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The complete perturbation series for the energy is invariant under the operation of adding a velocity-
dependent interaction to the zeroth order Hamiltonian and subtracting the same quantity from the
perturbation operator. The same invariance property appear to hold also for an optimum formulation
of the terminated energy series generated by the nth order approximation to the wave function. An explicit
proof is given for the first- and second-order wave functions and also for the complete energy series.
Variational procedures for determining {a) the optimum velocity dependence of the zeroth order
Hamiltonian and {b) the optimum uniform displacernent of the zeroth order energy spectrum are
discussed in relation to the invariant formulations.

i. INTRODUCTION

I eGective single-particle potential function can
~

~

be derived from two-particle interactions by a
Hartree-Pock type calculation starting from a zeroth
order wave function in the form of a Slater determinant.
Calculations with plane wave orbitals and exchange-
type two-particle interactions yield a velocity-depend-
ent single-particle potential well. ' ' The velocity
dependence of the well depth can be interpreted as a
reduction in the dynamical mass of the nucleon when
it moves through nuclear matter. A similar effect
occurs in calculations which include con6guration
interaction by more complete self-consistent procedures. '

In a recent note Swiatecki' discusses the problem of
determining an optimum velocity- (or energy-) depend-
ent term in the zeroth order Hamiltonian in relation to
the rate of convergence of the Brillouin-Wigner
perturbation series. There is need for further discussion
with emphasis on (a) the extremum property of the
energy series and (b) the explicit dependence of the
third and higher order energy terms on variations in
the zeroth order Hamiltonian. These energy terms
contain diagonal matrix elements of the perturbation
operator and consequently depend explicitly on the
assumed velocity-dependent interaction.

To make physical sense it is necessary that the
complete perturbation series for the energy be invariant
under the operation of adding a velocity-dependent
interaction to the zeroth order Hamiltonian and
subtracting the same quantity from the perturbation
operator. The same invariance property appears to
hoM also for an optimum formulation of the terminated
energy series generated by the mth order approximation
to the wave function. An explicit proof is given for the
erst and second order wave functions and also for the
complete formal series.
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and setting 62——. . ——GI, =1 we obtain the implicit
formula for the energy:

in which
E=Ep+ e2+ e3+ ' ' '+ e22~1)
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2. PERTURBATION METHOD

The analysis is based on the resolution of the given
Hamiltonian operator into the sum of a zeroth order
operator JIp and a perturbation operator 5". The
eigenfunctions and eigenvalues of Hp are pl and E~,
respectively; also Ep +E~+8~+2 ~ . Some of the
arbitrariness in the assumed resolution is removed by
requiring Wpp=o. Wave functions and energy values
should be labeled with a complete set of quantum
numbers p—=pl, p2, . p~ in addition to the index l.
These quantum numbers are derived from the invariance
properties common to Hp, W, and Hp+W, and hence
can be used to label eigenfunctions of Hp and also of
the complete Hamiltonian Hp+W. The eigenfunctions
of Hp are thought of as grouped according to values of
P; the given functions Pp, Pl, belong to one of
these groups. Thus Ep is the lowest eigenvalue for the
given P, not necessarily the lowest eigenvalue of Hp.
In the same way, 4' and E refer to exact. or approximate
eigenfunctions and eigenvalues of Hp+ W for the
given value of p.

We begin with the approximate wave function
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These are the basic formulas of the Brillouin-signer
perturbation procedure. The lowest root of Eq. (2) lies
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higher than the corresponding lowest eigenvalue of
Ho+ W

A closer approach to the lowest eigenvalue and the
corresponding wave function can be attained by
minimizing the expectation value of Hp+ W with
respect to the parameters G~, G~, . G~. The explicit
general formulas are then rather complicated but
reduce to simple forms in several special cases. ' In
particula, r, if all the G's except G~ vanish, then

3. VELOCITY DEPENDENCE AND
INVARIANCE PROPERTY

Consider now the possibility of introducing an
explicitly energy-dependent term into the zeroth order
Hamiltonian. This is accomplished by adding a term
proportional to Hp —E to Ho and subtracting the same
term from W, with the result

H =Ho'+W',

Ho' =Ho+ (y —1) (Hp —E),
Hp' —E=p(Hp —E),

W'= W—(p —1) (Ho —E)
=W- L(.-1)/.](Hp'-E).

E=Eo+e2+
1—eo/e2

62
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(5)

in which

E=E,+ p e„~2'
n=p

These definitions and relations now yield

The lowest root of Eq. (5) falls below E„ the lowest
root of e~—c3 = 0, and also below Ep. It is clear from
the explicit forms of e2 and e3 that e~—e3 is negative
below E . Consequently,

e2+ es)
1 —es/e2

for a range of values of the energy including the lowest
root of Eq. (5).

If only G& and G2 do not vanish, the general varia-
tional formula for the energy is'

E=Eo+ (2Gr —Gr ) e2+ (Gr +2G2 —2GrG2) es

+ (—G2'+2GrG2) e4+G2'es. (7)
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The discussion of Eq. (11) may begin with the
approximate formula derived from the 6rst-order
wave function (with Gr ——1):

E=Eo+e2'+ eo'

2p, —1 1
=Eo+ e2+—eo.

p2 p2

The stationary value of the right-hand member as a The minimum value of 8 occurs for
function of G& and G& is found most simply by a process

p, = 1 63/ 62)
of completing squares, with the result

E=Ep+
1—eo/e2
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The stationary form actually is a minimum if the
conditions,

e2 eo(0) (e2 eo) (e4 es) (eo e4)') 0) (9)

hold for a range of values of 8 including the lowest
root of Eq. (8). If the odd-order energy terms vanish,
E, the lowest root of Eq. (8), falls below E„the lowest,
root of 62 64=0, and also 62 64 is negative below E
and 0(e4/e2 (1. Thus Eq. (9) certainly holds if
odd-order terms in the energy series vanish.

e3'=0. (15)

This result justifies the initial assumption G~ ——1.
The diagonal matrix element W„„may be expected

to increase algebraicly with increasing E„;a plausible
inference then is that diagonal terms,

1w,.1'w„„
Ql

(E—E„)2

determine the sign and approximate magnitude of e3.
The conclusion,

1 es/e2) 1)

and is the lowest root of Eq. (5). Equation (14) actually
implies e3'=0; thus the optimum value of p, associated
with the conventional 6rst-order wave function is
determined by the condition

'P. GoldhammerandE. Feenberg, Phys. Rev. 101, 1233 (1956). then follows; thus It4)1 and (p, —1)/44)0 appears to
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be a reasonable expectation in the absence of actual
numerical values.

In the simple problem of free particles in a box,
M/p is identified with the effective mass of a nucleon
in nuclear matter. If an oscillator Hamiltonian,

&o=,'~Q(PP+qP)+ U,

is chosen to define the zeroth order description of the
physical system, then @Ace is the effective oscillator
energy unit.

An alternative procedure starts from

1—op'/op'

E=Ep+
1—op'/op'

Equation (5) for E then follows independently of the
value assigned to p in consequence of Eq. (12).

Thus G& and p accomplish the same end in a curiously
complementary fashion. If E is minimized with respect
to 6&, the resulting equation for E does not depend on

p and has the same form as results from minimizing

with respect to p, starting from G~——1.
The preceding analysis can be extended readily to

the energy formula generated by the second order
wave function. In Eqs. (7) and (8), o„may be replaced

by e„.If we eliminate the primed quantities with the
aid of Kq. (12), all dependence on p cancels out and the
primed form of Eq. (8) reverts back to the original

unprimed form.
The preceding results suggest a general statement to

the eGect that the formula for E obtained by minimizing

E(Gq, Gp, Gp, p) with respect to the amplitudes

6~ G2 Gg, does not depend on p, . The proof of this
statement appears to require an elaborate algebraic
technique. However the corresponding formal proof
for the complete perturbation series with G~=. . .
=6„= .= 1 is quite simple, as shown below:

w ~ 1 n t'l1
&o-+'=& & I I(~—1)" '"+p

o o p"+'s=o &g)

in ~ identical steps with e defined by the condition

A general proof of invariance for an optimum
formulation of the 6nite perturbation series may also
throw light on the conditions under which the optimum
values of G~, G~, . 6„, - . - tend to unity as the order
of the perturbation series is increased without limit.

4. UNIFORM DISPLACEME1VT OF THE ZEROTH
ORDER LEVEL SYSTEM

The condition 5'pc=0 enters the preceding discussion
only in the qualitative discussion of the sign of op(W).
While S"cp=0 fulfills the purpose of making 8'„„
small when

I
E E

I
is s—mall, it does not represent the

optimum condition in calculations with a limited
number of terms in the perturbation series.

To discuss the possibility of an optimum condition, let

O'= X—Xpp,

W'= W —(U—Xpp),

Ho'= Hp+ U—Xoo,

E.'= E.+U Xpo, —

I w.„[p
Ep'(W) =P'

jV jV
~'

Consider the invariant energy formula

E Eo= op'(W')'/Lop'(W—') —op'(W') j, (20)

subject to the supplementary cond'ition BE/BU=O.
The supplementary condition requires

@'Cm&~~~p
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(18) and this relation in combination with Eq. (20) gives an
implicit equation for E Ep U+Xpp. The —possi—ble
numerical values of E Ep U+Xpo inser—ted —in Eqs.
(20) and (21) then determine E Eo and U—Xpo. —

The numerator factor in Eq. (21) is expected to be
small because of the relation

E,' (W)/21Vp'~op'(W)/op', (22)
subject to the restriction

I (p —1)/y, I
&1. If the restric-

tion fails, the proof of invariance can be carried through which is suggested by the form of the normalization
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and. energy quantities. Explicitly,

es'N s'(W) —2es'(W)Ns'

/Wo /')Wo. )'(&„'—E„')
(g

(g—g ')s(g —g„')s

X
. E—E„' E—E '

suggesting a high degree of internal cancellation.
Internal cancellation is relatively ineffective in reducing
the magnitude of the denominator since it is actually
a sum of positive-definite terms:

es'Ps' —Ns's =$ Q'
(E—E„')'(E—E„')s

X(& ' —& ')'. (24)

Finally, the formal invariance of the complete
perturbation series with respect to uniform displace-
ments of the zeroth order energy spectrum can be
demonstrated by a calculation closely resembling that
of Eq. (18).
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We show that what has previously been considered the "accidental" degeneracy in the energy levels of the
e-dimensional, isotropic, harmonic oscillator is actually a consequence of its symmetry group. The additional
symmetry, beyond the m-dimensional rotation group, arises from the symmetry between the coordinates
and momenta.

' "F the Hamiltonian for a given quantum-mechanical
- ~ problem is invariant under a group of operations
(for example, rotations of the coordinate space), then
the eigenfunctions which correspond to each energy
eigenvalue form the basis of a representation of this
symmetry group. As any representation is a sum of
irreducible representations, we see that the degeneracy
of an eigenstate is directly related to the dimensionality
of the irreducible representations. In many cases we can
enlarge the symmetry group so that each energy
eigenstate is composed of only one irreducible repre-
sentation, although all irreducible representations need
not appear. ' In speci6c cases, however, it is not always
easy to find the complete symmetry group. Pock' has
found the symmetry group for the hydrogen atom and
shown that the degeneracy of its energy levels is a
necessary consequence of the symmetry properties of
its Hamiltonian, but the degeneracy of the e-dimen-
sional, isotropic, harmonic oscillator (hereafter referred
to as st-oscillator) has not been understood in terms of
the symmetry properties of its Hamiltonian. We shall
now show that the degeneracy of its energy levels is a
consequence of invariance under the e-dimensional
unitary group.

*University Predoctoral Fellow.' H. Margenau and G. P. Murphy, The Mathematics of Physics
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1950), Sec. 15.19.
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The Hamiltonian operator for the e-oscillator is

H= P $(Pos/2rrt)+2m'rrtv'ques j
k=1

If we introduce' the non-Hermitian operators ar„which
are defined by the relations

as ——$1/(2rrthv)r j(2srsrt vqs+ipo),

we obtain

H=hv P (as*as+ ',)-
k=1

The a& satisfy the commutation relations,

agar —arajh= aI(; a7 —a7 ap =Oy

aj,a„*—a„~a~——SJ,„.

We shaQ now show that the quantum mechanical
problem of the n-oscillator is invariant under the
e-dimensional unitary group. Let us define

As= Q Up,a„

' See, for instance, P. A. M. Dirac, The Prirtciples of Qgarttam
Mechartics (Oxford University Press, New York, 1947), Sec. 34.


