inequalities in Eq. (140). We show in Figure 8(a) their existence domains and 
in Figure 8(b) the bifurcation behavior of their adiabatic potentials in the vicinity 
of the degenerate instability threshold. We see in Figure 8 that the degenerate 
instability threshold R is a crossing point of the boundaries of two nondegenerate 
instabilities and the solution a12 that is produced only by a degenerate instability 
has a wedge-shaped existence domain with the vertex at R. The solution Q12 
smoothly interconnects solutions Q1 and Q2. 

1 2 

Figure 8. Ground state bifurcation in the vicinity of a doubly degenerate instability 
threshold. (a) Boundaries of the existence domains of the solutions Ql, (1). Qz, 
(2). and Qlz, (12), and (21). (b) Bifurcation of the potentials of Ql,  Q2, and QI2.  

D .  Direct Minimization Algorism for HF Calculation 

The HF equation in the conventional form is a nonlinear eigenvalue equation. 
It has been customary to solve the equation iteratively. However, as has been 
widely experienced, the iterative eigenvalue procedure frequently meets trouble 
in convergence, the iteration being trapped in an oscillatory cycle. To avoid the 
trouble of nonconvergence, various direct minimization algorisms were proposed 
by McWeeny (1956), Hinze and Roothaan (1967), Fletcher (1970), and BonaciC: 
and KouteckL (1972). However, these methods are not entirely satisfactory in 
convergence or in computational speed. Igawa and Fukutome (1975) developed 
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a direct minimization method with secured convergence and good computational 
speed. 

The method is based on the formalism given in Sections 2.A.iii and 2.A.i~.  
The parameters A,, are independent variables of the HF energy functional. If 
we determine A,, so as to minimize the quadratic approximation [Eq. (1 1 l)] of 
the HF energy functional, we get the Hinze-Roothaan (1967) method. However, 
the direct determination of A,, 's requires a huge computational time because 
of the large dimension, in general 2(N-n)n, of the equation for A*,'s and the 
use of the quadratic approximation leads to the trouble of nonconvergence. 
Hence, we used the representation (36) to diagonalize the matrix A and expression 
(58) for the HF energy functional. The use of the representation (36) brings 
about a drastic decrease in the dimension of the equations to be solved to the 
order of k = min(N - n,  n ) .  Formula (58) involves the Coulomb repulsion inte- 
grals depending only on two MO indices, also leading to a huge reduction in the 
time for the computation of the energy functional. It also yields easy computation 
of the energy functional up to any desired order of A,  leading to secured 
covergence of the iteration in the method. 

and CP be the Slater determinants in the iteration cycles i and i + 1. 
Their orbitals are related by by a matrix A''' = (AEh) in the manner of Eq. (33). 
We first determine the matrices v ( ~ )  and 6(i) to diagonalize A ( ' ) .  Since the off 
diagonal matrix elements F,, of the Fock operator must satisfy F,, = 0 in the 
SCF limit, we determine v ( ~ )  and 17'~) so as to diagonalize the Fock operator FEh 
at the iteration cycle i, 

Let 

Then, in the MO basis of the orbitals defined in Eq. (54), 

(142) 
the number of nonzero matrix elements of the off diagonal Fock operator is 
minimized. In order to optimize convergence efficiency, we introduce the 
Fletcher-Reeves (1964) conjugate gradient technique in the determination of 
v( j )  and 6(i). Instead of Eq. (141), they are determined to diagonalize the matrix 
R") = (Rzh) defined by 

( i )  - ( i )  ( i )  '(i) - ( i )  -(i) 
$ A  - $ a  VuA, $ A  - $* USA, 

( i )  = F(i) = p(i--l)RE(iI) R:i = F( ' )  R,, ,a , *a, 

k RE; = c 6zkR$),,:A*. 
A= 1 

Next, we determine the AA'S to minimize the quadratic approximation of Eq. 
(58) at the iteration cycle i, 

k k 
SEZ = c ( l $ ) A A + $ k $ ) h i ) + $  c [AA+AAIBZ+&]'"AAAB (144) 

A = l  A.B = 1 
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-calculate F,, ; 

4 .  

.1 

J. 

.1 

J. 

determine u, u' by Eq. (143); 

calculate kA, la, etc., using the orbitals (142); 

determine AA to minimize (144); 

determine 1 to minimize Eq. (58); 

calculate new trial orbitals by Eq. (56) with A $) ; 

and put 
A $) = IAA. (145) 
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Our method can be used in the study of the structure of the HF energy 
functional in the variation space. The variation space is the 2(N - n)n dimensional 
space of the parameters A F a .  Our method restricts the variation space to the k 
dimensional subspace of the parameters AA at each iteration. However, by 
changing the matrices u and fi at each iteration the subspace sweeps over the 
whole variation space. Thus, our method is a kind of relaxation technique but 
the subspace with an efficient sweeping is chosen. Formula ( 5 8 )  reveals that the 
HF energy functional is constructed from cosine and sine functions of AA’s, so 
that it has always at least two extrema with respect to AA and consequently may 
have a lot of extrema in the whole space of AA’s. The RHF energy functional of 
carbon mono-oxide constructed on valence AO bases has only two independent 
A A k ,  so that its AA dependence can be written in a two dimensional map. We 
illustrate in Figure 9 the AA dependence of the RHF energy functional of carbon 
mono-oxide with varying interatomic distance at the first iteration cycle starting 
from Hiickel type trial orbitals. We see in Figure 9 that even the RHF energy 
functional has many extrema and its structure changes very much with increase 
of the interatomic distance accompanying increase of the number of extrema. 
The complicated structure of the energy functional is the origin of the nonconver- 
gence trouble. The quadratic approximation in A may fail to correctly approxi- 
mate even a local structure of the energy functional and in fact the direct 
minimization using the quadratic approximation frequently meets the nonconver- 
gence trouble. 

E. Relation of the HF Approximation to the Exact Theory 

The HF approximation has its group theoretical foundation on the U ( N )  
group generated by the particle-hole type pair operators as we have shown in 
Section 2.A. The U ( N )  group whose origin is in the canonical anticommutation 
relation of annihilation-creation operators imposes a universal group theoretical 
structure on fermion many-body systems. The HF approximation has an intimate 
connection with this U ( N )  group structure of Fermion many-body systems and 
is not a mere technical approximation. We consider here about the relation of 
HF wave functions to exact ones from the U ( N )  group point of view. 

i. Generator Coordinate Representation of Fermion State Vectors on the 
U ( N )  Group. Let U ( u )  be a canonical transformation on the Hilbert space of 
a fermion many-body system that depends on an element u of a compact Lie 
group and forms a representation of the group. If state vectors If), Ig), . . . are 
in a space irreducible to U(u) ,  then by the well known orthogonality theorem 
for matrix elements of an irreducible representation the following orthogonality 
relation holds: 

where the integration is the group integration on the Lie group with the total 
volume normalized to 1 and D is the dimension of the irreducible space. Equation 
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(4 (d) 

Figure 9. Structure of the RHF energy functional surface of CO at R = 1.0 (a), 1.5 
(b), 2.0 (c), and 3.0 A (d). Capital letters A, B, . . . represent positions of extrerna. 

(146) shows that any state vector I f )  in the irreducible space can be represented 
in the form 

It9 = D  I U(u) lg) (g lUt(u) l f )  du, (147) 

where lg) is an arbitrarily chosen reference state in the irreducible space. The 
representation of fermion state vectors of this kind was introduced firstly by Hill 
and Wheeler (1953) in their generator coordinate method without consideration 
for the group theoretical aspect of the representation. The group theoretical 
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derivation of the representation on a Lie group was first made by Perlemov 
(1972,1977) and the representation was called the generalized coherent state 
representation because it is a generalization of the coherent state representation 
for photons introduced by Glauber (1963). 

We apply the representation (146) to the U ( N )  group. A space irreducible 
to the U ( N )  canonical transformation U ( u )  is the space with a definite fermion 
number n because the number operator n commutes with all the U ( N )  Lie 
operators aia ,  but there is no other operator except for functions of n commut- 
able with all of a:a,. The dimension of the space with n fermions is K,. 
Therefore, any state vector If) in the space with n fermions can be represented 
as 

~ f )  = NC, J u ( ~ ) I w ~ I u ~ ( ~ ) I ~ )  du, (148) 

where the integration is made over the U ( N )  group and 19) is an arbitrary Slater 
determinant with n fermions. We stress that the representation (148) is exact 
and the generating wave function U ( u ) l q )  is a Slater determinant by the Thouless 
theorem. The representation (148) provides a key to elucidate the relation of 
HF wave functions to exact ones. The generator coordinate representation in the 
form of Eq. (148) was introduced first by Jancovici and Schiff (1964) without 
recognition of its group theoretical character. The first group theoretical deriva- 
tion was made by Linderberg and Ohm (1977). A similar representation on a 
wider Lie group was introduced by Fukutome et al. (1977). 

We next determine the structure of the generator coordinate (GC)  wave 
function (q/ Ut(u) l f ) .  The GC wave functions corresponding to the Slater deter- 
minants ” . . . a  s . . . )  are given from Eqs. (44) and Eq. (41a) as 

( q l V t ( u ) l ~ f i Y . . . a P . . . )  = d ( p ; a p : p  ... )(*lUt(u)lw, 
(149) 

(qlUt(u)19) = [det (1 + ~ ‘ p ) ] - ~ ’ ~  det ( w * ) .  

From Eq. (149), we see that the GC wave function (qlUt(u) l f )  has the form 

(qlUt(u)lf) = X f ( P * ) ( w t ( u ) l w ,  (150) 

where Xf(p*)  is an antisymmetric polynomial of p z a ’ s .  
The Schrodinger equation (H - E f ) l f )  can be converted to an integral equation 

on the U ( N )  group. Substituting Eq. (148) into S(fl (H -Ef ) l f )  = 0 and making 
variation with respect to the GC wave function, we obtain the Schrodinger 
equation on the U ( N )  group 
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Note that H(u,  u’) and S(u, u’) are the matrix element of H and the overlap 
integral between two Slater determinants I@(u)) = U(u)lrIr) and I@(u’)), respec- 
tively. 

The overlap integral S(u, u’) is just identical with the GC wave function of 
the Slater determinant )@(u’)), 

(rIrlUt(u)p(u’)) = S(u, u’), (152) 

It has the following special property. Multiplying (rIrlUt(u) to Eq. (148), we obtain 

WIUt(u) l f )  = Nc, I S(u, u’)WIUt(u’)lf) du‘. (153) 

By putting I f )  = U(u”)lrIr), Eq. (153) gives 

S(u, u”) = Nc, S(u, u’)S(u’,  u”)  du’. (154) 

Equations (153) and (154) show that &’,S(u, u’) is the projection operator to 
the space of all GC wave functions with the fermion number n. 

ii. Generator coordinate representation of symmetry adapted state vectors 
in terms of projected HF wave functions. An eigenstate of the Hamiltonian (6) 
belongs to an irreducible representation of the group S of spin rotation and is 
specified by the total spin j ,  the spin magnetic quantum number m, and the other 
quantum numbers q. A spin rotation s is an element of the U ( N )  group and 
there is a U ( N )  canonical transformation U ( s )  corresponding to s. A spin 
symmetry adapted state vector lj, m, q )  is transformed by U ( s )  as 

where D!,,,,(s)’s are the so called D functions which are the matrix elements 
of the representation matrix of the irreducible representation j of the group S 
(for the D functions see Wigner, 1959). By the orthogonality theorem for 
irreducible representation matrices, the D functions satisfy the orthogonality 
relation 

(156) 
Dj ( )Dj’* 1 

rnk S r n ‘ k ’ ( S )  dS =- Sj j ’Smrn’Skk’ ,  I 2 j +  1 

where the integration is made over the group S. 
From Eq. (148), we have 

~ ( s ) l j ,  k, 4 )  = Nc, J U(su)IWWUt(u)lj, k, 4 )  du. 

lj, m, q )  = (2 j+  1) Nc, I I @ k k ( U ) ) ( * l U t ( u ) l j ,  k, 4 )  du, 

(157) 

Multiplying Eq. (157) by D’,*k(s), integrating over S, and using Eqs. (155) and 
(156), we obtain a generator coordinate representation of spin symmetry adapted 
state vectors 

(158) 
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where 

I @ i k ( U ) ) =  D ’ , * k ( S ) u ( S U ) l * )  ds (159) 

is the Peierls-Yoccoz (1957) spin projected HF wave function. A generator 
coordinate representation of symmetry adapted state vectors with a similar form 
to Eq. (158) was derived by the author (Fukutome, 1977) on a wider Lie group 
universal for fermion systems. 

The projected HF wave functions respond to spin rotation as 

where we have used 

which are nothing but the relations to be satisfied by a representation matrix. 
Equation (160) shows that the projected HF wave function I@kk(u)) has the spin 
symmetry ( j ,  m). 

On the other hand, the quantum number k responds to spin rotation of the 
argument u : 

The representation (158) has been derived by using only the orthogonality 
relations of representation matrices of the U ( N )  and spin rotation groups. The 
U ( N )  group is a universal group in fermion many-body systems because it has 
the origin in the canonical anticommutation relation of annihilation-creation 
operators. Therefore, the representation in terms of projected HF wave functions 
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can be obtained in any fermion system with a symmetry group. When the spin 
rotation U(s )  is applied to a Slater determinant l@(u)), all the spin orbitals cpa 
in I@(u)) are simultaneously transformed to cpz, namely, spins of all electrons 
are rotated coherently without changing their relative orientations. It is well 
known that the eigenstates of a spherical rigid rotator are the D functions of 
rotation group. Therefore, the Peierls-Yoccoz projection by the D functions is 
equivalent to selecting out the eigenstates of coherent rotation of spin vectors. 
The representation (158) gives us a microscopic justification of the Peierls- 
Yoccoz theory mentioned in Section 1. In the case of nonrelativistic molecular 
systems now being considered, it can be stated as follows. If the ground state is 
well approximated by a UHF wave function, then its components with different 
spin angular momenta represent a series of excited states produced by coherent 
rotation of spin vectors. The Peierls-Yoccoz theory can be generalized to any 
fermion system with a symmetry group as noted above. Its microscopic foundation 
is on the universal U ( N )  group structure and the symmetry group structure of 
a fermion many-body system. Thus, the broken symmetry components in a UHF 
wave function are not mere mathematical artifacts but may have an important 
physical significance. 

We note that the quantum number k in the projected HF wave function (159) 
has the same significance as the quantum number k in a rigid rotator. The 
quantum number k represents the component of angular momentum in a direc- 
tion fixed to the rigid rotator. The quantum number k similarly represents the 
component of total spin angular momentum in a direction fixed to the assembly 
of spins which is performing coherent rotation. 

Ozaki (1980) proved that the Peierls-Yoccoz projection for a UHF wave 
function in a aystem with a spatial point symmetry simultaneously recovers 
spatial symmetry. This fact is due to the structure of the invariance group G 
that has been discussed in Section 2.B.i~. A UHF wave function with the invariance 
group in the form of Eq. (104) is invariant to joint operation of a spatial point 
rotation p and a spin rotation g ( h , ( p ) )  homomorphic to p. Since the proof for 
the case of invariance groups involving time reversal, that produces inversion 
of spin, is somewhat complicated, we restrict discussion in the case of invariance 
groups 

(163) 

where s ( h + ( p ) )  is a proper spin rotation homomorphic to p. A spatial point 
rotation p belongs to the U ( N )  group and there is a U ( N )  canonical transforma- 
tion U ( p )  corresponding to p. Let I@(u)) be a Slater determinant with the 
invariance group (163), 

IIPh = { p s ( h * ( p ) ) ,  p E PI7 

U ( P >  ~ ( s  (h*(p)))l@(u)) = e is l@(u)), 

U(P)l@(U)> = I@(PU)> = U-'o (h*(P) ) ) l@(u) )  e iS 

(164) 

we then obtain 

= l@(s-'(h*(p))u)) e". (165) 
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From Eqs. (165) and (162), we have 

-=c Dlk'(S-l(h*(p)))l@lmk'(u)) elS. (166) 
k' 

Equation (166) shows that the spin projected UHF wave functions ( @ L k ( u ) )  span 
an in general reducible representation of P with the representation matrix 
[e'*DLkf ( s - ' ( h * ( p ) ) ) ]  which operates on the k quantum number of I@kk(u)). 
In the case of a CDW wave function with the invariance group in the form of 
Eq. (105), the spatial symmetry simultaneously recovered is restricted to the 
subgroup P'. 

iii. Bose Quantized Time Dependent HF theory as an Exact Representation 
of a Fermion Many-Body System. Dynamics of a fermion system can be 
expressed in terms of the U ( N )  Lie operators E i  = aia,. Hamiltonian (6) can 
be expressed as 

H = V+K,,Ei +&~ILK]E$E:,  

K,, = hr, +%(VILLI. 
We obtain from Eqs. (18) and (167) the Heisenberg equation of motion for the 
U ( N )  Lie operators 

(167) 

a 
i h  - ET = [E;, HI = 9,E: -EghSA,, 

at  

The expectation values of the U ( N )  Lie operators by a Slater determinant I@(u)) 
are the density matrix Q of l@(u)), 

(@(u)lE;I@(u)) = (*I U'(u)aiarU(u)lW 

=(*\Irla?u:,a,ur,l*)= u i a ~ : a  = Qr,. (169) 

We also have 
(@(u)IE:E:I@(u)) = Q K L Q A ,  - Q K - Q A L .  (170) 

By using Eqs. (169) and (170), the expectation value of the Heisenberg equation 
of motion (168) by I@(u)) gives us the time dependent HF (TDHF) equation for 
the density matrix 

a 
at 

ih- Qr,  =FcA (QIQA, -Q~AFA,(Q), 

(171) 
FcT(Q)=hcT + [ ~ V I L K I Q ~ ~ ,  

where F, , (Q)  is the Fock operator for I@(u)). 
We can construct a boson system with the same dynamics as the U ( N )  

expression of fermion dynamics. We introduce the bosons with the annihilation 
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and creation operators bL, and b 6  which correspond to the U ( N )  amplitudes as 

&u, + bLp, &u$ + bia, (172) 

and satisfy the commutation relation 

The operators defined by 
&, = b:,b,,, g y  =&, 

satisfy the commutation relation of U ( N )  Lie operators 

[ E i ,  lei] = S,'& -S&;. (175) 

Hence, we call the bosons U ( N ) .  We define the Hamiltonian of the U ( N )  bosons 
in the same form as Eq. (167) with the boson U ( N )  Lie operators 

A = V+K,$: + $ [ [ r / l ' K ] g $ : .  (176) 

Then, the Heisenberg equation of motion for I?; becomes of the same form as 
Eq. (1681, 

Thus, the dynamics of the U ( N )  bosons are identical with the fermion dynamics 
as long as the U ( N )  Lie operators are concerned. 

The Hilbert space of the U ( N )  bosons is wider than the Hilbert space of 
fermions because it contains spaces with any permutation symmetry for permuta- 
tions of spin orbital indices 5, 7,. . . . However, it contains a subspace which is 
isomorphic to the Hilbert space of fermions. The totally antisymmetric subspace 
with n bosons spanned by the state vectors 

,rQ(b:ibiz * * * bLt)lO),, (178) 

where lo), is the boson vacuum satisfying bL, ( O ) ,  = 0, is isomorphic to the space 
of n fermions. Hamiltonian (176) has no matrix element to connect this subspace 
with the outside. Therefore, the U ( N )  boson gives an exact representation of 
a fermion system in the totally antisymmetric subspace. In the classical c-number 
limit of the U ( N )  bosons 

bca +&uLa, b:, +&u2&, (179) 

I37 + ~ Q L , ,  $6, +Fg, (QL (180) 

the Lie operator 
the Fock operator, respectively, 

and the operator gL,, reduce to the HF density matrix and 

so that the equation of motion (177) reduces to the TDHF equation (171) for 
the density matrix. Thus, the TDHF theory is the classical limit of the U ( N )  
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boson system which is an exact boson representation of a fermion system. This 
result indicates the special and basic position of the HF approximation and 
explains why it can be a so powerful approximation. We should stress that this 
result holds for the HF approximation in the wide sense to yield broken sym- 
metries since the U ( N )  amplitudes ugrl in general lead to broken symmetry spin 
orbitals. Similar result was obtained for the Hartree-Bogoliubov theory by 
Malshalek and Holzwarth (1972) and Yamamura and Nishiyama (1976). 

The above results provide a TDHF view for U ( N )  GC wave functions and the 
Peierls-Yoccoz theory. A Slater determinant I@(u)) is transformed by a spin 
rotation s to U(s)l@(u))  = I@(su)). I@(su)) has the same energy as l@(u)), but 
I@(su)) # I@(u)) if s is not included in the invariance group G of l@(u)). Hence, 
a Slater determinant of broken spin symmetry is always in a family {@(su); s@ G} 
continuously degenerated in energy. Therefore, if the RHF ground state is unstable 
and the HF ground state becomes of UHF type with a broken spin symmetry, 
then the profile of the HF energy functional on the U ( N )  group must look like 
Figure 10. The HF energy surface on the U ( N )  group must have a valley around 
the point representing the RHF ground state which is cyclic and equienergetic 
with respect to spin rotation su of u. The cyclic and equienergetic line at the 
bottom of the valley represents the continuously degenerated family {@(su); 
s e  G} of the UHF ground state. 

Figure 10. Structure of the HF energy functional surface on the U ( N )  group around 
the unstable RHF point. s represents the direction of spin rotation. The dashed 
line represents the profile of the ground state wave function of quantized TDHF 

motion. 

In the TDHF theory, the representative point u of a Slater determinant I@(u)) 
moves on the HF energy functional surface according to Eq. (171). The structure 
of the surface yields two modes of different natures in  mot motion, the rotational 
motions on a cyclic and equienergetic trajectory {su ; s E S} along the valley and 
the vibrational motions traversing the valley. The rotational mode corresponds 
to coherent rotation of spin vectors. 

If TDHF motions are quantized, then we get the exact theory for fermion 

dynamics. GC wave functions on the U(N) group are nothing but the wave 
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functions for quantized TDHF motions of the representative point u. The ground 
state probability distribution of quantized TDHF motion must have a profile as 
depicted in Figure 10. It must have the same value on a line {su ; s E S} and the 
largest probability on the bottom line of the valley which represents the con- 
tinuously degenerate UHF ground state. The deeper and steeper the valley, the 
probability distribution becomes the more concentrated on the bottom line of 
the valley. This is the TDHF criterion for the UHF ground state to be a good 
approximation for the exact ground state. The Peierls-Yoccoz theory picks 
up the rotational mode of quantized TDHF motion. Since the rotational TDHF 

motion occurs on an equienergetic trajectory, the wave functions of quantized 
rotational TDHF motions are solely determined by the rotational character of 
the motions and are given by the D functions. Thus the present theory shows 
that a system with the HF ground state of the UHF type has excitations 
of two different characters, the excitations due to coherent rotation of 
spins and the excitations of vibrational character. The former excitations 
are related to the broken spin symmetry components of the UHF ground state 
wave function. We shall discuss the nature of excited states further in Section 4. 
The presence of the two different modes of excitation was pointed out by the 
author (Fukutome, 1978) on the basis of a generator coordinate representation 
similar to Eq. (159) on a wider Lie group and a Tamm-Dancoff expansion 
derived from the representation. 

3. Applications of the UHF Theory to Molecules and Chemical Reactions 

A.  Systems with an ASDW Ground State 

We consider here first some simple molecular systems in which the RHF 
ground state becomes unstable and an ASDW ground state appears with a change 
in nuclear conformation. The systems are a hydrogen molecule with varying 
interatomic distance, internal rotation of ethylene, and methylene with a varying 
bending angle. The essential points of those systems can be well described by a 
simple two electron-two orbital model. The model provides a clear cut under- 
standing of the mechanism causing a triplet instability of the RHF ground state 
and the nature of the resultant ASDW ground state to represent a diradical. We 
next generalize the concepts obtained from the model. We consider about a 
classification of chemical reaction mechanisms by means of the triplet instability 
and orbital phase continuity criteria. We also discuss the physical factors con- 
tributing to realization or change of reaction mechanisms. 

i. Triplet Instability of the RHF Ground State in the Two Electron-Two 
Orbital Model of a Hydrogen Molecule, Ethylene, and Methylene. We consider 
here a two electron system with an occupied RHF spatial orbital & and an 
unoccupied one &,. The two electron-two orbital system can be used as a model 
for a hydrogen molecule, ethylene in a T-electron approximation, and methylene 
in an approximation that considers only two nonbonding electrons. In the 
hydrogen molecule and twisted ethylene, the two RHF orbitals are the bonding 
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and antibonding orbitals 

4, ~ 4 t  =(1/./Z)(xl+x2), 4rn=42=(1/J?)(Xt-X2), (181) 

where X I  and x2 are the orthogonalized 1s AO'S in H2 and the orthogonalized 
T AO'S on the two CH2 moieties in C2H4 whose 2p lobes are mutually twisted 
by the twisting angle 8. In methylene, they are the u and T type nonbonding 
orbitals 

(182) 

where s, p x ,  and p z  are the 2s, u type 2p,  and T type 2p AO'S, respectively, and 
a is the parameter of the hybridization in the (T type nonbonding orbital which 
is a function of the bending angle 6 and becomes (Y = 0 at 8 = T. 

The two electron-two orbital model is easy to handle but retains the essential 
points of those systems. We consider here the mechanism to cause a triplet 
instability of the RHF ground state using the model according to Fukutome 
(1972, 1973b) and Takabe et al. (1976). All the irreducible instability matrices 
of the RHF ground state ( c $ , ) ~  in the two electron-two orbital model are one 
dimensional and have only one eigenvalue. From Eq. (130), they are given by 

4, = d1 = s sin a + p x  cos a, 4,,, = d 2  = pz ,  

'ST,: E ,  - ~ , + 3 ( m a ~ m a ) - ( m m ~ a a ) ,  

'ST-, 3ST+; E ,  - E ,  - (mm~aa)+(rna~ma),  (183) 
3 ST-: E ,  - E ,  - ( m m ~ a a ) - ( m a ~ m a ) ,  

where E,  = F,, and E ,  =Fa,  are the orbital energies of 4,,, and 4,. Equation 
(183) shows that the ordering of the eigenvalues of these instability matrices is 

(184) 

namely, ST- instability occurs the easiest. The same situation holds in general 
for the lowest eigenvalues of these instability matrices. Hereafter, we call the 
ST- instability the triplet instability since it has been customary to do so. The 

condition for a triplet instability to occur in the model is 

'ST+ > 'ST-,  3ST+ > 3ST-; 
3 

3 

E ,  - - (mm laa) - (mu Ima) 5 0. (185) 

The triplet instability condition (185) is determined by three physical factors. 
As shown in Figure 11, the spin flipping triplet excitation of an electron in the 
RHF ground state to the unoccupied orbital 4, leads to an energy loss by 
the orbital energy gap E ,  - E,  but at the same time it produces energy gains by 

I I \  

Gap I Exchange 1, Cou'ornb 
a t t rac t im 

Figure 11.  Factors contributing to a triplet instability. 
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the Coulomb attraction energy -(mm laa) between the excited electron and the 
hole produced by the excitation and by the exchange interaction energy -(ma [ma)  
between the excited electron and the electron remained on the orbital 4,. If the 
energy gain due to the particle-hole Coulomb attraction and the exchange 
interaction exceeds the energy loss due to the orbital energy gap, the system 
aquires a net energy gain by the triplet excitation, namely, the system is unstable 
for the triplet excitation. The triplet instability condition (185) just represents 
this physical situation. We note that Eq. (185) is not the condition for the triplet 
excited state to be lower in energy than the RHF ground state but is the condition 
for the RHF ground state to be unstable for production of virtual triplet particle- 
hole pairs. 

The above consideration shows that a triplet instability is realized when the 
orbital energy gap becomes small. Because of the SCF character of the HF orbitals, 
the condition for smallness of the HF orbital energy gap is not so obvious, However, 
a clear cut condition can be obtained for the Huckel type orbital energy gap. 
The HF orbital energies in the model are given by 

(186) E ,  = ha, + (aa laa), E m  = h,, + 2(mm laa) - (ma Ima). 

Then, Eq. (185) becomes 

h,, - ha, +(ma laa) - (aa laa) - 2(ma Ima) I 0. (187) 

Because of the inequalities 

(mm laa) - (aa laa) s o ,  (ma J m a )  L 0, (188) 

the condition (187) is certainly fulfilled if the Huckel type orbital energy gap 
h,, -ha, becomes zero. This condition is satisfied in all three systems we are 
now considering. As shown in the orbital correlation diagrams of Figure 12, the 
Huckel orbital energy gap becomes zero at the infinite interatomic distance 
R = Co in H2, at the linear conformation with the bending angle 8 = m in CH2, 
and at the orthogonal conformation with the twisting angle 8 = $m in the internal 
rotation of C2H4. Therefore, the RHF ground state of these systems becomes 
triplet unstable in a domain surrounding the nuclear conformation with zero 
Huckel orbital energy gap. 

ii. HF Ground States in the Homopolar Two Electron-Two Orbital 
Model. When the RHF ground state becomes triplet (3ST-) unstable, an ASDW 

H 2 ,  R = R a  R = m  e =  0 ,  e=lc/z,  e = n  
CH,, R.8, 0 = l c  CZ H 4  

Figure 12. Orbital correlation diagrams for Hz, CH2, and C2H4. 
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ground state appears from the instability threshold as we have shown in Section 
2.C.ii. The three systems considered in the preceding section are homopolar and 
the orbitals c # ~ ~  = 41 and 4,,, = 42 have different symmetries. The solutions of the 
HF equation in such a homopolar two electron-two orbital model were studied 
by Falicov and Harris (1969), Pople (1971), Fukutome (1972, 1973b), Ostlund 
(1972), and Jordan and Silbey (1973). We discuss here the properties of the HF 

ground states in the model according to these works. 
The HF equation in the model has two closed shell RHF solutions (41)2 and 

(&)’. It also has triplet RHF solutions (4142) and (&&). We use the notation 
where RHF orbitals in an open shell without and with bars represent those with 
up and down spins, respectively. An ASDW solution exists below and (42)’ 
with the occupied spin orbitals 

4* = [cos ($A 141 + (e  a) sin (:A)d~h*, 
(189) 

cos A = -a / (b  + c ) ,  

where the unit vector e is arbitrary so that the ASDW solution is continuously 
degenerated and 

a = i ( h 2 2 -  hll)  +$((22122)-(11111)), 

b = t(ll-22111- 22), 

c =(12112). 

( 190) 

The energies of these solutions are 

(41)’: E H = & + 2 a + b ,  

We note that the normalized energy 

e = (EH - 8 +c)/2c (192) 

depends only on the two parameters q = -a / c  and r = b/c  and Eq. (191) may 
be written 

(4J2:  

(421~: e = $(I + r )  + q, (193) 

e =$(I + r )  -4, 

1 (41421, (6162): e = --zr, 

ASDW: e = -q2/2(1 + r ) .  

We show in Figure 13(a) the q dependences of the normalized energies of these 
solutions. 
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l + r  

Figure 13. q Dependences of the normalized energies of the RHF, ASDW, and 
exact singlet and triplet ground states in the two electron model (a) and those of 
the ratio of the CI coefficients C,/C, in the exact and PASDW ground states. The 
triplet to singlet ratio of the components of the ASDW state is also shown in (b) 

(---). r = 0.2 in these graphs. 

As seen in Figure 13(a), (c$1)2 and (c$2)2 cross at 4 = 0. They are  the singlet 
RHF ground states in the regions 4 > 0 and 4 < 0, respectively. The existence 
condition for the ASDW solution (189) is 

- l S - a / ( b + c ) S l .  ( 194) 

The right-hand inequality of Eq. (194) is identical with the triplet instability 
condition (185) for (q51)2 and the left-hand one with the triplet instability 
condition for (42)2. The ASDW solution connects with (c$1)2 at 4 = 1 + r and with 
(c#Q)~ at 4 = -(1+ r). It gives a potential connecting smoothly the potentials of 
the two RHF solutions. The series ( ~ I ) ~ - A S D W - ( & ) ~  is the singlet HF ground 
state of the system. 

When the condition 

a 2 - b 2 - b c S 0  (195) 
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is satisfied, the triplet RHF solution becomes lower in energy than the ASDW 

solution as seen from Eq. (191). As shown in Fukutome (1973b), condition (195) 
is nothing but the A-M instability condition for the ASDW solution. The two 
solutions, however, do not interconnect but cross at the A-M instability threshold 
q = f ( r2  + r)’”. Therefore, the A - M  instability is a crossing instability represent- 
ing the crossing of the triplet RHF solution with the ASDW solution. Condition 
(195) is also the A-M stability condition for the triplet RHF solution. If it is 
not satisfied, the triplet RHF solution is A-M unstable but if it is satisfied, then 
the triplet solution becomes A - M  stable. There is no other triplet type solution 
and the triplet RHF solution is the triplet HF ground state of the system. 

The exact singlet ground state of the model is given by 

l q o )  = c111414111- c211428211, 

Eo = E + b - ( ~ u ~ + c ~ ) ’ / ~ ,  

c,/c, =[(4a2+C2)1/2+2u]/c = (1+4q2)”2-q, (196) 

eo = ~ ( 1 +  1 r)-($+q2)’ j2 .  

The exact triplet ground state with spin magnetic quantum number *l coincides 
with the triplet RHF solution. The Slater determinant of the ASDW solution with 
e = z is expanded into RHF configuration as 

(QASDW) = 1 z(f +COS A)(I4i$iII-&1 -cOS A)II4z&II 

+t sin A (11~~1111- 11~18211>. 
(197) 

The first row of Eq. (197) is singlet but the second row is triplet. We show in 
Figure 13(b) the q dependences of the ratios Cz/Cl in the exact singlet ground 
state and (1 -cos A)/(l +cos A )  in the singlet projected ASDW solution, PASDW. 

We see in Figure 13(b) that the ‘PASDW wave function is a good approximation 
to the exact one in the region of small q. It coincides with the exact wave functions 
at q = 0 and q = f ( r 2  + r ) ’ /* .  The ‘PASDW wave function connects with the RHF 

wave function with a discontinuity in the first order derivative as seen in Figure 
13(b). This discontinuity at the instability threshold reflects the second order 
phase transition like character of interconnecting HF instabilities. 

We also show in Figure 13(b) the q dependence of the relative weight of the 
triplet component in the ASDW wave function. It becomes large at small q and 
is equal to 1 at q = 0. The error of the ASDW energy due to the contamination 
of the triplet state becomes maximal at q = 0. The error E H  -Eo = -b at 
q = 0 is solely due to the contamination of the triplet component since the singlet 
component at q = 0 is identical with \q0). Therefore, the error in the ASDW 
energy may become appreciable if b is not small. Such a situation is met in CHZ 
as we shall see in the next section. However, the error of this kind can be 
eliminated by the projection to tbe singlet state. We note that the ASDW and 
triplet solutions have the correct ordering in energy irrespective of the value of 
r because they cross at the same point as the crossing point of the exact singlet 
and triplet ground states. 

1 

ASDW 
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Figure 14. HF and CI potentials in the dissociation of Hz, 

iii. HF Ground State of Hydrogen Molecule, Ethylene, and Carbenes. We 

(a). Hydrogen molecule: In H2, the RHF orbitals q51 and 4 2  are given by Eq. 
apply the result of the preceding section to H2, CzH4, and CH2. 

(181). Hence, the parameters (190) are 

c = i((XlX1 IXlXd -(x1x1 l X Z X 2 ) ) .  

Since a I 0, only region q 2 0 is realized. We show in Figure 14 the adiabatic 
potentials against the interatomic distance R of the RHF ground state (41)~, the 
ASDW ground state, and the full CI singlet and triplet ground states. The RHF 
ground state potential does not converge to the two dissociated hydrogen atoms 
in the limit of R = 00. This well known discrepancy of the RHF potential in the 
dissociation behavior is rescued by the ASDW solution appearing from the triplet 
instability of the RHF ground state. The ASDW potential converges to the correct 
dissociation limit of two hydrogen atoms. Since a + O  and & + O  in the limit 
R + 00, the ASDW energy is exact at R = 00. Thus, the HFgrOUnd state ( 4 1 ) 2 - ~ ~ ~ ~  
gives a potential with correct dissociation behavior. 

For e = z ,  the ASDW orbitals (189) are of the DODS type and their spatial 
orbitals are in the corresponding orbital form 

The ASDW orbitals (199) have the structure as depicted in Figure 15. In the 
ASDW state, the up spin electron localizes toward an atom and the down spin 
one toward another atom. The localization of two electrons becomes complete 
in the dissociation limit because A + f ~  or -$T at R +00 (there are two 
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Figure 15.  ASDW orbitals in H1. 

possibilities in the sign of sin ( $ A )  for a given cos A so that the ASDW solution is 
doubly degenerated for a given e), so that 

& + X 1  orx2, 

Thus, the ASDW wave function in the dissociation limit consists of the correct 
localized atomic states though it involves the component of incorrect total spin. 
It represents the diradical state He +Ha. 

( 6 ) .  Internal rotation ofethylene: In the case of twisted C2H4 too, the RHF 
orbitals and the parameters a, 6,  and c are given in the forms of Eqs. (181) and 
(198), respectively. The parameter a, however, can take both positive and 
negative values, a > 0 for 0 5 8 < $T and a < 0 for $T < 8 5 n-. At 8 = +T, a = 0 
but b # 0. We show in Figure 16 the adiabatic potentials against 8 of HF solutions 
and exact eigenstates of two electron-two orbital model. The potentials of all 
the HF solutions and exact eigenstates not described in the preceding section are 
drawn also in Figure 16. We see in Figure 16 that the potential of the HF ground 

Figure 16. HF (-) and CI (---) potentials in the internal rotation of C2H4. 
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state ( # J ~ ) ~ - A S D W - ( ~ ~ ~ ) ~  is a good approximation to the potential of the exact 
singlet ground state. The parameter b is the interatomic exchange integral 
between the two 2p lobes x1 and x2 and its value is small in the whole range 
of 8, so that the error in the ASDW energy due to the contamination of the triplet 
component is small. The ASDW orbitals have the form of Eq. (199) and an 
electron localizes toward a carbon atom and another one toward another carbon 
atom in the manner similar to the ASDW state in H2. The localization of the two 
electrons becomes complete at 0 = 3~ and the ASDW orbitals and wave functions 
become of the form of Eq. (200). The ASDW state therefore represents the 
diradical state 5C-k. 

The model has a ccw and an ASCW solutions which are degenerate in energy 
and connect smoothly the potentials of (q51)2 and ( 9 ~ ) ~  as shown in Figure 16. 
However, their energy is higher than the energy of the ASDW solution and the 
potential of the series (C$~)~-CCW, ~ s c w - ( q 5 2 ) ~  does not cross with the triplet 
state at the correct position. Hence, they are considered to be unphysical 
solutions. There is also a CDW solution 

It is a closed shell solution breaking the spatial symmetry. It connects smoothly 
(q52)2 and (q51)2 from the upper side as seen in Figure 16. The potential of the 
series ( ~ ~ Z ) ~ - C D W - ( C $ ~ ) ~  is a good approximation to the potential of the singlet 
excited state Z. The CDW orbitals are also localized toward a carbon atom. The 
localization of the CDW orbitals becomes complete at 6 = $T ; Q* =XI?* or ~ 2 7 7 ~  

(the CDW solution is doubly degenerated with sin (3A))'s of different signs). Hence, 
the CDW solution at 8 = $T represents the zwitter ionic state =C--C'= or 
=C'-C-=. The singly excited configurations (q51&) and ( 4 2 ~ 1 )  also are the 
HF solutions of the model. They are the equal weighted superpositions of the 
triplet state T and the singly excited singlet state V. Their potential is just at 
the middle of the potentials of the T and V states. The error of the potential 
is constantly large, so that they cannot be regarded as a reasonable approximation 
to either of the T or V state. 

The ASDW potential crosses with the triplet state potential and the lowest 
energy HF state at the orthogonal conformation is triplet in agreement with the 
ordering of the exact singlet and triplet ground state. This ordering of the two 
states in the two electron model, however, is reversed in the full valence electron 
system. The ASDW state as well as the exact singlet ground state becomes lower 
than the triplet ground state. The reason for this reversal will be discussed in 
Section 3.B.i. 

( c ) .  Curbenes: In the case of methylene, the two electron model does not 
provide potentials that can be compared with the real bending potentials because 
the relation of the hybridization angle a to the bending angle 8 is unknown and 
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the bonding v electrons also are contributing to the potentials. However, the 
essential feature of the state of two nonbonding electrons can be correctly 
described by the two electron model. The RHF orbitals of nonbonding electrons 
in the two electron model are given by Eq. (182). The ASDW orbitals [Eq. (199)] 
have the structure as depicted in Figure 17. As a result of the mixing of the v 

Figure 17. Structure of the nonbonding ASDW orbitals on the carbon atom of CH2. 

and T type RHF orbitals, the ASDW orbitals 4: are the hybridized 2 p  lobes 
whose directions are tilted against the molecular plane by angles *p ,  tan p = 
[tan (&i)]/cos a. The two nonbonding electrons enter into the different lobes 
tilted toward different sides of the molecular plane. The ASDW corresponding 
orbitals 4; become pure 2p lobes with the tilting angles *$T, i.e., they are 
orthogonal, at 8 = T. Hence, the ASDW state in CH2 represents the one center 
diradical >C: in contrast to the ASDW states in H2 and C2H4 representing two 
center diradicals. 

The parameters (190) at 8 = T become 

Since b is an intraatomic exchange integral, its value is not small and the 
projection to the singlet component of the ASDW state is necessary for getting 
a good potential. 

A full valence electron M I N D O / ~  UHF calculation was carried out by Takabe 
et al. (1976) for the carbenes CH2, CHF, and CF2. We show in Figure 18 the 
full valence electron UHF bending potentials. The singlet projected ASDW poten- 
tial is also shown. The RHF ground state of CH2 and CHF is always triplet 
unstable for 8 > 80" and the singlet HF ground state at the equilibrium geometry 
is the ASDW type. On the other hand, the RHF ground state in CF2 is stable in 
the region 8 < 135" and the equilibrium geometry belongs to the region of stable 
RHF ground state. The relative position of the singlet and triplet HF ground state 
potentials changes sensitively upon substitution by fluorine. The triplet potential 
of CH2 lies much below the projected ASDW potential and the ground state of 
CH2 is triplet. The projected ASDW and triplet potentials in CHF have the 
equilibrium geometries with nearly same energies, indicating that CHF may be 
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present in both singlet and triplet states. The triplet potential of CF2 is much 
higher than the singlet potential and the ground state of CF2 is singlet. These 
results are in agreement with the results of an ab initio SCF CI calculation by 
Harrison (197 1). 

90 120 150 I 80° 
9 

( a )  

90 120 150 180° 

0 

(b) 

Figure 18. HF bending potentials of CHI (a), CHF (b), and CF2 (c). 
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Figure 18. (Continued from previous page.) 

iv. UHF Theoretical Classification of Singlet Ground State Reaction Mech- 
anisms. The results in the preceding three sections indicate that the ASDW ground 
state appearing from a triplet instability of the singlet RHF ground state represents 
a state of diradical character. A singlet diradical, in the intuitive chemical picture, 
has two electrons of opposite spins localized to different regions of a molecule. 
An ASDW wave function has different orbitals for electrons with opposite spins. 
The DODS character of ASDW orbitals provides a natural orbital representation 
for diradicals. 

Hayes and Siu (197 1) and Salem and Rowland (1972) characterized a singlet 
diradical, from the CI point of view, as a molecule having the ground state wave 
function with a heavy mixing of a pairwise doubly excited RHF configuration. 
According to their characterization, a two electron system is a singlet diradical 
if the ratio C2/C1 of the CI coefficients in the singlet ground state wave function 
(196) is large. Our characterization of a singlet diradical as a molecule having 
the HF ground state of the ASDW type is consistent with theirs. As shown in 
Figure 13(b), the ratio C2/C1 becomes large in the region of the ASDW ground 
state and the singlet projected ASDW wave function correctly approximates the 
CI wave function with growing C2/C1. In the region of the ASDW ground state, 
a correlation effect becomes of essential importance. The RHF ground state 
without the correlation effect leads to qualitatively incorrect results in the region 
as seen in the incorrect dissociation behavior in H2 and the failure to give a 
smooth potential for the internal rotation of ethylene. A triplet instability of the 
RHF ground state signals the essential importance of a correlation effect. The 
ASDW ground state appearing from the instability automatically incorporates the 
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essential correlation as we have seen in the two electron model and shall 
demonstrate for more complicated systems. 

We can use a triplet instability of the RHF ground state as the UHF theoretical 
criterion for the onset of a diradical character in the singlet ground state. The 
result in Section 3.A.i can be generalized as a sufficient condition for a triplet 
instability to occur. A triplet instability of the RHF ground state always takes 
place in a reactiop path with crossing of the Hiickel type occupied and unoccupied 
orbitals, i.e., in a symmetry forbidden reaction path in the sense of Woodward 
and Hoffmann (1969). 

A diradical can be represented by an ASDW wave function. However, ASDW 
wave functions may also represent tetra, hexa, etc., radicals as we shall show 
later. Yamaguchi (1975a) proposed a quantitative measure for the radicalness 
of an ASDW state. ASDW orbitals can be brought into the corresponding orbital 
representation [Eq. (103)l. Corresponding orbitals 4: are in general different 
from the HF orbitals which are eigenstates of the Fock operator and orbital 
energies cannot be associated with them. However, the ASDW natural orbitals 
4A and &A constituting them are not only the natural orbitals of the ASDW wave 
function, but also coincide with the natural orbitals of the projected ASDW wave 
function as proved by Harriman (1964). Hence, the number density matrices of 
the unprojected and projected ASDW wave functions are diagonalized by the 
ASDW natural orbitals so that they are the orbitals most suitable to see the 
electron distributions in these wave functions. Each corresponding orbital pair 
(42, # I )  reduces to a closed shell in the RHF ground state. The parameter dA 
defined by 

(4; If$i)=COS 2K,4= 1 -dA, (203) 

represents the extent of the splitting of the two corresponding orbitals; dA = 0 
for the closed shell 4; = 41 and dA = 1 for the complete diradical with two 
electrons entering into disjoint orbitals 4:, (42 I4I) = 0. Therefore, the two 
electrons in a corresponding orbital pair can be regarded as a diradical if dA has 
an appreciable value. If da = O  except for one, two, or three corresponding 
orbital pairs, then the ASDW state can be regarded as a diradical, tetraradical, 
or hexaradical. 

In a system with a crossing of occupied and unoccupied orbitals, a triplet 
instability always occurs. The triplet instability is suppressed by introduction of 
heteropolarity into the system. Introduction of a heteropolarity in general 
destroys the orbital crossing and a finite energy gap is produced. The finite 
energy gap is unfavorable to the triplet instability as discussed in Section 3.A.i 
and suppresses the occurrence of it. An analysis of the HF solutions in the 
heteropolar two electron-two center model molecule confirmed the suppressing 
effect of heteropolarity to the triplet instability of the RHF ground state, Fukutome 
(1973a). The ASDW ground state disappears when the heteropolarity exceeds a 
certain limit and the nature of the HF ground state changes at the limit from 
diradical to zwitter ionic. The effect of fluorine substituent in CH2 discussed in 
the preceding section provides an example of the triplet instability suppressing 
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effect of heteropolarity in real molecules. Single substitution is not sufficient to 
suppress completely the triplet instability in CHF, but CF2 with double substitu- 
tion has the stable RHF ground state at the equilibrium conformation. 

Yamaguchi et al. (1973a) proposed a UHF theoretical classification of singlet 
ground state reaction mechanisms by means of the triplet instability and orbital 
phase continuity criteria. Radical and nonradical mechanisms can be discrimi- 
nated by occurrence and nonoccurrence of a triplet instability as discussed above. 
In concerted reactions of Woodward and Hoffmann (1969), symmetries of 
occupied RHF orbitals are conserved. Conservation of orbital symmetries implies 
conservation of signs of MO coefficients of occupied RHF orbitals. The latter 
criterion, the orbital phase continuity, is wider than the former because it can 
be applied to systems without symmetry. The orbital phase continuity criterion 
was utilized by Goddard I11 (1972) to obtain selection rules for reaction mechan- 
isms from the generalized valence bond (GVB) picture. Yamaguchi et al. (1973a) 
discriminate symmetry allowed (concerted) and symmetry forbidden (nonconcer- 
ted) reactions by conservation and nonconservation of the RHF orbital phases. 
Thus, singlet ground state reactions are classified into the four mechanisms, the 
symmetry allowed nonradical (AN), the symmetry forbidden nonradical (FN), the 
symmetry allowed radical (AR), and the symmetry forbidden radical (FR) mechan- 
isms. We note that the terms allowed and forbidden do not literally represent 
the allowedness and forbiddenness of the reaction mechanisms except for the 
AN case which is equivalent to Woodward and Hoffmann’s concerted mechanism 
but represent the orbital correlation and the phase situations to characterize the 
mechanisms. 

We show in Figure 19 the orbital correlation and phase situations for the 
four mechanisms to be realized. In the AN and FN cases, no crossing of occupied 

v Y , /‘ 
\ ,  

Large <,’ ,’ ‘\ 
4 OP - 

A N  FN 

Small xx \ ,  

gap 

A R  FR 

Figure 19. Orbital correlation situations for realization of the four reaction mechan- 
isms. Dashed lines represent that the system is derived from a prototype-system 

with orbital crossing by introduction of a heteropolarity. 

and unoccupied orbitals is present and the orbital energy gap is large enough 
for no triplet instability to occur. The orbital phases are conserved in the AN 
case but not in the FN case. In FN reactions, there is a point on the reaction path 
where a MO coefficient of an occupied RHF orbital vanishes and changes sign 
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beyond it. Such a point is called the transition point. In the vicinity of the 
transition point, the two electrons in the orbital are repelled from the AO with 
vanishing MO coefficient so that the system has a zwitter ionic character. An FN 
reaction usually has a corresponding prototype homopolar system with orbital 
crossing from which it is derived by introduction of heteroatoms and substituents. 
If the heteropolarity is strong enough, then a large orbital energy gap is produced 
but the orbital phases remain nonconserved. 

In the AR and FR cases, the orbital energy gap becomes small enough to 
produce a triplet instability. The orbital phases are conserved in the AR case but 
not in the FR case. A FR reaction has an orbital crossing or is derived from a 
prototype system with orbital crossing by introduction of heteropolarity but the 
orbital energy gap produced by the heteropolarity is not so large as deprives 
the triplet instability. In order for the FR and AR mechanisms to be realized, the 
orbital energy gap at the intitial state must be small. As shown in Figure 20, in 

FR large gap FR small gap 

(a) (b)  (b’) 

AR sml l  gap 

(C) ( C ’ )  

Figure 20. HF state correlation diagrams for an FR path with large initial gap (a), 
for an FR path with small initial gap, and nonradical (b) or radical (b’) initial state 
and for an AR path with small initial gap and nonradical (c)  or radical (c‘) initial state. 

a FR reaction with orbital crossing, the initial and final states have different RHF 

ground states, RHF) and R H F ~ .  The two RHF states cross in the reaction path. If 
the orbital energy gap at the initial state is large, the energy gap between the 
two RHF states is also large and their crossing point usually has much higher 
energy than the initial state so that the ASDW ground state connecting the two 
RHF state is also of high energy as depicted in Figure 20(a) and the reaction is 
forbidden. This argument is the same as for Longuet-Higgins and Abrahamson 
(1965) for the forbiddenness of symmetry nonconserving reaction paths. How- 
ever, if the orbital energy gap at the initial state is small, then the energy gap 
of the two RHF state is small and their crossing point and consequently the ASDW 

state connecting them are of low energy as depicted in Figure 20(b) so that the 
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reaction becomes allowed. The initial state of such a realizable FR reaction may 
be triplet stable [Fig. 20(b)] or unstable [Fig. 20(b’)]. In the latter case, the initial 
state is already a diradical. The above consideration shows that FR reaction paths 
may be readily realizable in diradicals. 

The potential of an AR reaction looks like Figures 20(c) and 20(c’). If the 
orbital energy gap at the initial state is small, the potential barrier is low and 
the reaction is allowed. If the initial gap is large, then the potential may be high 
and the reaction may be forbidden since the triplet instability in the reaction 
requires a small energy gap in an intermediate stage which requires a shift of 
the highest occupied orbital (HOMO) to high energy side or of the lowest 
unoccupied orbital (LUMO) to low energy side. We note that the potentials in 
FR and AR reactions are lowered by the correlation effect to be incorporated 
into the ASDW ground state. In a FR reaction, the two diradical electrons attain 
complete localizations at the point of orbital crossing while their localizations 
remain always incomplete in an AR reaction without orbital crossing. Therefore, 
the FR and AR mechanisms can be characterized as the complete and incomplete 
diradical mechanisms, respectively. An extensive discussion was made by 
Yamaguchi (1978) for the selection rules of chemical reactions derived from the 
UHF theory and the other models. 

Conversion of reaction mechanism from diradical to zwitter ionic by asym- 
metric substitutions has been observed in many reaction systems. Yamaguchi et 
al. (1973b) analyzed the cycloaddition reactions of singlet oxygen to olefins by 
the UHF criteria: 

They showed that the reaction has a triplet instability domain for X ,  Y = H but 
none for X = CH3 and Y = NH2, so that the latter case is zwitter ionic. Yamaguchi 
and Fueno (1973) also examined the ring opening reactions of the triangular 
molecules: 

X 
/ \  

CH’ CH2 
/ \  / \  

H2C -CH, x-Y CHR - CHR 

X ,  Y = CH2, CRR’ or 0: X = CH-, NR, 0, or S. 

They showed that a triplet instability occurs in the systems with weak asymmetry 
and the reactions are diradical but it disappears in the systems with strong 
asymmetry and the reactions become ionic. 

We note that introduction of heteropolarity may convert an unrealizable FR 
reaction to realizable one. Consider a reactant and a reagent with large orbital 
energy gaps. If their HOMO’S and LUMO’S energies are close, then FR reaction 
between them is impossible. However, when heteroatoms or substituents are 
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introduced into, say, reagent, the HOMO-LUMO gap between the reactant and 
reagent may become small sufficient enough to yield an FR reaction between 
them. A typical example of such reactions is charge transfer reactions. They 
have both ionic and diradical characters. Yamaguchi (1975b) and Takabe and 
Yamaguchi (1976) showed that the UHF criteria are a good means to discriminate 
the ionic and charge transfer (ionic diradical) mechanisms. 

We have shown in Section 3.A.i that the Coulombic attraction between 
excited electron and hole and the exchange interaction of excited electron with 
electrons remaining in occupied orbitals as well as small orbital energy gap are 
the factors to control a triplet instability. If the particle-hole attraction and the 
exchange interaction are small, then triplet instability may not occur even for 
small but finite orbital energy gap. Such a situation is realized if the differential 
overlap between the relevant unoccupied and occupied orbitals is small. 
Takahashi and Fukutome (unpublished) showed that such a mechanism is operat- 
ing in the reaction to generate benzyne. The RHF HOMO and LUMO of benzyne 
are symmetric and antisymmetric orbitals composed of the u AO’S without the 
partner hydrogen atom depicted in Figure 21. Since the lobes of the (+ AO’S are 

@+ 0- 

Figure 21. ASDW orbitals of benzyne. 

not parallel, their overlap and consequently the HOMO-LUMO gap are small so 
that the RHF ground state of benzyne is triplet unstable. The HF ground state 
of benzyne is an ASDW with the structure similar to those of H2 and C2H4. 
Benzyne is produced most effectively by the ionic abstraction of LiH from Li 
substituted benzene 

UHF calculation of this system showed that triplet instability does not occur even 
for the distance of LiH farther than 5 A indicating that the reaction can proceed 
ionically. Triplet instability occurs in the abstractions of Hz and HF as soon as 
the abstractions begin. The large delay of the triplet instability in the LiH 
abstraction is due to the fact that the LUMO’S of benzyne and LiH have very 
close energies so that the LUMO of the total system is delocalized over both 
benzyne and LiH while the HOMO is localized on benzyne. This makes the 
particle-hole attraction and exchange interaction in the system small and leads 
to suppression of triplet instability. Thus, the strong LUMO-LUMO interaction 
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controls the ionic character of the reaction. It should be noted that triplet 
instability and the correlated ground state of a diradical are controlled not only 
by occupied RHF orbitals but also by unoccupied ones, so that events in un- 
occupied orbitals may effect them. We shall discuss in the next section, another 
example of chemical reactions the nature of whose ground state is controlled 
by an event in unoccupied RHF orbitals. 

B. Systems with ASDW, TSDW, a n d  TSW Ground  States 

We consider here examples of chemical reaction systems whose HF ground 
state change the nature between RHF, ASDW, TSDW, and TSW types via instabilities 
with changes of nuclear conformation. The HF ground state of different natures 
in a reaction system are called HF phases. The characteristics of the correlation 
effects in UHF phases can be visualized by “antiferromagnetic” ordered spin 
structures with different modulations of the spin density vectors for different 
phases. Instabilities of the HF ground state provide an HF phase map showing 
the domains where different HF phases arise. The HF phase map and the spin 
structure representation of UHF phases provide a clear understanding for the 
electronic processes involved in a complicated correlated wave function under- 
going large changes with changes of nuclear conformation. 

i. Hs System. As the first example of a system with plentiful instabilities in 
the HF ground state, we consider here the system consisting of four hydrogen 
atoms according to Fukutome et al. (1975). 

( a ) .  RHFgroUnd states a n d  their 3ST- instabilities: We consider the H4 system 
in the conformations with D2 symmetry as depicted in Figure 22(a). The 

Figure 22. Dz conformation of the H4 system (a) and the conformations of higher 
symmetries contained in the geometry (b). RHF ground states cross on the heavy 

lines in (b). 

intramolecular distances are kept constant and a D2 conformation is specified 
by the intermolecular distance R and the twisting angle 8. The conformations 
contain three DZhr D4h, and DZd conformations and a Td one as shown in Figure 
22(b). The RHF orbitals in the minimal basis approximation are 
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Figure 23. Orbital correlation diagrams in the H,, system against R on DZh confor- 
mations (a) and against 13 on a path in the region I (b), traversing regions 11, I, and 

111 (c) or regions I1 and I11 (d). 

We show in Figure 23 the Hiickel type correlation diagrams for the RHF orbitals. 
As seen in Figure 23, the orbitals 4 2  and 43 cross on the Di'd) and D?? 
conformations, d 2  and 44 on D$? and Di?, and 43 and 44 on D:'B and Dk3h). 
The three orbitals 42, 43, and 44 cross simultaneously on the T d  conformation. 

Because of these orbital crossings, there are three different RHF ground states 
in the system, R H F l =  RHF;! = ( 4 1 ) 2 ( 4 3 ) 2 ,  and RHF3 = (41)~(44)~. They 
are the RHF ground state in the regions I, 11, and I11 and cross on the DZd and 
D4h conformations drawn by the heavy lines in Figure 22(b). The RHF ground 
states become triplet unstable in the regions near the DZd lines because of the 
orbital crossings in them. The transitions of each RHF ground state are divided 
into the two groups with different spatial symmetries as shown in Table VII. 

TABLE VII. Symmetry of transitions to cause triplet 
instabilities in the H4 system. 

(41)2(62)2 T1 1 + 4 , 2 + 3  B3 
7-2 1 + 3 , 2 + 4  Bz 

(42)'(43)' Ti 1 + 4 , 3 + 2  8 3  

T3 1 + 2 , 3 + 4  B1 

(42)2(4*)2 T ;  1 + 3 , 4 + 2  Bz 
T ;  1 + 2 , 4 + 3  Bi 
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Because of the presence of the two groups of transitions with different spatial 
symmetries, the triplet instability matrix of each RHF ground state is decomposed 
into the two matrices which are irreducible to the D2 symmetry group. Therefore, 
each RHF ground state may have two kinds of triplet instability due to transitions 
with different spatial symmetries. We define in Table VII the names of possible 
triplet instabilities. The primed ones have the same symmetry as the correspond- 
ing unprimed ones. 

We show in Figure 24 the triplet instability boundaries of the RHF ground 
states. R m 1 ,  R H F ~ ,  and R H F ~  are stable in regions (l), (2), and (3) of Figure 24, 
respectively, but become triplet unstable in the other regions. We note that both 
the two kinds of the triplet instability occur in every RHF ground state and their 
instability boundaries cross on the point A, B, or C as seen in Figure 24; namely, 
doubly degenerate triplet instabilities occur on the points A, B, and C. 

Figure 24. Triplet instability boundaries in the H4 systems. The type of the triplet 
instabilities leading to the ASDW ground state is indicated beside the boundaries. 
The instability leading to high energy ASDW solutions are drawn by dashed lines. 
Different ASDW ground states cross on the lines connecting the degenerate triplet 

instability thresholds A, B, and C to Td. R I 2  is fixed at 2.5 a.u. 

( 6 ) .  ASDW ground states : From the triplet instability boundaries, ASDW 

ground states appear. The triplet instabilities with the same symmetry lead to 
the same ASDW ground state, so that three different ASDW ground states ASDW1, 

ASDW2, and ASDW3 appear from the Tl and T i ,  T2 and T i ,  and T3 and T[, 
instabilities, respectively. The ASDW ground states have the orbitals 

ASDWI: c p f  =[41 COS A1/2+(e u)44 sin h1/2]7*, 

cp: = [42 cos h2/2+ (e * u)& sin h2/2]7+; 
(205) 

ASDW;!: cpt, = [41 COS h 1 / 2 +  (e' * U)43 Sin A1/2]7*, 
(206) & = [42 cos h2/2+ (e' * u)& sin A2/237+; 
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ASDW3: cp$ =[#I COS h1/2+(e”. U)#2Sin h1/2]~*, 
(207) 

cp$ = [#3 cos h2/2 + (err - u)#q sin A2/2]~+. 

ASDW1, ASDW~, and A S D W ~  are the ASDW ground states in regions (4), (5 ) ,  and 
(6) respectively, of Figure 24. In these ASDW orbitals, occupied and unoccupied 
RHF orbitals are mixed according to the transitions to cause the relevant triplet 
instability. For e, e’, and e’’ = z, the orbital mixings in up and down spin ASDW 
orbitals are made with different phases, so that they are localized toward two 
different atoms. We show in Figure 25 the structures of the ASDW orbitals. As 

Figure 25. Structures of ASDW~ (a), A S D W ~  (b), and A S D W ~  (c) orbitals in the H4 
system. The spin structures of the ASDW states are also shown. 

seen in Figure 25, the three ASDW solutions have different orbital localizations. 
The Farameter hz in ASDW~ becomes *$T on the D!; and D!i! conformations, 
so that the orbitals Q;, etc., with different spins, become completely localized 
on two different atoms. Because of the spin polarized localizations of the ASDW 

orbitals, the ASDW ground states have the axial spin structures as depicted in 
Figure 25. Thus, the three ASDW solutions are characterized by different axial 
spin structures. 

We show in Figures 26(a), 26(b), and 26(c) the adiabatic potentials of the 
RHF and ASDW solutions on a path traversing a D!i? conformation, on D$! 
conformations, and on a path traversing a Diz conformation, respectively. We 
see in Figures 26(a) and 26(c) that the potential of AsDwl connects smoothly 

ASDW3 RHF2 and RHF3. On the other hand, ASDWl and ASDW2 cross on D:’B 
conformations as seen in Figure 26(c). Similarly, A S D W ~  and ASDW3 cross on 

with those Of RHFl and RHF2. Similarly, ASDW2 Connects RHFl and RHF3 and 
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Figure 26.  HFpOtentiak in the H4 system on the D$y path with Rlz+ R I 3  = 5.0 a.u. 
(a), on square (Dyi )  conformations (b), and on the path with R = 2.0 a.u. and 

R I 2 = 2 . S  a.u. (c). 
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Figure 261. (Continued from previous page.) 

0:" conformations and ASDW3 and ASDWl on Dk2d). The ASDW ground states 
become A -A4 unstable in regions near the DZd conformations and TSDW solutions 
smoothly connecting them appear in the regions as we shall show below. 

We note that at the D$,! conformation the singlet RHF ground state RHFl is 
higher in energy than the triplet HF ground state, while the singlet UHF ground 
state A s D w l  is lower than it as seen in Figures 26(a) and 26(b). The stabilization 
of ASDWl to reverse the ordering of the singlet and triplet HF ground states is 
due to the contribution from the deeper transition 1 -* 4 which interferes with 
the main transition 2 -* 3. If the contribution from transition 1 + 4 is neglected, 
A S D w l  remains a little higher than the triplet HF ground state though it is 
stabilized compared to RHFl. The ordering of the UHF ground states is in 
agreement with the result of ab initio calculations by Wilson Jr. and Goddard 
I11 (1969) and Rubinstein and Shavitt (1969). A similar situation also occurs in 
the internal rotation of ethylene as we have mentioned in Section 3.A.iii. In this 
case, the stabilization of the singlet ground state compared to the triplet is 
brought about by the deeper s-u* transitions. Thus, the UHF theory is able to 
automatically incorporate the effect of deep transition that may affect the ordering 
of the singlet and triplet ground states. 

(c). TSDW and TSW ground states: There are three TSDW solutions, each of 
which smoothly connects two of the ASDW solutions. The presence of the TSDW 
ground states is indicated by the presence of the three doubly degenerate triplet 
instability thresholds A, B, and C in Figure 24 as we have discussed in Section 
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2.C.ii (Fig. 6). A TSDW solution has a wedgelike existence domain with the vertex 
at a degenerate instability threshold and smoothly connects the two ASDW 
solutions appearing from the two triplet instability boundaries which cross at 
the degenerate instability threshold as we have indicated in Figure 8. We show 
in Figure 27 the existence domains of the three TSDW ground states. 

z 2 

Figure 27. Domains of the TSDW and TSW ground state in the H4 system. Black 
dots represent degenerate instability thresholds. The mode of spin modulation in 
each UHF phase is also shown. Dashed lines represent some instability boundaries 

leading to high energy UHF solutions. 

The occurrence of the degenerate triplet instabilities on the Dzd conforma- 
tions A, B, and C is due to the crossing of unoccupied orbitals on Dzd conforma- 
tions as shown in the orbital correlation diagram of Figure 23(b). The Tl and 
7'2 instabilities of RHFl involve the two transitions 2 + 3, 1 + 4 and 2 + 4, 1 + 3, 
respectively, as shown in Table VII. Consequently, ASDWl and A S D W ~  appearing 
from the T1 and Tz instabilities incorporate only the contributions of those two 
transitions. In the D2 conformations not close to D$2, the lowest transition 2 -+ 3 
or 2 -* 4 is the most important, so that AsDwl  or A S D W ~  can correctly approximate 
the ground state. The two unoccupied orbitals q53 and q54 cross on D f j  conforma- 
tions, so that both transitions 2 + 3 and 2 -+ 4 become equally important in the 
D2 conformations close to D:?. The energy gaps of q53 and q54 to the HOMO q5z 
become small in the conformations close to D:'B and Td, so that the ground state 
begins to have the configuration mixings due to the transitions 2 -+ 3 and 2 -+ 4 
with equally large weights. The ASDW wave function with only the configuration 
mixing due to either one of the two transitions, therefore, becomes unable to 
correctly approximate the ground state. The TSDW ground state, on the other 
hand, involves the contributions from both the two transitions and is able to 
correctly approximate the ground state. This example shows that a crossing of 
unoccupied orbitals may contribute to a change of the nature of the correlated 
ground state if the orbital energy gap at the crossing point is small. 
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The three orbitals 42, 43, and 44 become nearly degenerate in the conforma- 
tions close to Td. This brings about a further complication in the correlation of 
the ground state near Td. As a reflection of this situation, a TSW state appears 
in a region near Td depicted in Figure 27 which connects smoothly the three 
TSDW solutions. 

The TSW solution has the orbitals in the form 

1 b s b i e  = SAB, A, B = 1,2,  
i = l  

where the coefficients biA are complex. The TSW solution reduces to the three 
TSDW solutions when biA's satisfy the conditions 

TSDWt : ~ Z A  = imaginary; b lA ,  b3A, b4A = real, 

TSDW2: b 3 ~  = imaginary; blA, b2.4, b 4 ~  = real, (209) 
T S D W ~ :  b4A =imaginary; btA, b 2 ~ ,  b 3 ~  = real. 

TSDW1, TSDW2, and TSDW3 are MZ, My, and M, invariant, respectively. TSDWl 

reduces to ASDWl with e = x and ASDW2 with e = y in the limits 

(210) 

Similarly, T S D W ~  can reduce to A s D w l  and A S D W ~  and T S D W ~  to A S D W ~  and 

ASDWi:  b21, b31, biz,  b42=0, 
621, b41, b12, b32 = 0. 1 ASDWz: 

TSDWl 

ASDW3. 

The T s D w l  orbitals on the 0:" conformations become 

The orbitals (211) are quite analogous to the form of the helical SDW of 
Overhauser (1960, 1962). The TSW orbitals at the Td conformation become 

A 1  sin-)vt. A 
2 

(212) 
1 *2.rri/3 cpz' = - ( ( + 3 4 2  + 0 ~ ~ 2 4 3  + ~ ( ~ 1 4 4 ) ~  w = e J3 

The structures of the TSDW and TSW solutions given above were determined by 
the group theory for the structure of UHF wave functions described in Section 
2.B. i~.  Their invariance groups are such that they give the ordered spin structures 
the most symmetrical under the relevant spatial symmetry group. 
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The spin structures of the TSDW and TSW ground states can be calculated 
from their spin density matrices. We show in Figure 28 their spin structures on 
a path traversing a D$? conformation [Fig. 28(a)] and on the path of D?: 
conformations [Fig. 28(b)]. The HF ground state passes through the three UHF 

phases A s D w 1 - T m w l - A s D w 2  and TSDW~-TSW-ASDW~ on the former and latter 
paths, respectively. We also show in Figure 28 how the spin structure of the 
UHF ground state is transformed between those three UHF phases. 

1 4  

ASDW, 

7 

T S D W ,  ASDW, 

TSDW, T S W  

(b )  
A S  Dwj  

Figure 28. Spin structures of the TSDWl and TSW states in the H4 system. (a) 
Illustrates how T S D W ~  interconnects A S D W ~  and A S D W ~  on a path with constant 
R. (b) Illustrates how TSW interconnects TSDWl and A S D W 3  on 0:" conformations. 

Thus, the singlet HF ground state of the H4 system consists of ten phases; 
three RHF, three ASDW, three TSDW, and a TSW. The surprisingly complicated 
structure of the HF ground state is due to the presence of plentiful orbital crossings 
in the system. Though the HF ground state of the system is so much complicated, 
the HF phase map shown in Figures 24 and 27 and the spin structures of the 
UHF phases and the ways of their interconversion between the UHF phases shown 
in Figures 25 and 28 clearly visualize the physical natures of the UHF phases 
and the physical events underlying the transformations of the UHF phases. 

The UHF pictures of diradicals discussed in the preceding paragraph are in 
agreement with the intuitive chemical pictures of diradicals. The present example 
shows that there are chemical reaction systems whose ground states enter into 
states of a multiradical nature with more complicated electronic structures than 
simple diradicals. It also shows that a reaction system may enter successively 
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into multiradical states of different natures which form a hierarchy of radical 
states with more and more complicated electronic structures. 

The ASDW states of the H4 system have the character of diradical in the 
vicinity of the triplet instability boundaries. However, they tend to have the 
character of tetraradicals in the vicinity of the D4h and DZd conformations. The 
splitting of the second ASDW corresponding orbital pair cpz, etc., becomes 
complete on the conformations. The splitting of the first pair cp:, etc., also 
becomes appreciable there. When all the interatomic distances are large, it has 
a large splitting. In the limit of infinite interatomic distances, the ASDW states 
converge to the tetraradical of four isolated hydrogen atoms as seen in the 
potential of Figure 26(b). The TSDW and TSW states represent tetraradicals of 
the other kinds. A two electron system cannot have TSDW and TSW states. For 
realization of them in a singlet state, at least four electrons are necessary. The 
ASDW, TSDW, and TSW tetraradicals are characterized by more and more compli- 
cated electronic correlations which produce spin structures with different modes 
in spin density vector modulation. An A-M or M- instability of an ASDW or 
TSDW ground state signals the growth of a correlation effect, which is not 
incorporated into the state, up to a critical point to alter the nature of spin 
structure. The resultant TSDW or TSW ground state incorporates the correlation 
effect into its wave function. 

(d). Configuration analysis of the ASDW and TSW wave functions: A configur- 
ation analysis for the singlet projected ASDW and TSW wave functions at the D4h 
and Td conformations, respectively, was carried out by Yoshioka et al. (preprint). 
They showed that the singlet projected A s D w l ,  P A s D w l ,  at the Dk? conforma- 
tion has the wave function 

1 

1 1 2~ J3 1 2 A  

v 5 2  6 J 2  2 
P A s D w l  =-cos -@‘G+-sinA(o~~-=sin -BDE, 

where 1, 7 ,  etc., in Slater determinants represent 41, Jl, etc., and A = A 1  
(Az  = f7r/2 at the Dk? conformation). The ‘PASDW~ wave function contains all 
the configurations contained in the full CI wave function. It becomes identical 
with the full CI one if a numerical factor is multiplied to the spin polarization 
configuration asp and is a good approximation to the full CI ground state. 
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The singlet projected TSW, ‘PTSW, at the Td conformation has the wave 
function 

1 1 Z A  i 1 2 A  

d3 2 3d2 343 2 
PTSW= ---0s - @ ~ + - u  sin A@2---=(2u+ 1) sin -@DE,  

where u = 1 and w = exp (&). The ‘PTSW wave function contains all the 
configurations contained in the full CI wave function. It becomes identical with 
the full CI one if the parameter u is not constrained to 1 and is a good 
approximation to the full CI ground state. The two ‘PTSW wave functions with 
w = exp ($Ti) and w = exp ( -$Ti)  are orthogonal and belong to the irreducible 
E representation of the Td group. 

The full CI ground state, which has the E symmetry at the Td conformation, 
has a Jahn-Teller (1937) cusp at Td. On the other hand, the TSW ground state 
does not have it at Td but has a continuous potential there. The failure of the 
TSW solution to give the Jahn-Teller cusp is explained as follows. The singlet 
component ‘PTSW of the TSW solution has the correct E symmetry but it is an 
equal weighted superposition of the real and imaginary components which have 
different symmetries with respect to the DZd symmetry group. These two com- 
ponents show the Jahn-Teller behavior at Td. Because of the equal weighted 
superposition of them, the Jahn-Teller cusp is smoothed out in the TSW solution. 
Therefore, the projection to a spin eigenstate is not sufficient to have the correct 
Jahn-Teller behavior, but the further projection to time reversal eigenstates 
recovers it. 

( e ) .  Remarks on alternant hydrocarbon diradicals : Alternant hydrocarbon 
diradicals have the HF ground state of ASDW type similar to the ASDW ground 
states of the H4 system. Hashimoto and Fukutome (unpublished) studied the 
UHF ground states of the following alternant hydrocarbon diradicals: 

They found that the UHF ground states of these systems are the ASDW’S with 
the alternant spin structures shown in Figure 29. If the numbers of up and down 
spin vectors in the alternant spin structure are the same, then the ASDW ground 
state is singlet; but if they are not equal, then the ASDW ground state is triplet. 
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Singlet Singlet Triplet Trip I et 

Figure 29. Ground state spin structures of alternant hydrocarbon diradicals. 

This very simple rule for the spin multiplicity of the ground state of an alternant 
hydrocarbon diradical is in agreement with experiments and the result of an ab 
initio CI calculation by Borden and Davidson (1977). 

ii. Dimerization of Carbenes. The second example we consider is the 
dimerization reactions of the carbenes CXY, X, Y = H or F, in the planar least 
motion path depicted in Figure 30(a). The system was studied by Takabe and 
Fukutome (1976). The essential features of the system are similar to the H4 
system discussed in the preceding section since the four nonbonding electrons 
and the four nonbonding AO'S depicted in Figure 30(a) are essential in the 
dimerization. The RHF orbitals concerned with the four electrons are 

(+ = ( l / J 5 ) ( S P l  + S P 2 ) ,  

(+* = (l/Jz)(SPl - S P z ) ,  

= ( 1 / J Z ) ( P l  + P 2 ) ,  

T* = ( 1 / J % ( P l  - P d .  
(215) 

Upon the correspondence u+&, u*+& T*+&, and 7r+44, there is a 
straightforward formal analogy between the two systems. 

The orbital correlation diagram for the dimerization process is shown in 
Figure 30(b). A crossing of the occupied and unoccupied orbitals 7r and u* is 
present. Note the presence of a crossing between the unoccupied orbitals (+* 
and T*. This crossing leads to a TSDW ground state as we shall see below. 
Because of the crossing of the orbitals 7r and (+*, the RHF ground states at the 
final state of olefin and at the initial state of two isolated carbenes are different. 
They are RHFl= ( ~ ) ~ ( 7 r ) ~  and RHF2 = respectively. The RHFl and RHF2 

in the present system correspond to the R H F ~  and RHFl in the H4 system, 
respectively. 

RHFl and R H F ~  become triplet unstable owing to the crossing of T and (+*. 
Both RHFl and R H F ~  have two groups of transitions with different spatial sym- 

Y X X 8 Y n  =*  > 
u 

(Corbene)~ 

R b i d  
Olefin 

(a) (b) 

Figure 30. Conformation (a) and orbital correlation diagram (b) of the dimerization 
of carbenes in the least motion path. Essential AO'S are also shown in (a). 
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The triplet instabilities caused by transitions with different spatial symmetries 
lead to different ASDW ground states. We define in Eq. (216) the names of ASDW 

solutions appearing from the triplet instabilities of different symmetries. The T2 
and T; instabilities have the same symmetry leading to the same ASDW ground 
state. We show in Figures 31(a), 31(b), and 31(c) the triplet instability domains 
for RHFl and R H F ~  in the three systems (CH2)2, (CHF)2, and (CF2)2, respectively. 

150' 

120 

90 
1 .o 2.0 3.0 4.0 

1 80' 

150 

120 

90 
1 .o 2.0 3.0 4 .O 

R(H)  

Figure 31. HF phase maps of the dimerizations of CH2 (a), CHF (b), and CFz (c). 
Instability boundaries leading to high energy UHF solutions are shown by dashed 
lines. A S D W ~  and A S D W ~  cross on the dotted line. The TSDW ground state exists 
in a zone surrounding the crossing line. The dot in (c)  is a degenerate triplet 

instability threshold. 
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As we have shown in Section 3.A.iii, the RHF ground state in CH2 and CHF is 
always triplet unstable, so that the R H F ~  in (CHJ2 and (CHF)2 is always triplet 
unstable. On the other hand, the RHF ground state of CF2 has a wide stable 
domain, so that the R H F ~  of (CF2)2 has a stable domain as shown in Figure 31(c). 
RHFl always has a stable domain in all the three systems. 

The TI instability occurs always first in the RHFl of (CH2)2 and (CHF)2 in 
the whole range of bending angle 8 shown in Figure 31. In (CF2)2, a crossing 
of the T1 and T2 instability boundaries, namely, a degenerate triplet instability, 
occurs at 8 = 120" which is close to the equilibrium bending angle of the olefin. 
The instability to occur firstly in the R H F ~  of (CF2)2 is T; .  No crossing of the 
T i  and T3 instability boundaries occurs, and we do not show the latter boundary 
in Figure 31. In (CH2)2 and (CHF)2 also, the TL instability matrix has always 
a lower negative eigenvalue than T3. 

The three ASDW solutions have the orbitals 

ASDW1: cp: = [ ( + C O S h l / 2 + ( e . a ) ( + * S i n A ~ / 2 ] 7 7 , ,  
(217) 

(218) 

cp; = [T cos h2/2+(e * U)T* sin h2/2]q,; 

ASDW2: cp:, =[(T C0Sh1/2+(ef * U)T* Sinh1/2]77,, 

cp;, = [T  cosA2/2+(ef. u)u* sinA2/2]7,; 

ASDW3: cp:" =[(+ COS A1/2 + (e" * U)T Sin h1/2]77,, 
(219) 

cp$ = [(+* cos h2/2+ (err - U)T* sin h2/2]7,. 

We show in Figure 32 the structures of the ASDW orbitals and the spin structures 
of the ASDW solutions. We see from Figures 32 and 17 that ASDWl represents 
the state composed of two triplet carbenes whose spins are coupled antiparallelly 
and A S D W ~  and A S D W ~  represent the states with two singlet diradical carbenes 
whose spins are coupled antiparallelly and parallelly, respectively, Thus, the 
ASDW states represent 

AsDwl= ' ( 3 ~ ~ ~  + 3 ~ ~ ~ ) ,  

A S D W ~  = '('CXY + 'CXY), antiparallel spin coupling; (220) 

A S D W ~  = '('CXY +'cxY), 

antiparallel spin coupling; 

parallel spin coupling. 

We show in Figure 33 the potentials against R of the RHF and ASDW states. 
A S D W ~  is always higher in energy than A S D W ~  and cannot be a UHF ground state. 

and A S D W ~  cross. The dotted line in Figure 31 shows where ASDWl and ASDW2 
cross. ASDWl and A S D W ~  are the ASDW ground state in the regions above and 
below the crossing line, respectively. 

A TSDW ground state exists in the vicinity of the crossing line of ASDWl and 
ASDWp which smoothly connects them. The existence of the TSDW ground state 
is confirmed by the presence of a doubly degenerate triplet instability threshold 
in Figure 31(c). Unfortunately, we could not calculate its existence domain since 

ASDW2 in (CF2)2 smoothly connects RHFl and RHF2. The potentials Of ASDWl 
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Figure 32. Structures of ASDW, (a), A S D W ~  (b), and A S D W ~  (c) orbitals in the 
dimerizations of carbenes. Their spin structures are also shown. 

we used the M I N D O / ~  approximation. The TSDW state is stabilized by the 
interatomic exchange interaction (the same situation hold also for the TSDW 

states in the H4 system) so that its existence domain cannot be obtained by the 
M I N D O / ~  approximation to neglect it. However, it is certain from the bifurcation 
theory given Section 2.C.iii that the TSDW state exists in a stripe region surround- 
ing the crossing line of AsDWl and A S D W ~  and with a vertex at the degenerate 
triplet instability threshold. 

The TSDW state has the orbitals 

C C~AC~B = ~ A B ,  A, B = 1,2 ,  
i = l  

where the coefficients Ci, are real. The M y  invariant TSDW orbitals [Eq. (221)] 
reduce to those of AsDwl with e = z and A S D W ~  with e' = n in the limits 

(222) 
ASDWi: c 2 1 ,  C3i9 c 1 2 ,  c42=01 

c 2 1 ,  c 4 1 ,  c 1 2 ,  c 3 2  = 0. \ ASDW2: 
TSDW + 

We show in Figure 34 the spin structure of the TSDW state and how it interconnects 
ASDWl and A S D W ~ .  The triplet carbene moieties in ASDWl is converted to the 
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Figure 33. HF potentials in the dimerizations of CH2 (a), CHF (b), and CF2 (c). 
Triplet instability thresholds and crossing points of ASDW solutions are indicated 

by black and white circles, respectively. 
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singlet diradical carbene moieties of A S D W ~  via the TSDW state with a rotation 
of the spin density vectors as seen in Figure 34. 

As shown in Figure 18, the ground state of isolated CH2 is triplet. The HF 

phase map of Figure 31(a) shows that the singlet ground state dimerization 
reaction 3CH2 + 3CH2 + (CH2)2 proceeds via a path with the two HF phases 
AsDwl-RHFl .  The ground state of CHF can be either triplet or singlet. The HF 
phase map of Figure 31(b) shows that the reaction 3CHF+3CHF-+(CHF)2 
proceeds via the two HF phases AsDwl + R m l ,  while the reaction 'CHF+ 'CHF+ 
(CHF)2'proceeds via a path with the four HF phases traversing the TSDW region, 
A S D W ~  + TSDW + A S D W l +  RHFI. The ground state of CF2 is singlet and Figure 
31(c) shows that the equilibrium geometry of the final state olefin is near the 
degenerate triplet instability threshold and the reaction 'CF2 + 'CF2 + (CF& 
traverses the TSDW region or passes nearby the region, namely, it proceeds as 
R H F ~  + A S D W ~  + (TSDW + ASDW,) + RHFl.  Thus, the above analyses indicate the 

ASDW, TSDW ASDW, 

Figure 34. Spin structure of the TSDW ground state in the dirnerization of carbenes 
and the way of interconnection of ASDW,, A S D W ~  via TSDW. 
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possibility of real chemical reactions to proceed via a TSDW state. These reaction 
systems have complicated CI wave functions with heavy mixings of excited 
configurations as shown by MC SCF and CI studies by Basch (1971) and Kikuchi 
(1972). The UHF theory clearly visualizes the electronic processes involved in 
the complicated CI wave functions. 

iii. HJ System. As a typical model system for insertion and addition reactions 
of free radicals, the H3 system with the isosceles triangular conformations as 
depicted in Figure 35(a) was studied by Yamaguchi and Fukutome (1975). The 
system has the three RHF orbitals 

@a - I + +  
(b) 

Figure 35. Conformation (a) and orbital correlation diagram (b) of the H3 system 
with C,, symmetry. 

where x i ' s  are the orthogonalized 1s AO'S. The RHF orbitals 4a and 4; cross at 
the equilateral triangular conformation as depicted in the orbital correlation 
diagram of Figure 35(b). Hence, there are the two doublet RHF ground configur- 
ations RHFl = (4a)2(4;)  and R H F ~  = (r$a)2(q!Jb), which are the lowest energy ones 
in the regions of acute and flat triangles, respectively, and cross at the equilateral 
triangular conformation. 

A RHF configuration consisting of an open shell electron and closed shells is 
not in general a HF state to optimize the HF energy functional as proved by 
Paldus-&ek (1970b), Fukutome (1974b), and Yamaguchi-Fueno (1976). It 
is a HF state only under the special circumstance that the open shell orbital do 
satisfies, for all closed shell occupied and unoccupied orbitals dC and c$:, the 
condition 
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0.0 
G ,  

owing to the symmetry of &. RHFl satisfies the condition (224) and is a HF state 

solution obtained by the SCF procedure starting from R H F ~ .  ASDW2 has the orbitals 
but RHF2 iS not. There is an ASDW solution ASDWz below RHF2 that is the HF 

/ 

The pair cp* is spin polarized but has A1 symmetry for the CzV group, namely, 
ASDWZ is spatial symmetry adapted though it is of broken spin symmetry. 

RHFl and A S D W ~  are stable in the regions of acute and flat triangles not Close 
to equilateral ones and the HF ground states in these regions, respectively. Owing 
to the crossing of the RHF orbitals 4;  and &, they become A - M  unstable in a 
region near equilateral triangles for the antisymmetric spin flipping transitions 

where Cp' are the unoccupied orbitals of A S D W ~  forming a corresponding orbital 
pair. The A - M  instabilities of RHFl and A S D W ~  have the same spatial symmetry 
and lead to the TSDW ground state smoothly connecting RHFl and A S D W ~ .  RHFl 

also becomes A+M+ unstable a little later than the A - M  instability and an ASDW 
solution ASDWl appears. However, ASDWl is not the HF ground state. We show 
in Figure 36 the HF phase map of the H3 system. We show in Figures 37(a) and 
37(b) the potentials of the HF solutions along a path traversing an equilateral 
triangle and on equilateral triangular conformations, respectively. In Figure 
37(b), the potentials of the doublet projected TSDW state and the full CI ground 
state are also shown. 

Figure 36. HF phase map of the H3 system. The conformations on the line G-H 
has D3h symmetry. 
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Figure 37. HF potentials of the H3 system on the lines E-F (a) and G-H (&h)  (b) 
in Figure 36. 'PTSDW and full CI potentials are also shown in (b). 

The TSDW state has the orbitals 

cp* =c(l/JZ)c: (xl+**)+c~x3177*+(1/J~)~: (Xl-xz)%?T, 

c p o =  [(1/J?)C? (xl +xz) + C:x3]77+ + (1/JZ)Cg (xi -xz)v-, (227) 
3 

C CfCB = SaB, A,  B = 0, f, 
i = l  
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where the coefficients C? are real. The TSDW orbitals at equilateral triangles 
become 

where cos (f3/2) = ($)1'2 in the RHF orbitals 4a and 4:. We show in Figure 38 
the spin structures of RHF1, TSDW, and ASDW2 and how TSDW interconnects RHFl 

And ASDW2. 

WFl TSDW ASD+ 

Figure 38. Spin structure of the TSDW ground state in the H3 system and the way 
of interconnection of RHF, and A S D W ~  via TSDW. 

We compare the doublet projected TSDW wave function 2~~~~~ with the full 
CI one at equilateral triangles. To do this, it is convenient to use the complex 
RHF orbitals 

where w = exp ($ri). My invariant TSDW orbitals [Eq. (228)] can be transformed 
to M, invariant ones by a spin rotation 

Using Eq. (230), we obtain 

P T S D W = ( ~  +COS p)I14a&a4ell+sin pII+-e&-e4alI+ (1-cos p ) I I 4 e & e 4 - e I I *  2 

(231) 

PTSDW contains all the configurations contained in the full CI ground state wave 
function and becomes identical with it if a numerical factor is multiplied to the 
second configuration. 'PTSDW is a good approximation to the full CI wave function 
both in energy and CI coefficients. 

PTSDW and its complex conjugate are orthogonal and span the irreducible 
E' representation of the D3h group. It is an equal weighted superposition of real 
and imaginary components with A1 and B2 symmetries with respect to the CZv 

2 

2 
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group 
PTSDW = (l/fi)(’@*i -I- iz@ez). (232) 

Owing to this property, the TSDW potential shows no Jahn-Teller cusp as shown 
in Figure 37(a) similarly to the TSW potential in the H4 system. However, the 
Jahn-Teller cusp can be recovered by the projection to time reversal eigenstates. 

As we have seen above, in a doublet system, a crossing of half occupied 
orbitals may lead to a TSDW ground state. A doublet TSDW state represents a 
tri- or higher order radical because at least three electrons are necessary to 
construct a doublet TSDW. The TSDW state in the H3 system tends to the complete 
triradical consisting of three hydrogen atoms in the limit of infinite interatomic 
distances as seen in the potential of Figure 37(b). A doublet ASDW state consists 
of an open shell electron and spin polarized pairs, so that it has more or less 
triradical character. A doublet RHF state is in general not an HF state as we have 
noted above, so that a doublet system of pure monoradical character is a rather 
exceptional event. The present example shows that triradical states of different 
natures may arise in a doublet reaction system. 

We finally add remarks about the electronic structures of odd cycle hydro- 
carbon radicals 

2 

The HF ground state of the odd cyclic radicals at the D2,,+~h conformation must 
be a TSDW. The group theory described in Section 2.B.iv eliminates the possibility 
of ASDW ground state. The 7r electrons in cyclopropenyl radical (CH)3 must 
have the triangular spin arrangement same as the TSDW state in the H3 system. 
Hashimoto (unpublished) showed that the HF ground state of cyclopentadienyl 
radical (CH)5 has the spin structure shown in the second diagram of Figure 4. 
He pointed out that among the possible spin structures the one with nearest 
neighbor spins having the largest extent of antiparallelness is realized as the 
ground state. The ground state of odd cyclic radicals are doubly degenerate and 
have a Jahn-Teller cusp at the D2,,+lh conformation, so that their stable 
geometries are somewhat deformed. If the Jahn-Teller distortions are small, 
their ground state may remain to be a TSDW. They are known to have unusually 
large hyperfine coupling constants and g values in their ESR spectra, Cirelli et 
al. (1974), Silverstone et al. (1965), Liebling and McConnel (1965), Krusic and 
Kochi (1968), Segal et al. (1965), and Carter and Vincow (1967). The anomaly 
in their ESR spectra might be due to the TSDW nature of the ground state. 

C. HF Ground State of Homopolar Diatomic and Triatomic Molecules 

We consider here the HF ground state of the nitrogen molecule, oxygen 
molecule, and ozone with varying interatomic distance or bending angle. The 
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ground states of these molecules have complicated structures when they are 
expressed in the CI form. The HF pictures for them make clear the electronic 
processes underlying the complicated CI wave functions. The UHF theory is able 
to describe correctly the dissociations of the single bond of H2 and the double 
bond of olefin as we have discussed in Sections 3.A.iii and 3.B.ii. The theory 
also describes correctly the dissociations of the triple bond of N2 and the triplet 
double bond of 0 2 .  

i. Nitrogen Molecule. The HF ground state of N2 was studied by Igawa and 
Fukutome (1980). The ground state dissociation of NZ is the process 

Nz('Z;) + N(4S) +N(4S). (233) 

Among the ten valence electrons, the six electrons occupying the highest u 
bonding orbital u and the two r bonding orbitals xx and x, dominantly contribute 
to the triple bond of N1. So, in the following, we do not explicitly write the u 
electrons with mainly 2s character. The RHF ground state is ( U ) ~ ( ~ ~ ) ~ ( T , , ) ~ .  It is 
stable at the equilibrium interatomic distance but becomes triplet unstable at a 
little longer distance. 

symmetry. They 
contain the x - r* transition in the combination (rx + x : )  + ( x ,  + T:) and the 
u -u* transition. We show in Figure 39 the potentials of the RHF solution and 
the ASDW solution ASDwl appearing from the triplet instability. The ASDWl 

potential converges to the correct dissociation limit as seen in Figure 39. ASDWl 

has the orbitals 

The triplet transitions to cause the instability have the 

4: = xi cos (A/2) f T? sin (A/2), 

4; = u cos A'/2 f u* sin (A'/2). 

i = x, y ,  
(234) 

Figure 39. HF and full CI potentials in the dissociation of N P .  
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Figure 40. Structures of the ASDW orbitals in NZ. 

Owing to the I.: symmetry of the transitions which imposes the equal weight 
and phase for the transitions 7rX-r: and 7ry-7r:, the mixing parameters in 4: 
and 4: have the same value A. The parameter A '  has the same sign as A. We 
show in Figure 40 the structures oi the A s D w l  orbitals. The three up spin 
electrons localize simultaneously toward an atom, and the three down spin ones 
toward another atom. The simultaneous localizations of the three electrons of 
the same spin toward the same atom are due to the Z: symmetry of the instability 
to produce A S D w l .  In the dissociation limit, the localizations become complete. 
The three up spin electrons localize on an atom and the down spin ones on 
another atom producing two isolated nitrogen atoms in the 4S state. Thus, the 
wave function of A S D w l  converges to the correct atomic state, though it contains 
components with incorrect total spins. 

The singlet projected A s D w l  wave function 'PASDW~ has the correct spatial 
symmetry Xi. It contains ten configurations, the ground one, five closed shells 
with pairwise excitations, and four configurations with two triplet excitations 
coupled to the singlet state. Among the nine excited configurations, there are 
four double excitation configurations, four quadruple ones and a hexaple one. 
All the ten configurations have nonvanishing contributions at R = 00. PASDWl 
becomes identical with the full CI wave function at R = 00. The full CI ground 
state wave function considering only the excitations of the six bonding electrons 
consists of 18 configurations. However, all the eight configurations not contained 
in 'PASDW' do not involve the atomic 4S state and vanish at R = co. They appear 
only transiently with small weights. Their total weight in the full CI wave function 
amounts only 6.8%, 2.0%, and 0.0% at R = 1.6, 2.0, and 3.0 A, respectively. 
PASDWl is a good approximation to the full CI wave function in the region 

R > 2 A. It is not so good in the region R < 2 A, but the tendencies of the ten 
CI coefficients are in agreement with those of the full CI wave function. This 
result shows that a CI to limit the number of excitations fails to describe correctly 
the dissociation process. The AsDwl ground state incorporates all the essential 
configurations including those with multiple excitations. We also note the import- 
ance of the configurations with two triplet excitations. The total weight of those 

1 

1 
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configurations amounts to 50% at R = 00. The complexity of the ground state 
of N2 at large R is due to its hexaradical nature. 

ii. Oxygen Molecule. The triplet and singlet HF ground states of O2 were 
studied by Takahashi and Fukutome (1978). We mention here only the triplet 
ground state. The triplet RHF ground state 3~~~ of 0 2  is (~)~(.rr+)’(.rr-)~(.rr~.rr~), 
where .rr+ and T$ have the orbital angular momentum *l around the molecular 
axis and we do not write the u electrons of 2s character. 3RHF is not an HF state 
similar to the doublet RHF case but the triplet HF ground state at the equilibrium 
geometry is an ASDW, A S D W ~ ,  with a small spin polarization in the u orbitals 

(235) 
As shown in the HF potential of Figure 41, instability occurs twice in the triplet 
HF ground state of O2 in the dissociation process. 3 A S ~ W 0  becomes A+M-  
unstable and an ASW ground state 3 ~ s w 1  appears. ASWl also becomes A- 
unstable and a TSW ground state 3 ~ s w  appears. TSW converges to the correct 

3 

3 ASDW - (  + - - 2  2 2 * * 
0 -  (+ ff 1 (T+1 (7.-1 (.rr+.rr-.). 

3 

3 

Figure 41. Triplet HF potentials in the dissociation of 0 2 .  

dissociation limit 0 ( 3 P )  + O(3P>.  Thus, the triplet HF ground state of 0 2  consists 
of the three HF phases 3ASDWo-2ASW1-3TSW. 

The A,M- instability of 3 ~ ~ ~ ~ 0  is caused by the spin unflipping .rr-.rr* 
transition with the Z; symmetry in down spin .rr orbitals which consists of the 
T*-, .rr* transitions in the combination (T-+ .rr?)-(.rr++ T:). No u-u* transi- 
tion of Z; symmetry is possible and ~7 orbitals are not involved in the instability. 
In 3Asw1, only the orbitals 7 ~ -  and -r+ with down spins are altered to the following 

* 
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orbitals but the other orbitals remain unchanged: 

AS W 1 = (g+*-)( IT+ +2+) (IT- +I-)  (IT T IT? ), 3 

r1- = IT- cos A12 + IT! sin h/2, 

m2+ = IT+ cos h/2 - IT: sin h/2. 

(236) 

Owing to the Z i  symmetry of the instability which contains the IT-+ IT? and 
IT+ + IT: transitions with equal weight but with opposite sign, the mixing para- 
meters in the orbitals r1- and 7r2+ are of equal magnitude but of opposite sign. 
Equation (236) shows that the electron in the orbital rl- with the orbital angular 
momentum -1 localizes toward an atom while the electron in the orbital  IT^+ 
with the orbital angular momentum +1 localizes toward another atom. Thus, in 
the 3 ~ s w 1  state, a polarization of the orbital angular momentum density occurs 
within the electrons with down spins as depicted in Figure 42(a). The states of 

Figure 42. Structures of the 3ASW1 (a) and 3 ~ s  (b) (at finite R), (c) (at R = m )  
wave functions of 3 0 2 .  Spin density vectors are indicated on each AO component. 
The u lobes drawn by real and dashed lines represent u orbital components with 
opposite directions of spin. The radii of circular arrows represent magnitudes of 

orbital angular momentum density of x, electrons. 
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up spin T electrons and u electrons remain unchanged from 3 ~ ~ ~ ~ 0 .  At a nearly 
same position as the A+M- instability, an A+M+ instability occurs in 3 ~ ~ ~ ~ o  

and a new ASDW solution, 3 ~ ~ ~ ~ 1 ,  appears which is almost degenerate to 3 ~ s w 1 .  

However, A s D w l  does not lead to the correct dissociation behavior and is 
regarded as an unphysical solution. 

By introducing the orbitals 

3 

r2- = T? cos A/2 - T- sin A/2, 

TI+ = T: cos A/2 + T+ sin h/2, 
(237) 

3 which are orthogonal to r1- and r2+, respectively, A s w l  can be written 

(238) 
3 2 2 
ASWl = (U+C-)(T2+) (Ti-)  ( T l + T z - ) .  

The A- instability of 3 ~ s w 1  leading to the 3 ~ s w  ground state is caused by the 
spin flipping transitions with the I;, symmetry ( 3 ~ s w  retains the C ,  and inversion 
symmetries but breaks the C2 symmetries) which contain the u-u* transitions 
u* + u** and the T transitions irl+ + iil+ and T2-+ ij2- in the combination 
(TI+ + el+) - ( T Z -  + +-). Consequently, 3TSW has the orbitals in the GSO forms 

3 
TSW = ( c p ~ c p a ) ( . r r l - ) 2 ( . r r 2 + ) 2 ( c p ~ + ~ 2 - ) ,  

cp; = u* cos ( p * / 2 ) 7 7 * + ~ * ~  sin (@*/2)qF, 

cp1+ = Tl+[cos (v/2)77+ +sin (v/2)77-I, 

c p 2 -  = r2-[cos (v/2)q+-sin (v/2)77-]. 

(239) 

because the differences between the u orbitals u+ and up, u*+ and u*- and 

and p +  = p-  = p. Then, cp: can be written 
the parameters p+ and p-  are small, we may put u+ = u- = u, u*+ = u*- = u*, 

cp* = (1/J2)(u cos p / 2 + u *  sin p/2)(1/JZ)(77++77-)*(1/JZ) 

x (u cos p / 2  -u* sin p/2)(1/J2)(77+ - 77-1. (240) 

Since (q+* 77-)/J2 are the eigenstates of the x component of spin, Eq. (240) 
shows that a localization of the u electrons occurs accompanying a spin polariz- 
ation in the f x  directions. Equation (239) shows that the spins of the electrons 
in the orbitals rl+ and m2- begin to rotate toward opposite directions. We show 
in Figures 42(b) and 42(c) the structure of the 3TSW wave function. The polariz- 
ation of the orbital angular momentum density, the spin polarized localization 
of the u electrons and the rotation of the spins of the T electrons become 
complete at R = 00 as depicted in Figure 42(c). All the spins are in the fx 
directions at R = 00. 

The triplet HF ground state 3 ~ ~ ~ ~ o - 3 ~ ~ ~ 1 - 3 ~ ~ ~  makes clear the electronic 
processes involved in the dissociation process Oz(3Cg)+ O ( 3 P )  + O(3P) .  The 

A S D W ~  ground state at the equilibrium geometry has no orbital angular momen- 
tum density because of the symmetry of the system. In the 3 ~ s w 1  phase, 
the T bond begins to break accompanying growing orbital angular momentum 
densities with opposite rotations on the two atoms. In the 3TSW phase, the u 

3 
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bond begins to break accompanying growing spin polarization. At the same time, 
the spins of the open shell electrons begin to rotate toward the directions to 
align to the spins of localizing u electrons. In the dissociation limit, both the .rr 
and u bonds break completely. The polarizations of the orbital angular momen- 
tum and spin of the bonding .rr and u electrons , respectively, and the alignment 
of the spins of the open shell .rr electrons and the u electrons become complete 
at R = 00 attaining the atomic 3P state. 

The triplet projected 3 ~ ~ ~ ~ 0 ,  ASWl, and 3 ~ s w  have the 2; symmetry. 3 

P A S D W ~  and 3 ~ ~ s w 1  contain only one and two RHF configurations 3 

3PASDWo: (I) = (u)2(?r+)2(.rr-)2(.rrT.rri), 
(241) 

PASWl: (I) and (11) = (u)2(.rrT)2(.rr?)2(.rr+.rr-). 3 

PTSW contains five configurations including (I) and (11): 3 

3 ~ ~ s w :  (I), (11), and 
2 * *  (111) = (u*)2(7r+)2(.rr-) (.rr+.rr-), 

(IV) = (a*)2(.rrT)2(?r')2(.rr+.rr-), 

(V) = fllwap -pa)aaII, 
@l = {(*-)2(.rrT)2(.rr+.rr-) * - (.rr+)2(.rrT)2(.rr-.rrT)}(uu*). 

The full CI 32, wave function neglecting the transitions from the u orbitals with 
2s character contains nine RHF configurations. All the five configurations in 
PTSW have nonvanishing weights at R = a and essential in obtaining the correct 

dissociation limit. On the other hand, the four configurations not contained in 
PTSW do not involve the atomic 3P state, so that they appear only transiently 

with small weights and disappear at R = co. This result is in agreement with an 
ab initio CI calculation by Schaefer (1971). The most important configurations 
are the five contained in 3 ~ ~ s w ,  if one restricts configurations to those constructed 
from the minimal basis set. We note that 3 ~ ~ s w  has a four electron excitation 
configuration (IV), confirming again the ability of UHF wave function incorporat- 
ing essential multiple excitations. 

The 3 ~ ~ ~ ~ o  state is a triplet diradical because the spin polarized splitting of 
the u orbitals is small. Equation (238) shows that the 3 ~ s w  state is still a diradical. 
However, orbital angular momentum polarized localizations of the two bonding 
.rr electrons take place in this stage and those two .rr electrons become strongly 
correlated. The 3 ~ s w  state is a triplet tetraradical because of the presence of 
the spin polarized splitting of the u orbitals. However, the 3TSw tetraradical is 
composed of six strongly correlated electrons since it involves also the angular 
momentum polarized locatizations of the bonding .rr electrons. This system is 
an example of the multiradicals with strongly correlated electrons more than 
the number of the radical electrons. 

iii. Ozone. The singlet HF ground state of O3 in the conformations with C2" 

symmetry was studied by Kitayama et al. (unpublished). We show in Figure 43 

3 

3 
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Figure 43. Orbital correlation diagram of O3 against the bending angle. 

the orbital correlation diagram against the bending angle 8 and in Figure 44 the 
potentials of the HF states which will be discussed below. Owing to the presence 
of a HOMO-LUMO crossing, there are two RHF ground states 

which cross at a bending angle near 90". RHFl is always triplet unstable for the 

Figure 44. HF bending potentials of 03. 
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transitions l a2+  2bl, . . . , with B2 symmetry. An ASDW solution, ASDW1, exists 
below RHF1. R H F ~  is stable in a region close to the equilateral triangular conforma- 
tion. For larger bending angles, it becomes triplet unstable for the transitions 
4al + 3b2, . . . , with B2 symmetry and an ASDW solution, A S D W ~ ,  appears from 
the instability. 

The dominant transitions to cause the triplet instabilities of RHFl and R H F ~  

are not the HOMO-LUMO transition but 7r-7r and u-u transitions from deeper 
7r and u orbitals, respectively. The HOMO-LUMO transition is of the cr-r or 7r-u 

type, so that the Coulombic attraction of the particle-hole pair and the exchange 
interaction of the excited electron are not large. This is the reason why the 
instability due to the HOMO-LUMO transition is less easy to occur in spite of the 
smallest orbital energy gap. Owing to the 7r-7r and u-u characters of the dominant 
transitions to cause the relevant instabilities, ASDWl and A S D W ~  have the charac- 
ter of T and u diradicals, respectively, with the radical centers at the terminal 
two atoms. Only one corresponding orbital pair of T and u types, respectively, 
is largely splitting in them. ASDWl is stable in a region surrounding the equilibrium 
flat triangular geometry. The 7r diradical character of O3 at the equilibrium 
geometry was reported by Hay et al. (1975). 

ASDWl and ASDW;? cross at a bending angle near 90" as seen in Figure 44 
owing to the difference of the main transitions in the instabilities to produce 
them. Both AsDwl and A S D W ~  become A+M+ unstable in a region near the 
crossing point and an ASDW solution, A S D W ~ ~ ,  appears which connects them 
smoothly. The dominant spin unflipping transitions to cause the A +M+ 
instabilities are the transitions from one of little splitted occupied orbital pair 
to the largely splitted unoccupied orbital pair which are of u-7r or 7r-u type. 
Owing to the u-7r character of the instabilities to produce A S D W ~ ~ ,  its orbitals, 
not only the corresponding ones but also the ASDW NO'S, are mixtures of u and 
7r RHF orbitals. Only one corresponding orbital pair is largely splitting indicating 
that ASDWIZ is also a diradical state. ASDW~;? represents a diradical with a 7r-u 

mixed character that is nothing but the diradical under the conversion from the 
7r diradical ASDWl to the u diradical A S D W ~ .  

Three transitions laz+2bl, 4al+2bl,  and 3b2+2bl of RHFl or 4a1+3b2, 
1a2+ 3b2, and 2bl+ 3b2 of RHFZ are contributing to the A S D W ~ ~  wave function 
with equally large weights, so that the A S D W ~ ~  wave function has a complicated 
structure with heavy mixings of a lot of excited configurations due to the three 
transitions when it is expanded into the CI form with RHF configurations. The 
configuration mixing changes rapidly in the narrow existence domain of A S D W ~ ~ .  

The importance of a 7r-7r transition at the equilibrium geometry and the presence 
of a complicated configuration mixing in a region near 6 = 90" were reported in 
an ab initio CI calculation by Shih et al. (1974). Our UHF calculation shows that 
the conversion of 7r diradical O3 to u diradical O3 occurs in the region and the 
process leads to a complicated CI wave function. In spite of the complicated CI 

wave function in the RHF basis, ASDWl2 is a diradical. This indicates the necessity 
of a modification of the CI characterization of diradicals by Hayes and Siu (1971) 
and Salem and Rowland (1972) in terms of RHF configuration mixings. 
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Amw1 becomes A+M+ unstable also in a region near the linear conformation 
and an ASDW solution, A S D W ~ ~ ,  appears from the instability as shown in Figure 
44. The main transition to cause the instability is of the u-T type, so that A S D W ~ ,  

has the orbitals with u-T mixing. A S D W ~ ~  also is a diradical. Thus, the singlet 
HF ground state of O3 consists of the five HF phases, R H F ~ - A S D W ~ - A S D W ~ ~ -  

A S D W ~ - A S D W ~ ~ .  The surprising complexity of the HF ground state of O3 is due 
to the fact that the four RHF orbitals 4al, laz ,  2bl,  and 3b2 are lying close 
enough to cause instabilities and the six electrons residing in the four orbitals 
are strongly correlated to each other in the ASDWI;? and A S D W ~ ~  states. Thus, 
ASDW12 and ASDW13 are diradical states with six strongly correlated electrons. 

D. Conclusions 

The examples discussed in this section demonstrate the great ability of the 
UHF theory in describing electronic structures of molecules and electronic 
mechanisms of chemical reactions with strong correlations of electrons. We 
summarize here the main conclusions obtained from the preceding results. 

(i) The UHF theory demonstrates that a ground state reaction system with 
strong electronic correlation may enter into a number of different multiradical 
states as represented by different UHF phases. 

(a) Such multiradical states are distinguished by different ordered spin 
structures when the same AO’S are involved in them as in the cases of H 4 ,  H3, 
and carbene dimer systems or by differences of AO’S concerned with radical 
electrons as in the case of 03. The spin structure of a multiradical state visualizes 
the overall correlation structure of radical electrons. We shall discuss further in 
Section 4 on the physical significance of UHF spin structures. 

(b) A reaction system may enter into a state with not only a spin structure 
but also a correlation structure in orbital angular momentum, namely, in electron 
current as shown by the ,ASW1 state in 3 0 2 .  The possibility of the occurrence 
of a charge density correlation structure in the ground state has not yet been 
demonstrated but it may be present in excited states of ionic character as seen 
in the CDW state in the internal rotation of C2H4. 

(c) Different UHF phases in a reaction system reflect the presence of a 
hierarchy in the underlying essential correlation effects with increasing com- 
plexities. The number n, of radical electrons and the type of spin density vector 
modulation are a measure for the complexity of the correlation in a multiradical 
state. UHF phases of ASDW, TSDW, and TSW types with one, two, and three 
dimensionally modulated spin structures, respectively, have correlations with 
increasing complexities. We show in Table VIII the multiplicity n, of radical 
states realizable in the three UHF classes. We have yet had no example of doublet 
TSW state and the lower bound for the n,  in it is still unknown. 

The number n, of strongly correlated electrons in a multiradical state is 
always larger than n,, n, 2 n,, except for doublet ASDW monoradicals and triplet 
ASDW diradicals with only weak spin polarization effects in which no strongly 
correlated electron exists. Multiradical states can be classified into two types: 
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TABLE VIII. Multiplicityof radicalstates realizable in the three 
UHF classes. 

Singlet Doublet Triplet 

ASDW 2 , 4 , .  . . 1 , 3 , .  . . 2 , 4 , .  . . 
TSDW 4 , 6 , .  . . 3 , 5 , .  . . 4,6 ,  . . . 
TSW 4 , 6 , .  . . ? 4 , 6 , .  . . 

without and with a pool of strongly correlated electrons, according to n, = n, and 
n, > n, respectively. Among multiradical states with the same n, and in the same 
UHF class, those with a pool of strongly correlated electrons have more complex 
correlations than the ones without it. For instance, the A S D W ~ Z  and A S D W ~ ~  
diradical states in O3 have a pool with n, = 6, so that they have much more 
complicated correlations than the ASDWl and A S D W ~  diradical states without pool. 

(d) In connection with the above comments, we note that the electronic 
correlations underlying in the most basic processes of chemical reactions, break- 
ing of a chemical bond, are very different for bonds of different types. The 
breaking of the single bond of HZ proceeds via an ASDW diradical state without 
pool. The breaking of the double bond of olefin proceeds via an ASDW tetraradical 
state or two ASDW and a TSDW tetraradical states depending on the bond angle 
and substituents. All the radical states have no pool. The breaking of the triple 
bond of N2 proceeds via an ASDW hexaradical state without pool. The breaking 
of the triplet double bond of O2 proceeds via an ASW diradical and a TSW 

tetraradical states with pools. We shall show in Section 4 that the breaking of 
the double bond of CO involves a complicated correlation which cannot be 
approximated by a UHF wave function. 

(ii) An instability of the HF ground state signals critical importance of a 
correlation effect and entrance into a multiradical state or conversion of a 
multiradical state to another one. 

(a) 3ST- instabilities in an RHF ground state represent conversion of a 
nonradical state to an ASDW radical state. A+M+ instabilities in an ASDW ground 
state represent conversion of an ASDW radical to another ASDW one accompany- 
ing an increase in the size of strongly correlated electron pool. A-M instabilities 
represent conversion of an ASDW radical to a TSDW one. A+M- instabilities 
represent conversion of an ASDW radical to an ASW one accompanying introduc- 
tion of an electron current correlation structure. M- instabilities of a TSDW 

ground state and A- instabilities in an ASW ground state represent conversions 
of TSDW and ASW radicals to a TSW radical, respectively. The five HF classes, 
RHF(TICS), ASDW, ASW, TSDW, and TSW, and the nondegenerate instabilities to 
connect them, were shown to occur in chemical reactions. 

(b) Occurrence of a degenerate instability represents a complicated situation 
where correlations of two different kinds become simultaneously of critical 
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importance. A one step entrance into a much complicated radical state, say from 
RHF to TSDW, occurs at a degenerate instability threshold. 

(c) Instability boundaries provide an HF phase map indicating where 
different HF phases arise. The radical character of a UHF phase becmes maximal 
at the innermost place of the domain of the phase or at the boundary where the 
phase connects with another HF phase with more complicated radical character. 
The HF phase map and the spin and electron current structures of each phase 
visualize how the electronic structure due to the essential correlation changes 
with nuclear conformation. 

(iii) UHF wave functions incorporate the essential correlations signaled by 
instabilities. 

(a) The transitions to contribute to an instability of the HF ground state 
have the significance that the excited configurations derived from them are the 
most stabilizing the ground state when they are superposed to the original HF 

ground configuration. The UHF wave function arising from the instability 
automatically selects out the transitions involved in the instability and incorpor- 
ates the excited configurations derived from them. This is the reason why UHF 

wave functions are able to incorporate the most important configurations in the 
ground state. As we have shown, the projected UHF ground state in many systems 
is a good approximation to the full CI ground state. It contains all the important 
configurations with large CI weights or in some cases even all configurations in 
the full CI wave function. It is usually a very good approximation in the strong 
correlation regime where the orbital energy gap is zero or very small but is not 
quantitatively so good approximation in the region near an instability threshold. 

The ability of UHF wave functions to be a good approximation to the ground 
state was demonstrated also by DODS NO CI calculations by Yamaguchi et al. 
(1977, 1978a, 1978b, 1980). They showed that the DODS natural orbitals of the 
ASDW ground state in diradical molecules bring about an excellent convergence 
in the CI expansion when they are used as the CI basis. 

The theory described in Section 2.E.iii provides a deeper theoretical basis 
for the validity of the UHF approximation. However, we should note that there 
are systems whose ground state cannot be approximated by a UHF wave function 
as we shall discuss in Section 4. 

(b) The correlation incorporated into a UHF wave function has a collective 
and coherent character. The transitions involved in an instability have the same 
symmetry and exhaust all the transitions with the symmetry. Owing to the 
coherence in the symmetry of the transitions, all the electrons in the resultant 
UHF state concerned with the transitions become to have an ordered correlation 
structure in spins and electron current which is determined by the symmetry of 
the transitiqns. Owing to the collective nature of the correlation, not only the 
dominant low energy transitions but also the minor high energy transitions with 
the same symmetry as the dominant ones are incorporated into the UHF wave 
function. Those high energy transitions most effectively interfere to the dominant 
ones because of the same symmetry. The properties determined by an interfer- 
ence of low and high energy transitions, such as the ordering of the singlet and 
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triplet ground states, can therefore be correctly described by the UHF approxi- 
mation. 

(iv) The UHF theory clarifies in a unified manner the important factors to 
affect electronic mechanisms of chemical reactions. 

(a) Gap control: In systems with small HOMO-LUMO energy gap, reaction 
paths forbidden by the Woodward-Hoffman selection rule become realizable. 
Small gap is the necessary condition for a diradical reaction to occur. 

(b) Heteropolarity effects: Introduction of heteropolarity into a reaction 
system either enlarges or decreases the HOMO-LUMO gap. In the former situation, 
conversion of a diradical mechanism to a zwitter ionic one may be brought about. 
In the latter situation, a charge transfer reaction, i.e., ionic radical mechanism, 
may become realizable. 

(c) Unoccupied MO control: Events in low lying unoccupied MO’S affect the 
correlated ground state. Strong LUMO-LUMO interaction between reactant and 
reagent leading to a wide delocalization of the LUMO of the total system may 
suppress the triplet instability of the ground state leading to a conversion of 
diradical mechanism to ionic one. Crossing of low lying unoccupied MO’S brings 
about a complication of the correlation in the ground state leading to a change 
in the multiradical character of the ground state. 

(v) The UHF theory has defects due to broken symmetries of its wave func- 
tions. In a system where one center exchange interaction has an important role, 
the UHF potential may have a large error. It also is unable to correctly describe 
Jahn-Teller effects. However, these defects can be eliminated by the projection 
to the spin and time reversal eigenstates. The most important defect of the UHF 
theory is the inability of describing both the ground and excited states in a 
straightforward unified manner. However, on the other hand, the UHF theory 
sheds a new light about the natures of electronic correlation in excited states. 
We shall discuss this problem in Section 4. 

4. Further Outlooks 

We consider here some basic problems concerning the nature of electronic 
correlations in exact eigenstates of molecules. Although the UHF theory is a 
powerful approximation and correlations of many kinds can be reasonably 
approximated by it, there are also correlations which are undescribable by the 
UHF theory. Because of the special position of the UHF approximation in fermion 
many-body systems as we have discussed in Section 2.E, analysis of exact 
correlations starting from the UHF approximation seems to be a fruitful approach 
in elucidating their natures. We shall discuss in the following some aspects of 
exact correlations which are shed new light by analyses from UHF theoretical view. 

A.  Relation of UHF Spin Structures to Exact Spin Correlation Structures 

As we have shown in Section 2.B.ii, a UHF wave function except for the TICS 
and ccw classes has a nonvanishing spin density matrix and its real and imaginary 
parts give the spin and spin current densities, respectively. We call the structure 



1054 FUKUTOME 

of the spin density the UHF spin structure. We have given in Section 3 examples 
of UHF spin structures in molecules and chemical reactions and have shown that 
the UHF spin structures reasonably represent behaviors of correlated electrons. 
The spin density of a UHF wave function, however, does not represent a real 
spin density. A singlet state has no first order spin density but the UHF wave 
function to approximate the state has it. UHF spin structures, however, are not 
mere mathematical artifacts due to broken spin symmetries of UHF wave functions 
but represent the spin correlation structures in the states they are approximating. 
This was first demonstrated by Misurkin and Ovchinnikov (1974). They showed 
that the alternating spin structure of the ASDW ground state of infinite polyene 
is approximating the spin correlation function in the singlet projected ASDW 

wave function. Yamaguchi and Fueno (1977) pointed out that the spin structure 
of the ASDW state in the two electron system is approximating the spin correlation 
in the ground state. 

The spin correlation function in a state I f )  is defined by 

S(X, Y ) = +  E (fla+(x, r ) u r s a ( x ,  S )  * a + ( y ,  ~ ) u u u a ( y ,  v)If>* 

D ( x r ,  Y S )  = ( f lU+(X,  r ) a ( y ,  s)lf>. 

(244) 
rsuu 

The first order density matrix of the state is 

(245) 

We define the linked spin correlation function by subtracting the unlinked 
contribution 

SYX, y )  = S(X, y )  -$ c u r s  * uu,{D(xr ,  X S ) D ( Y U ,  y v ) - D ( x r ,  Y U ) D ( Y U ,  XS)}. 
rsuu 

(246) 

The spin correlation function can be expanded by the orthogonalized AO bases 
as 

The two site spin correlation function 

s (i, j )  = S (  ii, j j )  (248) 

is the most important component in the spin correlation function. 
The relation of a UHF spin structure to the exact spin correlation function 

can be most easily examined for the two electron-two orbital model discussed 
in Section 3.A.ii. The spin correlation function of the exact singlet ground state 
[Eq. (196)] is calculated to be 

3 2 2  
S(X, Y )  = - t c : 4 : ( 4 4 : ( Y )  - G 4 2 ( 4 4 2 Y )  +3~1~241(~)42(~)41(Y)42(Y). 

(249) 
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The first order density matrix of the state is 

Dbr,  ys) = &D(X, Y),  

Hence, the linked spin correlation function is given by 

S’b, y)=S(x, Y > + 2 D 2 ( X ,  Y ) .  

By using Eqs. (181), (251), and 
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(250) 

ii 
(252) 

D(1,1)=0(2,2)=b,  D(1,2)=3(C? -CZ), 

the two site spin correlation function are obtained as 

S(1, l )  = S ( 2 , 2 )  = -2+2c1c,, 
2 I D .  (253) 

S(1,2)=-3-%’1C2, C,C2=1/2(1+49 ) , 
S’(1,l) = S’(2,2) = fc1c2, 

1 

On the other hand, the ASDW solution (189) has the spin density 

S(x) = e sin A & ( x ) ~ ( x )  = e[S(l)x:(x)+S(2)x:(x)l, 

~ ( 1 )  = - ~ ( 2 )  = f sin A. 

The correlation function of the ASDW spin density (255) is 

(254) 

where S ( i ) = e S ( i ) .  Since the ASDW spin density vanishes at the RHF limit, its 
correlation function must be compared with S‘(i, j )  to have the same property. 
Furthermore, the spin density S ( i )  is a classical vector, while the spin vector in 
S’(i, j )  is quantum mechanical, so that S ( i )  - S ( j )  and S’(i, j )  must be normalized 
by the squared lengths f and of the classical and quantum mechanical spin 
vectors, respectively. We show in Figure 45(a) the q dependences of the ASDW 
spin density correlation and the exact linked spin correlation function thus 
normalized. We see in Figure 45(a) that the ASDW spin density correlation for 
different sites is a reasonable approximation to the exact spin correlation function 
but that for the same site gives about twice larger value compared to the exact 
one. The ASDW spin density at a site is mainly due to an electron, so that the 
ASDW spin density correlation at the same site includes the spin density of an 
electron overestimating the spin correlation, while the ASDW spin dcnsities at 
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1 

0 

- 1  

Figure 45. U H F  and exact spin correlation functions in the two electron-two orbital 
model. (a) Normalized ASDW spin density and exact linked spin correlation func- 
tions, and (b) ASDW and exact spin correlation functions. The different site and 
same site correlation functions are represented by real and dashed lines, respec- 

tively. r = 0 in these graphs. 

different sites are mainly due to different electrons so that it gives a reasonable 
approximation for the spin correlation between different sites. 

Although the ASDW spin density fails to correctly approximate the spin 
correlation at the same site, the ASDW wave function can do it. The spin 
correlation function of a UHF state is given in terms of its density matrix as 

Qb, y r )  = C ~ ( x ,  s)cpz ( Y ,  r ) .  
a 

The spin correlation function of the ASDW state (197) is calculated to be 
3 3  2 

3 1  2 

S ~ s ~ w ( 1 ,  l)=--B+gsin A, 

S ~ s ~ ~ ( 1 , 2 ) = - 8 + + g s i n  A. 
(259) 

We compare in Figure 45(b) the ASDW and exact spin correlation functions. We 
see in Figure 45(b) that the ASDW spin correlation function at the same site is 
a reasonable approximation to the exact one while that for different sites gives 
only about three times smaller correlation than the exact one. This is due to the 
contamination of the triplet component. Two electrons of parallel spins cannot 
enter into an AO because of the Pauli principle, so that the contribution from 
the contaminating triplet state is eliminated in the correlation function at the 
same site. The triplet state contributes to the different site correlation decreasing 
the antiparallel spin correlation. Thus, the approximation of the spin correlation 
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structure by the ASDW state is not wholly self-consistent. The ASDW spin density 
structure approximates the spin correlation between different sites and the ASDW 
spin correlation function the one at the same site. We conjecture that such a 
situation holds in general but we have not yet succeeded to prove it. 

Hashimoto (unpublished) studied the spin and change correlation structures 
of the full CI eigenstates of cyclobutadiene, cyclopentadienyl radical, and benzene 
in the P-P-P approximation. His result is schematically illustrated in Figure 46. 
He found that a number of full CI eigenstates in these systems has a spin or 
charge correlation structure which fits with a UHF spin or change structure. The 
spin and charge correlation structures of those states are illustrated in Figure 
46. The states with UHF type spin correlation structures are of covalent character 
and those with UHF type charge correlation structures are ionic. 

He also found that there are states with different spin and spatial symmetries 
but sharing a common spin correlation structure. Those states are shown in 
Figure 46. He showed that the wave functions of the states sharing a common 
spin correlation structure can be well approximated by the different spin com- 
ponents of a UHF wave function having the corresponding spin structure. For 

- 3Eu 1 tin: TSDW 

- 3~2u, CDW 

lB1, 
- 

I 

c6 H6 

Figure 46. Spin and charge correlation structures of full CI eigenstates of (CH),, 
(CH)5, and (CH)6 in the P-P-P approximation. UHF spin and charge correlation 
structures possessed by these systems and the states having those correlation 
structures are shown. The energy ordering is also shown for low lying eigenstates. 
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instance, the lowest 'B,, and 3Azg states of cyclobutadiene can be well approxi- 
mated by the singlet and triplet components of an ASDW wave function with the 
alternating spin structure, respectively. Similarly, the lowest 'A and 3Eu states 
can be well approximated by the singlet and triplet components of a TSDW wave 
function having the helical spin structure shown in Figure 46. This indicates that 
the 3Az, and 3Eu states are the Peierls-Yoccoz type excited states produced 
from the 'B1, and 'A1, states, respectively, by coherent rotation of spins. Thus, 
his result confirms the presence of excited states due to coherent rotation of 
spihs as predicted in Section 2.E.ii. The possibility that a projected UHF wave 
function can be a good approximation to an excited state was pointed out by 
the author (Fukutome, 1972) for the CDW solution in the two electron model 
and by Dancz and Jordan (1974) for the ASDW solution in the n electron model 
of acetylene. 

Another important result obtained by Hashimoto is the presence of excited 
states whose spin correlation structures cannot be represented by a UHF type 
spin structure. He showed that the wave functions of those states cannot be 
reasonably approximated by spin projected UHF wave functions. This indicates 
that there are excited states with complicated electronic correlations beyond the 
scope of the UHF approximation. 

B. Electronic Correlations in Excited States 

As we have shown in Section 3, a chemical reaction system with strong 
electronic correlation may have plentiful instabilities of the HF ground state. 
Instabilities of the HF ground state pose a serious problem in the many-body 
theoretical description of excited states. A standard many-body theoretical 
approach to excited states is the random phase approximation (RPA). The lowest 
excitation energy given by the RPA, however, becomes zero just at instability 
thresholds of the HF ground state. The equivalence of HF and RPA instabilities 
were first shown by Thouless (1961). The TDHF formulation of the RPA (see, for 
instance, McLachlan and Ball, 1964) shows that the RPA excitation modes arise 
from small amplitude harmonic oscillations of orbitals around the HF stationary 
point in the variation space of the HF energy functional. However, the second 
order curvature of the HF energy functional in a direction of the variation space 
becomes zero at a HF instability threshold as shown in Figure 7(a), so that the 
harmonic RPA oscillation mode in the direction becomes to have zero frequency. 
This explanation for the equivalence of the HF and RPA instabilities also indicates 
invalidity of the RPA in a system with unstable RHF ground state. The HF energy 
functional in such a system has an anharmonic structure as depicted in Figure 
10. The anharmonicity of the HF energy functional surface becomes of essential 
importance in the description of excited states in the region near an HF instability. 
This so called anharmonicity problem was firstly recognized by Belyaev and 
Zelevinsky (1962) in nuclear many-body theory. The essential importance of 
the anharmonicity means that nonlinear couplings between RPA excitation modes 
have dominant roles in determining the excited states in the region. Hence, it 
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is also called the problem of mode-mode coupling. The anharmonicity problem 
is the basic problem in nulei in the transition regions from spherical to deformed 
and in spin wave excitations of magnetic solids near phase transitions. It is a 
very difficult problem how to treat the strong anharmonicity, and no universal 
solution has yet been obtained. Therefore, excited states of a molecule or 
chemical reaction with plentiful HF instabilities are considered to be of very 
different natures from those describable by the RPA. 

Fortunately, molecules and chemical reaction systems usually have only small 
number of strongly correlated electrons except for large conjugated molecules, 
so that approaches not starting from the RPA are possible. Large scale CI is of 
course able to treat such molecular systems. However, it is very difficult to 
understand the essential physical contents of correlations from a table of configur- 
ations in a large scale CI calculation. It has been customary to use only the 
energies, the first order electron density, and the other physical quantities such 
as the dipole moment, etc., in the analysis of large scale CI calculations. 
Hashimoto’s work showed that the spin and charge correlation functions are 
very important and useful quantities in understanding the physical natures of 
correlations involved in complicated CI wave functions. 

Hashimoto’s work indicates that there are at least three groups of full CI 

eigenstates with different characters in the spin and charge correlation structures. 
(i) States with UHF type spin correlation structures: States in this group 

have spin correlation structures which can be represented by UHF spin structures 
but have little charge correlation structure. They are further subdivided into 
groups with different UHF type spin correlation structures. Both axial and tor- 
sional spin structures are possible. The wave function of a state in this group 
can be approximated by a projected UHF wave function. States with a common 
spin structure can be approximated by different spin components of a UHF wave 
function, forming a series of Peierls-Yoccoz type excitations due to coherent 
rotation of spins. 

(ii) States with CDW type charge correlation structures: States in this group 
have charge correlation structures which are similar to CDW charge structures 
but have little spin correlation structure. 

(iii) States with spin ‘correlation structures unrepresentable by UHF spin 
structures: States in this group have spin correlation structures which cannot be 
represented by any UHF spin structure. The wave function of a state in this group 
cannot be reasonably approximated by a projected UHF wave function. 

This classification of full CI eigenstates shows that the essential correlations 
may be different from state to state. The three groups have correlations of 
different characters. States in the group (i), but with different spin structures, 
have different essential correlations. It is almost certain that a limited CI calcula- 
tion is unable to describe correctly the essential correlations in a number of 
states simultaneously. The classification also shows that the natural orbitals may 
be largely dependent on state. States in the group (i) with a common spin structure 
are considered to have nearly the same NO’S, but states with different spin 
structures may have different NO’S. States in the group (iii) are considered to 
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have NO’S which have no resemblance to any NO’S derived from UHF wave 
functions. This consideration shows that unless one is satisfied in fool proofed 
full CI calculation there is a big unsolved problem how to describe excited states 
with essential correlations of different characters in a unified manner. The fact 
that some states can be approximated by projected UHF wave functions might 
provide a breakthrough for this problem. 

We note finally that not only the spin and charge correlation functions but 
also the spin and charge current correlation functions are considered to be useful 
in analyzing correlation structures, since there are states having current correla- 
tion structures as the ground state of 0 2 .  The systems considered by Hashimoto 
are homopolar and highly symmetrical. In systems with asymmetry or hetero- 
polarity, there may be states with transient character having both spin and charge 
correlation structures. 

C. System Whose Ground State Cannot be Approximated by a UHF Wave Function 

As we have discussed in the preceding paragraphs, there are excited states 
whose wave functions cannot be approximated by projected UHF wave functions. 
Such a situation can happen also in the ground state. Igawa and Fukutome 
(unpublished) found that the ground state of carbon mono-oxide cannot be 
approximated by a projected UHF wave function. 

We show in Figure 47 the HF ground state potential of CO. The HF ground 
state of CO consists of the two phases, RHF and an ASDW called ASDW1. The 
potential of ASDWl converges correctly to the dissociation limit of C(3P)  + q 3 P ) .  
However, there are two UHF states, ASW and A S D W ~ ,  with lower energies than 
A s D w l .  Their potentials also converge to the correct dissociation limit. They, 
however, connect with neither ASDW] nor RHF but cross with RHF. 

I :o 1.,5 2,O 2:5 R(A) 

Figure 47. HF potentials in the dissociation of co. 
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We made configuration analysis for the three UHF States ASDW1, ASW, and 
A S D W ~  projected to 'X+ symmetry and compared the three projected UHF wave 
functions with the full CI ground state wave function. We found that PASDWl 

has only about half the RHF configurations with large weights in the full CI wave 
function. PASW and P A S D W ~  have nearly the same configuration contents. The 
configurations in them are also about half of the important configurations in the 
full CI wave function but are complementary to those contained in PASDWI. All 
the P A s D w l ,  PASW, and PASDW~ wave functions do not correctly approximate 
the full CI wave function but they contain only atomic 3P states in the dissociation 
limit, so that they give the potentials with the correct dissociation behavior. 

The failure of the UHF states to correctly approximate the full CI ground 
state was demonstrated also by the structures of the natural orbitals. The NO'S 
of the UHF states are delocalized at the dissociation limit but those of the full 
CI ground state are localized. 

The configuration contents of P A s D w l  and P A S D W ~  (or PASW) are complemen- 
tary but exhaust all the important configurations in the full CI wave function, so 
that the full CI wave function can be well approximated by a superposition of 
PASDWl and PASDW2, 

9 0  c1 PASDWl -I- c2 PASDW2. (260) 

Approximation (260) was shown to be very nice. 
The reason why the ground state of CO has the structure like Eq. (260) can 

be explained by the structure of the HF energy functional surface. The HF energy 
functional of CO do not have a single valley structure as shown in Figure 10, 
but has a double valley one. We show in Figure 48 the profile of the HF energy 
functional surface in a direction passing near the ASDWl and ASDWZ stationary 
points which was calculated by the method described in Section 2.D. According 
to the theory described in Section 2.E.iii, the wave function of quantized TDHF 
motion, which is the exact wave function, must have probabilities on the two 

a5 

\ 

- 0.5 

Figure 48. Profile of the HF energy functional in a direction passing near the ASDW~ 
and A S D W ~  stationary points. The profile is for CO with R = 1.8 A. 
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minima when the HF energy functional has a double valley structure depicted 
in Figure 48. Therefore, the ground state wave function cannot be approximated 
by a UHF wave function under such a situation, but can be approximated by a 
superposition of two UHF wave functions. 

This example, as well as Hashimoto’s, forces us to change the starting point 
for the many-body theory of molecules. The many-body theory of molecules as 
well as those of nuclei and solids has been constructed on the assumption that 
the ground state can be reasonably approximated by the HF (or HB) wave function 
with independent (or independent quasiparticle) character. This assumption 
means that the ground state has either truly independent particle character, 
when the RHF ground state is a good approximation, or the character of Bose 
condensation of particle-hole (or particle-particle) pairs. The ground state of 
CO, which can be approximated by a superposition of two UHF wave functions, 
has the character of two resonating Bose condensates. It is the ground state of 
hitherto unknown type. Therefore, in order to describe both the ground and 
excited states including states of such complicated characters in a unified manner, 
a new novel many-body theory is required. 
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