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An ab initio method is introduced, called the maximum radius of convergence~MAX Rc)
perturbation theory, that exploits the added degrees of freedom permitted with flexible energy
denominator perturbation theory@J. Chem. Phys.109, 7725 ~1998!# by defining the
energy-denominator factors of a Rayleigh–Schro¨dinger perturbative expansion to be
~approximately! optimal. This method can yield rapid convergence as long as there is no
quasidegeneracies in first order between the reference-space state and one of the orthogonal-space
states. ©2000 American Institute of Physics.@S0021-9606~00!30314-2#

I. INTRODUCTION

Rayleigh–Schro¨dinger perturbation theory is a very suc-
cessful ab initio method, especially when employed with
Mo” ller–Plesset partitioning for closed-shell ground-state
systems.1–4 However, the unrestricted formalisms5,6 are
widely considered to exhibit slow convergence that is related
to the degree of spin contamination7,8 and the magnitude of
the radius of convergence.7 Even for closed-shell ground
states, Mo” ller–Plesset partitioning is not always effective in
higher order, where damping behavior may appear
and—eventually—divergence.9,10 Therefore, it is desirable to
construct a method that offers some improvements, even
though previous attempts have failed.11–13

The energy denominators of Rayleigh–Schro¨dinger per-
turbation theory are constructed from energy-denominator
factors that are given by the zeroth-order energy differences
between the reference-space state and the orthogonal-space
states. Using a general form of the zeroth-order Hamiltonian
H0 , it is easy to show that the zeroth-order energies of a
perturbation expansion are arbitrary;14,15 but, this choice is
critical, since the convergence behavior depends to a great
extent on the zeroth-order energies.14,16 This dependence is
most easily demonstrated by examining two-state systems
where the radius of convergenceRc is easily computed and
can be used to model the convergence difficulties for systems
involving many states.16–18

The optimization ~OPT! partitioning method16–18

chooses the zeroth-order energies of the dominant states in
an optimal manner. This method has been demonstrated to
yield rapid convergence for perturbation calculations that are
known to converge poorly with Mo” ller–Plesset and
Epstein–Nesbet19–21 partitionings. ~A similar method, also
called optimization partitioning, is based on optimizing the
energy denominator shifts using a variational form of the
first-order wave function.!22 Unfortunately, the OPT parti-
tioning method does not possess a linked diagram formalism,
since its energy denominators are based on the Hilbert space,
instead of the Fock space. We wish to obtain a method that is
similar to OPT partitioning, but is size extensive and pos-
sesses a linked diagram theorem~LDT!. One method is to

optimize the orbital energies using a Fock space. This ap-
proach, however, is less than ideal, since there are only a
small number of parameters—the orbital energies—to opti-
mize, especially compared to the huge number of determi-
nantal states within the Hilbert space.

Flexible energy denominator perturbation theory23 is a
general formalism for inserting additional parameters—one-,
two-, and higher-body shifts—into the energy denominators
of a Rayleigh–Schro¨dinger perturbation expansion, in a
manner that preserves the LDT. Below we introduce a
method, maximum radius of convergence (MAXRc) pertur-
bation theory, that exploits the added degrees of freedom
permitted with flexible-energy denominators, by defining its
energy denominator factors to be~approximately! optimal.
Explicitly, in MAX Rc perturbation theory, the energy de-
nominator factors arising between the reference-space state
up& and any orthogonal-space state, sayuq&, are defined so
that it yields a maximum radius of convergence, if used in a
two-state perturbation expansion involvingonly these two
states,up& and uq&.

The MAXRc approach enlarges the energy denominator
factors associated with two states,up& and uq&, when the
coupling between these states are enlarged or their Hamil-
tonian expectation values become closer. In cases where
there is no coupling betweenup& and uq&, the energy de-
nominators reduce to their values in Epstein–Nesbet parti-
tioning. The MAXRc method can yield rapid convergence,
provided the Hamiltonian expectation value of the reference
state and any state from the orthogonal space is not close: no
first-order quasidegeneracies. Note that small energy de-
nominators caused by zeroth-order degeneracies do not oc-
cur, but can appear in other partitioning methods. If the en-
ergy denominator shifts are neglected and Hartree–Fock
canonical orbitals are used, the MAXRc method reduces to
Mo” ller–Plesset perturbation theory.

While the final energies and wave functions of coupled
cluster theory24 do not depend on a zeroth-order Hamiltonian
H0 , the coupled cluster equations can be solved by introduc-
ing anH0 and, therefore, also energy-denominator factors. In
Lindgren’s formulations,25 the coupled-cluster equations are
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derived from perturbation theory, and a pseudodependence
on H0 appear in the final equations. Using this type of for-
mulation, the MAXRc approach combined with flexible-
energy denominators can be employed to enhance the itera-
tive convergence of coupled-cluster equations. Alternately,
using a perturbative expansion, an infinite-order summation
of all connected wave-operator diagrams can be used to ob-
tain the cluster operatorT, which defines the exponential
form the wave operatoreT.

In Sec. II the energy denominator factor that yields that
maximum radius of convergence for a two-state system is
derived. This relationship is used to define the energy de-
nominator shifts for MAXRc perturbation theory, presented
in Sec. III. A spin-adapted, closed-shell, restricted-orbital
formalism is presented in Secs. IV and V.

II. MAXIMUM RADIUS OF CONVERGENCE FOR A
TWO-STATE SYSTEM

Denoteup& and uq& as the reference (P) and orthogonal
(Q) space states of a two-dimensional system, andep andeq

as their zeroth-order energies. These zeroth-order energies
are arbitrary and define the diagonal, zeroth-order Hamil-
tonian,

H05up&ep^pu1uq&eq^qu. ~2.1!

The radius of convergenceRc for the two-state, Rayleigh–
Schrödinger perturbation expansion is easily derived~see,
for example, Chaudhuri and coworkers!,18

Rc
25

«2

~«2Hp
q!214u^puHuq&u2

, ~2.2!

where

Rc>0, ~2.3!

Hp
q5^puHup&2^quHuq&, ~2.4!

and« is the sole energy-denominator factor appearing in the
perturbation expansion,

«5ep2eq . ~2.5!

The perturbation expansion is convergent ifRc>1, and di-
vergent if 0<Rc,1.

We wish to choose« so that it yields the maximum
radius of convergenceRc . This value of «, denoted as
«m(pq), satisfies

F ]

]«
Rc

2G
«5«m(pq)

50. ~2.6!

Substituting Eq.~2.2! into Eq. ~2.6! gives

«m~pq!5Hp
q1

4u^puHuq&u2

Hp
q

. ~2.7!

Note that«m(pq) has the same sign asHp
q . This relationship

is expected, since for a two-state system« andHp
q must have

the same sign orRc,1.16,17

In the limit of the couplinĝ puHuq& vanishing, the maxi-
mum Rc is given by Epstein–Nesbet partitioning,

«m~pq!5Hp
q for u^puHuq&u→0. ~2.8!

When the second term on the right-hand-side of Eq.~2.7!
dominates, we get

«m~pq!'
4u^puHuq&u2

Hp
q

for
4u^puHuq&u2

Hp
q

@Hp
q . ~2.9!

Thus, in situations where the ratio 4u^puHuq&u2/Hp
q is large,

«m(pq) is also large. Traditional partitioning methods have
zeroth-order energy differences that do not depend on the
coupling ^puHuq& between states. Thus, not surprisingly,
when u^puHuq&u2/Hp

q is even modestly large, these methods
often yield divergent expansions. We wish to obtain a per-
turbative method that enlarges« as u^puHuq&u2/Hp

q becomes
large, and selects« so that it has the same sign asHp

q .
It is also easy to obtain the value of«, denoted by

«1(pq), that yield a radius of convergence equal to unity
(Rc51),16,17

«1~pq!5
1

2 S Hp
q1

4u^puHuq&u2

Hp
q D . ~2.10!

Comparing Eqs.~2.7! and ~2.10! we find that

«1~pq!5 1
2 «m~pq!. ~2.11!

Since, for a two state system, it is always possible to
choose« so that (Rc.1),14,16 then, clearly, the maximum
radius of convergence also has a value greater than unity.
However, if there is a first-order quasidegeneracy,Hp

q50,
then Eqs.~2.7! and ~2.11! yield infinities, @«1(pq)5`# and
@«m(pq)5`#.

III. MAXIMUM RADIUS OF CONVERGENCE
PERTURBATION THEORY

A. Qualitative development

The energy-denominator factors for Rayleigh–
Schrödinger perturbation theory4,25–28 are given by the
zeroth-order energy differences between pairs of interspace
states, where a pair of interspace states consists of the
reference-space stateup& and a state, sayuq&, from the or-
thogonal spaceQ. As a simple example, consider Mo” ller–
Plesset perturbation theory.2,3 Its first-order wave function
~and second-order energy! consists of terms arising from
double excitations fromup&: w,x→r ,s; these excitations
have an associated energy-denominator factor, denoted by
«wx

rs , given by

«wx
rs 5ew1ex2e r2es5^puH0up&2^quH0uq&,

uq&5ar
†as

†axawup&, ~3.1!

where the zeroth-order HamiltonianH0 is the Hartree–Fock
Hamiltonian and the orbital energiese i are eigenvalues of
the Fock operator.4 ~Note that the second-order wave func-
tion consists of terms that have two energy-denominator fac-
tors.!

In a perturbation expansion involvingonly two states,
up& anduq&, the zeroth-order energy difference can be deter-
mined that yields the maximumRc , as demonstrated in the
previous section. In Sec. III~B!, a formalism is presented
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that employs these two-state, zeroth-order energy differences
~or energy-denominator factors! in a perturbation expansion
involving the reference-space stateup& and simultaneously
all the orthogonal-space states; where, the orthogonal states
of interests are generated by applying excitation operators to
up&: ar

†awup&, ar
†as

†axawup&, ar
†as

†at
†ayaxawup&, . . . .

In order to increase the degrees of freedom in choosing
the energy-denominator factors, one-body energy-
denominator shiftsDw

r are added to the energy-denominator
factors corresponding to single excitations, two-body shifts
Dwx

rs for double excitations, and so on. If we denote the
energy-denominator factors from single, double, and triple
excitations by«w

r , «wx
rs , and«wxy

rst , respectively, then these
factors are given by

«w
r 5ew2e r1Dw

r , ~3.2!

«wx
rs 5ew1ex2e r2es1Dwx

rs , ~3.3!

«wxy
rst 5ew1ex1ey2e r2es2e t1Dwxy

rst , ~3.4!

wherew, x, and y are occupied orbitals andr, s, and t are
virtuals. The energy-denominator shifts,Dw

r , Dwx
rs , Dwx

rs , and
Dwx•••

rs••• , can be introduced in a manner that preserves the
LDT, as long as additional perturbations are added and dis-
connected products are treated in a special manner.23

In summary, the energy-denominator factors for
MAX Rc perturbation theory are given by Eqs.~3.2!, ~3.3!,
and ~3.4! with Dw

r defined so that a perturbation expansion
involving only the reference stateup& and ar

†awup& has the
maximumRc . Similarly, Dwx

rs is chosen so that the expansion
for up& andar

†as
†axawup& has a maximumRc . ~Higher-body

shifts are defined in a similar manner.! This formalism re-
duces to Mo” ller–Plesset perturbation theory when Hartree–
Fock canonical orbitals are used and the shifts are neglected.

B. Mathematical development

We now derive the one-, two-, and three-body, energy-
denominator shifts:Dw

r , Dwx
rs , and Dwx

rs , using Eqs.~3.2!,
~3.3!, ~3.4!, and ~2.7!. The energy-denominator factors for
the single excitations are defined by

«w
r 5«m~pq! for uq&5ar

†awup&. ~3.5!

Substituting Eq.~3.5! into Eq. ~2.7! and using Eq.~3.2!, we
get

Dw
r 5Grw1

4ue rwu2

Grw1ew2e r
, ~3.6!

where

e i j 5@ i uhu j #1(
w

@ i j uww#2@ iwuw j #, ~3.7!

e i5e i i , ~3.8!

Grw5@rr uww#2@rwuwr#, ~3.9!

and the spin-dependent one- and two-electron integrals are
written using chemist’s notation.4

Similarly, the energy-denominator factors for the doubly
excitations are defined by

«wx
rs 5«m~pq! for uq&5ar

†as
†axawup&. ~3.10!

Substituting Eq.~3.10! into Eq.~2.7! and using Eq.~3.3!, we
get

Dwx
rs 5Gwx

rs 1
4u@wruxs#2@wsuxr#u2

Gwx
rs 1ew1ex2e r2es

, ~3.11!

where

Gwx
rs 5Grw1Grx1Gsw1Gsx2Grs2Gwx . ~3.12!

The energy-denominator factors for the triple excitations
are defined by

«wxy
rst 5«m~pq! for uq&5ar

†as
†at

†ayaxawup&. ~3.13!

Since triply excited statesar
†as

†at
†ayaxawup& do not couple

with up& via the HamiltonianH,

^quHup&50, ~3.14!

the energy-denominator factors for these excitations are the
same as they appear in Epstein–Nesbet partitioning. By sub-
stituting Eqs.~3.13! and ~3.14! into Eq. ~2.7! we get

«wxy
rst 5^puHup&2^quHuq&, uq&5ar

†as
†at

†ayaxawup&.
~3.15!

Using Eq.~3.4! gives

Dwxy
rst 5ovGwxy

rst 2ooGwxy2
vvGrst , ~3.16!

where the occupied-virtualovGwxy
rst , occupied-occupied

ooGwxy , and virtual-virtualvvGrst terms are given by

ovGwxy
rst 5Grw1Grx1Gry1Gsw1Gsx1Gsy

1Gtw1Gtx1Gty , ~3.17!

ooGwxy5Gwx1Gwy1Gxy , ~3.18!

vvGrst5Grs1Grt1Gst . ~3.19!

By generalizing these three latter expressions, higher-body
shifts Dwxy . . .

rst . . . are easily obtained.

IV. CLOSED-SHELL RESTRICTED SPIN-ORBITAL
FORMALISM

We now obtain the spin-independent forms for the
energy-denominator factors («w

r , «wx
rs , «wxy

rst ) and shifts (Dw
r ,

Dwx
rs , Dwxy

rst ) for a spin-free Hamiltonian when thea and b
spin-orbitals are spatially restricted and all occupied orbitals
are double occupied. Henceforth, all orbital indices refer to
spatial orbitals. Spin-orbitals are indicated by appending the
spin functions (s5a or b) to the spatial orbitals. Also, we
use a Goldstone diagrammatic representation,26 since
Hugenholtz27 and Brandow29 diagrams are antisymmetric
and not readily converted into a spin-free form.

The spin-orbitals ws and rs8 from the one-body

energy-denominator factors«ws
rs8 can have either parallel or

opposite spins. In the Goldstone diagrams in which these
orbitals appear, they are on the same path. Spin-orbitals on
the same path must have parallel spin or the diagrams
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vanish.28,30 Hence, only one-body energy-denominator fac-

tors «ws
rs8 with parallel spins (s5s8) need to be considered,

and are given by

«ws
rs 5«w

r 5ew2e r1Dw
r , ~4.1!

where

Dw
r 5

4uewru2

ew2e r1gwr~1!
1gwr~1! ~4.2!

e i j 5~ i uhu j !1(
w

2~ i j uww!2~ iwuw j !, ~4.3!

e i5e i i , ~4.4!

gi j ~h!5~ i i u j j !2h~ i j u j i !. ~4.5!

When evaluating diagrams with two-body energy-
denominator factors«ws1 xs3

rs2 ss4 , we use the convention that the

spin-orbitalsws1 and rs2 are on the same path; also,xs3

andss4 are on the same path. Diagrams vanish when spin-
orbitals have opposite spin that are on the same path, when
either s1Þs2 or s3Þs4 . Therefore, we have only two
cases to consider for the restricted-orbital, two-body, energy-
denominator factors:

«ws xs8
rs ss8 5ew2e r1ex2es1H 1Dwx

rs if s5s8
0Dwx

rs if sÞs8,
~4.6!

where

hDwx
rs 5gwx

rs ~h!1
4u~wruxs!2h~wsuxr !u2

~ew2e r !1~ex2es!1gwx
rs ~h!

, ~4.7!

gwx
rs ~h!5grw~1!1gsx~1!1 f wx

rs ~h!, ~4.8!

f wx
rs ~h!5gsw~h!1grx~h!2grs~h!2gwx~h!. ~4.9!

For diagrams with three-body, energy-denominator fac-
tors «ws1 xs3ys5

rs2 ss4ts6 we use the convention that orbitalsws1 ,

xs3 , andys5 are on the same path asrs2 , ss4 , and ts6 ,
respectively. Therefore, we have only three cases to con-
sider:

«wsxs8ys9
rsss8ts9 5ew1ex1ey2e r2es2e t

15
(111)Dwxy

rst ; s5s8, s5s9, s85s9
(100)Dwxy

rst ; sÞs8, sÞs9, s85s9
(010)Dwxy

rst ; sÞs8, s5s9, s8Þs9
(001)Dwxy

rst ; s5s8, sÞs9, s8Þs9

,

~4.10!

where

(abc)Dwxy
rst 5grw~1!1gsx~1!1gty~1!1 f xy

st ~a!

1 f wy
rt ~b!1 f wx

rs ~c!. ~4.11!

V. SPIN-ADAPTED ENERGY-DENOMINATOR
FACTORS

The choice of«ws xs8
rs ss8 and«wsxs8ys9

rsss8ts9 given in Eqs.~4.6!
and ~4.10! generates perturbation expansions with wave
functions that are not eigenfunctions ofS2. For two-body
energy-denominator factors, this spin contamination appears
because, in general,

0Dwx
rs Þ1Dwx

rs . ~5.1!

A spin-adapted choice for the two-body factors«ws xs8
rs ss8 that

is spin-adapted, is given by

«ws xs8
rs ss8 5«wx

rs , ~5.2!

where«wx
rs is defined by Eq.~3.3! with orbital indices denot-

ing spatial orbitals and the spin-independent shiftDwx
rs de-

fined by averaging the twoh values,

Dwx
rs 51/2Dwx

rs . ~5.3!

As an alternative, an average of the two possible spin-
dependent shifts is taken,

Dwx
rs 5 1

2~
0Dwx

rs 11Dwx
rs !. ~5.4!

A third and more conservative choice is given by

Dwx
rs 5H 0Dwx

rs if u0«wx
rs u.u1«wx

rs u
1Dwx

rs if u1«wx
rs u.u0«wx

rs u.
~5.5!

When there is a repeated index, either (r 5s) and (w5x),
then we must have~sÞs8!. Therefore, for this case, we
should choose (Dwx

rs 50Dwx
rs ).

As in the two-body case, the spin contamination arise
from the three-body energy-denominator shifts, because, in
general,

(abc)Dwxy
rst Þ (a8b8c8)Dwxy

rst if abcÞa8b8c8. ~5.6!

This problem is removed by choosing

«wsxs8ys9
rsss8ts9 5«wxy

rst , ~5.7!

where«wxy
rst is given by Eq.~3.4! and the spin-independent

shift Dwxy
rst taken as an average of the four possible spin-

dependent shifts, or equivalently, averagingh,

Dwxy
rst 5 1

4~
(111)Dwxy

rst 1 (100)Dwxy
rst 1 (010)Dwxy

rst 1 (001)Dwxy
rst !

5 (
1
2

1
2

1
2)Dwxy

rst . ~5.8!

As in the two-body shiftsDwx
rs , a modified expression should

be used for the three-body shiftsDwxy
rst when one or more

indices are repeated. For example, if (r 5s) then Dwxy
rrt

should be taken as an average of(100)Dwxy
rrt and (010)Dwxy

rrt .
Other choices like, for example, generalizing the two-body
conservative choice given by Eq.~5.5!, can also be used.
However, since there is no coupling between the reference
stateup& and triply-excited states, the average choice, given
by Eq. ~5.8!, should be sufficient in most cases.

7000 J. Chem. Phys., Vol. 112, No. 16, 22 April 2000 James P. Finley

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.114.34.22 On: Wed, 26 Nov 2014 21:32:46



ACKNOWLEDGMENTS

The authors thank Professor K. Hirao and K. Yokoyama
for useful discussions. This investigation has been supported
by a grant from the Swedish Natural Science Research Coun-
cil ~NFR! and the Japanese Society for the Promotion of
Science~JSPS!.

1C. Mo” ller and M. Plesset, Phys. Rev.46, 618 ~1934!.
2R. J. Bartlett, Annu. Rev. Phys. Chem.32, 359 ~1981!.
3J. A. Pople, J. S. Binkley, and R. Seeger, Int. J. Quantum Chem.10S, 1
~1976!.

4A. Szabo and N. S. Ostlund,Modern Quantum Chemistry: Introduction to
Advanced Electronic Structure Theory, 1st edition ~Macmillian, New
York, 1982!.

5J. A. Pople and R. K. Nesbet, J. Chem. Phys.22, 571 ~1954!.
6G. Berthier, J. Chim. Phys.51, 363 ~1954!.
7P. M. W. Gill, J. Pople, L. Radom, and R. Nobes, J. Chem. Phys.89, 7307
~1988!.

8M. Lepetit, M. Pelissier, and J. P. Malrieu, J. Chem. Phys.89, 998~1988!.
9 J. Olsen, O. Christiansen, H. Koch, and P. Jo”rgensen, J. Chem. Phys.105,
5082 ~1996!.

10O. Christiansenet al., Chem. Phys. Lett.261, 369 ~1996!.
11H. Kelly, Adv. Chem. Phys.14, 129 ~1969!.

12D. M. Silver, S. Wilson, and R. Bartlett, Phys. Rev. A16, 477 ~1977!.
13C. Murray and E. Davidson, Int. J. Quantum Chem.43, 755 ~1992!.
14S. Wilson, K. Jankowski, and J. Paldus, Int. J. Quantum Chem.28, 525

~1985!.
15J. P. Finley and K. F. Freed, J. Chem. Phys.102, 1306~1995!.
16J. P. Finley, R. K. Chaudhuri, and K. F. Freed, J. Chem. Phys.103, 4990

~1995!.
17J. P. Finley, R. K. Chaudhuri, and K. F. Freed, Phys. Rev. A54, 343

~1996!.
18R. K. Chaudhuri, J. P. Finley, and K. F. Freed, J. Chem. Phys.106, 4067

~1997!.
19P. S. Epetein, Phys. Rev.28, 695 ~1926!.
20R. D. Nesbet, Proc. R. Soc. London, Ser. A230, 312 ~1955!.
21P. Claverie, S. Diner, and J. P. Malrieu, Int. J. Quantum Chem.1, 751

~1967!, and references therein.
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