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Vlbronlc coupHng of short-lived electronic states 
H. Estrada,·) L. S. Cederbaum, and W. Domcke 
Theoretische Chemie. Physikalisch-Chemisches Institut, Universitiit Heidelberg. 1m Neuenheimer Feld 253 
D-6900 Heidelberg. West Germany • 

(Received 6 June 1985; accepted 15 July 1985) 

The interaction of short-lived electronic states through the nuclear motion is investigated. 
P~cular attention is paid to the impact of this interaction on differential and integrated cross 
sections for resonant electron-molecule scattering. A vibronic coupling model which has been 
successfully applied to study vibronic interactions in bound electronic states is extended to 
resonance states. Calculations of th~ nuclear dynamics in the nonlocal potential of the coupled 
resonance states are presented and dISCussed for several examples including up to two vibrational 
modes. 

I. INTRODUCTION 

Resonance states play a central role in many collision 
phenomena in various fields of physics and chemistry. Reso­
nance effects have been extensively investigated, for exam­
ple, in reactive and nonreactive atomic and molecular colli­
sions,1 in molecular photoionization,2 and in electron­
molecule scattering.3 In the latter case it is commonly as­
sumed that the collision takes place via a single resonance 
state which does not interact with other possibly existing 
resonance states. It is well known, however, that electroni­
cally bound4 molecular states often interact with each other 
through the nuclear motion and it seems natural to investi­
gate this vibronic coupling, as it is usually called, also in the 
case of short-lived electronic states. 

In the present work we theoretically investigate the vi­
bronic coupling of resonance states. To be specific we con­
fine ourselves to electron-molecule scattering via shape re­
sonances3 and investigate elastic scattering and vibrational 
excitation of the target molecule. It should be noted, how­
ever, that this is only a minor restriction. Our main concern 
is the study of the nuclear dynamics in vibronically coupled 
resonance states which is formally the same for most kinds of 
resonance states. 

Electron transmission spectra have been reported in the 
literature for many molecules.5,6 For polyatomic molecules 
one often recognizes in these spectra the presence of two or 
more relatively close-lying resonances. A particularly nice 
example is the transmission spectrum in p-benzoquinone5

,7 

which exhibits four discernible resonances within an energy 
range ofless than 4 eV. Energetically close-lying resonance 
states suggest that vibronic coupling effects between these 
states might be important and have to be considered. More­
over, since electron transmission spectroscopy is probably 
insensitive to the detection of broad resonances, we may as­
sume even more resonances to be present which might over­
lap with the observed ones, thus enhancing the probability 
for non-Born-Oppenheimer effects to occur. 

The intense excitation of single quanta of nontotally 
symmetric vibrational modes of the target molecule by reso-

., Permanent address: Departamento de Fisica, Universidad Nacional. Bo­
gota, Columbia, AA 91060. 

nant electron impact gives evidence of the vibronic coupling 
mechanism in resonances. This kind of excitation has been 
observed in scattering experiments for many molecules. Ex­
amples are benzenes and boron trifluoride.9 Further indica­
tion for vibronic coupling in resonances is given by strong 
geometry changes in resonance states which lower the sym­
metry of the anion compared to that of the target molecule. 
There are not many computations on bound and temporary 
anionic states available in the literature to draw conclusions 
on whether such changes are rare or common. Prominent 
examples for strong geometry changes are acetylene and hy­
drogen cyanide. 10 

A few studies of the interaction between resonances are 
available in the literature. Mies 11 has been the first to investi­
gate this interaction via coupling to the nonresonant scatter­
ing continuum. ros model calculations show that remarka­
ble effects are possible for overlapping resonances. The same 
mechanism has been proposed by Hazi 12 to interpret experi­
ments on dissociative electron attachment to hydrogen bro­
mide. Devdariani et al. 13 have more generally investigated 
the interaction between resonances in the context of atomic 
collisions using two local models. For completeness we also 
mention the work by Read 14 and Orgurtsov et al. 15 who have 
investigated vibronic coupling in the target molecule, but 
not between the resonances. 

The general theory of vibronic coupling of resonance 
states is discussed in the next section. Emphasis is laid on the 
potential describing the nuclear motion in the vibronically 
coupled resonance states. In particular, this potential is a 
nonlocal operator implying that, in general, the nuclear dy­
namics is extremely tedious to compute for realistic systems 
and the results obtained are not amenable to interpretation 
in simple terms. To overcome these difticulties, local ap­
proximations are introduced and discussed in Sec. III. In 
Sec. IV a model which has been successfully applied in vi­
bronic coupling cases of bound states is extended to the case 
of resonances. Static and dynamic aspects of the model are 
discussed and, in particular, two-mode nonlocal computa­
tions are presented for the first time. 

II. GENERAL THEORY OF VIBRONIC COUPLING OF 
RESONANCE STATES 

It is well known that resonance states, or briefly reson­
ances, can be described as discrete states embedded into and 
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interacting with a continuum. 16-19 For simplicity we consid­
er only two discrete states Id1) and Id2) and a single elec­
tronic continuum I k ). The generalization to more states is 
straightforward. All states are chosen to be diabatic 
states,20,21 i.e., the nuclear kinetic energy does not couple 
these states. The continuum states are taken to be energy 
normalized and orthogonal to the discrete states 

(klk') = c5(!k 2 -!k '2)cS(.ok - .ok')' (Ia) 

(dilk) = 0; i = 1,2, (Ib) 

(Ic) 

To investigate the vibronic coupling of resonance states 
we consider the resonant vibrational excitation of molecules 
by electron scattering. The projection operator formalism of 
Feshbach22 provides a convenient tool to compute the corre­
sponding cross section. We introduce, as usual, an operator 
A 

Q which projects on the subset of discrete states 
A 

Q= Id1)(d11 + Id2)(d21 (2a) 

and its complement 
A A 

P= l-Q. (2b) 

The full Hamiltonian describing the electron-target system 
is decomposed according to 

(3) 

where HQp = QHP, etc. With the common decomposition 
(3), the electron-molecule scattering Tmatrix can be evalu­
ated in analogy to the well-known single resonance case. 23-30 
The resonant part of the T matrix reads 

T(i-f) = (fIHPQ(E -Heft:)-1HQPli), (4a) 

Heft: =HQQ +HQP(E _Hpp)-1HPQ' (4b) 

Ii) represents the asymptotic state of the incoming electron 
and the molecule in its initial state. Analogously, If) repre­
sents the asymptotic state of the outgoing electron and the 
residualvibrationally excited molecule. E is the total energy 
which is conserved in the scattering process. 

or course, the full T matrix for the process additively 
contains a nonresonant term. For inelastic processes this 
term vanishes if the continuum~ntinuum interaction W is 
neglected or if W is independent of the internuclear coordi­
nates. The nonresonant T matrix can be neglected in many 
cases. In any case the nuclear dynamics in the coupled reson­
ances is described by the resonant T matrix in Eq. (4). 

Including the nuclear degrees of freedom we explicitly 
write for the Hamiltonian 

H=Ho+ U+ V, (Sa) 

Ho = Ho + Id1)E1 (d11 + Id2)E2(d21 

+ f k dk d.ok Ik)Ek (kl, (5b) 

U = Id1) U12(d21 + h.c., (5c) 

V= fkdkd.ok{ld1) V1k (kl + Id2)V2k (kl}+h.c .. 

(5d) 

The relation between the terms appearing in this Hamilton­
ian and the four terms on the right-hand side of Eq. (3) is 
obvious. The first term Ho of the Hamiltonian describes the 

nuclear and electronic motion in the uncoupled discrete and 
continuum states. We suppress for simplicity the transla­
tional and rotational degrees of freedom and write 

Ho = TN + Vo(Q), (5e) 

where TN is the nuclear kinetic energy operator and Vo(Q) is 
the electronic ground state potential energy surface depend­
ing on the internuclear coordinates which are collectively 
denoted by Q. The term U couples the discrete states and the 
interaction V mixes these states with the continuum and con­
verts them into resonances. Since both discrete states inter­
act with the same continuum, the term Vindirectly also cou­
ples the discrete states with each other. Thus both U and V 
give rise to vibronic coupling effects, but the underlying 
mechanisms are very different. 

In principle the Hamiltonian (5) should also contain an 
interaction W which acts only in the continuum. On the 
other hand, the influence of this interaction on the reson­
ances can be included by a redefinition of the basis states Ik), 
i.e., by prediagonalizing the Hamiltonian in the continuum 
(see, for instance, Ref. 31). In electron-molecule scattering 
the interaction W gives rise to nonresonant background scat­
tering. There is much experimental evidence32 that vibra­
tional excitation via resonances is much more effective than 
via nonresonant processes, except possibly near threshold 
and in forward scattering. We may thus neglect the depen­
dence of Wand of the continuum states Ik) on the internu­
clear distances Q. The energies E1 and E2 of the discrete states 
and the discrete state-continuum and discrete state-discrete 
state matrix elements V1k , V2k , and U12 depend on the co­
ordinates Q. 

To proceed we assume the Born-Oppenheimer or, more 
precisely, the adiabatic approximation to hold tor the target 
molecular states and write 

Ii) = Ik;) 10) I~o), 

If) = Ik[) In) I~o)· 

(6a) 

(6b) 

10) and In) denote the target vibrational initial and final 
states, respectively and I~o) is the electronic state of the 
target. The Born-Oppenheimer approximation is usually ex­
cellent for molecules in the electronic ground state. In a dif­
ferent context, the impact of deviations from this approxi­
mation on the scattering cross sections has been discussed by 
Read 14,33 and Ogurtsov and Kazantseva. 15,34 

Using the Hamiltonian (5), expression (4), and the ansatz 
(6), we may eliminate the electronic degrees offreedom from 
the T matrix which now takes on the form 

(7) 

V k is a column vector with elements V1k and V 2k and the 
2 X 2 unit matrix is devoted by 1. K is an effective Hamilton­
ian which controls the nuclear dynamics in the coupled reso­
nance states and reads 

V1(Q) and V2(Q) denote the diabatic potential energy sur­
faces of the discrete states Id1) and Id2), respectively. U12(Q) 
is the interaction matrix element of these states. The matrix 
F = {F pq } appears as the result of the interaction of the dis-
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crete states with the continuum and may be called the level­
shift operator. Its elements are given by (p,q = 1,2) 

Fpq(E - Ho) = l1pq (E - Ho) - (iI2)r pq(E - Ho), (9a) 

r pq(E) = 21T f k dk do.k Vpk8(E - k 2/2W:k' (9b) 

l1 (E)=~fdE,rpq(E'). 
pq 21T E-E' 

(9c) 

P is Cauchy's principal part. The level-shift operator de­
pends explicitly on the nuclear coordinates via the matrix 
elements Vlk (Q) and V2k (Q). 

Equations (7H9) are the basic equations of this section 
and deserve some discussion. In the theory of resonant elec­
tron-molecule scattering via a single resonance state the nu­
clear dynamics in this state is governed by an effective Ha­
miltonian which is identical with a diagonal element of Kin 
Eq. (8), say Kll (see Refs. 23-30, and 35). The effective p0-

tential VI(Q) + F l1(E - Ho) is complex, energy dependent, 
and nonlocal. In the case of two and more resonance states, 
the same effective potentials describe the nuclear dynamics 
in the diabatic resonance states.63 These states are coupled to 
each other by two different types of interactions. An interac­
tion UI2 which depends only on the internuclear coordinates 
and an interaction FI2 which is complex, energy dependent, 
and nonlocal. Without the level-shift operator, K describes 
the nuclear motion in vibronically coupled bound states and 
U12 is the corresponding vibronic coupling term (see, e.g., 
Ref. 37). FI2 describes the coupling through the common 
continuum. 

In a simple picture, the potential U in Eq. (5) can be 
viewed as a "hopping" term between the discrete states and 
the potential Vasa hopping term between the continuum 
and a discrete state. Owing to U, the electron may hop from 
one discrete state to the other, thus coupling directly these 
states. V couples the states only indirectly: the electron may 
hop from one discrete state to the continuum and subse­
quently into the other discrete state. We speak of direct and 
indirect vibronic coupling, respectively. Mies I I has first stud­
ied the interaction of resonances of the same symmetry via 
the latter coupling mechanism. The same mechanism has 
been proposed by Hazil2 to explain the experimental find­
ings in the dissociative electron attachment of HBr. Both 
coupling mechanisms have also been investigated by Dev­
dariani et 01.13 within the Demkov and Nikitin models, 
which are local models, in the context of atomic collisions. 

Experiments indicate that single quanta of nontotally 
symmetric vibrational modes are often excited in electron­
molecule scattering processes.8

•
9

•
32 This fact cannot easily be 

explained when considering isolated resonances.8 The vi­
bronic coupling mechanism, however, provid~ a natural ex­
planation for this observation. In this work we consider a 
polyatomic molecule which belongs to an abelian point 
group. We assume two discrete states which transform ac­
cording to different symmetry representation r I and r 2' 

These states are coupled through an, obviously nontotally 
symmetric, mode. described by the coordinate Q" which 
transforms according to r .. ' We call this mode the coupling 
mode. Since the Hamiltonian is totally symmetric, the pro­
duct of the representations of the discrete states and of this 

mode must contain the totally symmetric representation r , 
i.e., the coupling mode obeys the selection rule ' 

(10) 

The interaction matrix element UI2 also transforms as r" 
and is an odd function of the coordinate Q". Since any mole­
cule possesses at least one totally symmetric mode, we con­
sider in addition such a mode and denote its coordinate Q . 
The vibrational states of the target molecule are now In,n .. ), 
where n, and n.. are quantum numbers of the totally and 
nontotally symmetric modes, respectively. The extension to 
nonabelian point groups and the inclusion of additional vi­
brational modes is straightforward. 

The effective Hamiltonian is a 2 X 2 matrix and, hence, 
the T matrix (7) can be expressed as a sum of four terms 

T(i-f) = T\I + T22 + TI2 + T21, (l1a) 

where (p,q = 1,2) 

Tpq = (n,n .. lV:k)EI-K);IVqk/IO,O). (lib) 

In contrast to U12, the functional form of the interaction 
matrix elements Vpk is not restricted by symmetry consider­
ations. Since the discrete and continuum states are diabatic 
states, we assume that the latter elements are slowly varying 
functions of the internuclear coordinates. For simplicity we 
take them to be independent of the nontotally symmetric 
coordinate Q .. , but not of Q,. Actually it suffices to require 
that the elements Vpk are even functions of Q .. in order to 
derive Eqs. (12H17). It should be noted that the widths 
r pp (E) = 21T f do.k 1 V pk 12 are even functions of Q ... To in­
vestigate the influence of the dependence of V pk on Q .. , one 
may expand this quantity in powers of Q .. about some refer­
ence geometry, which is usually the equilibrium geometry of 
the target, and repeat the following calculatio~. 

We note that the coupling element F I2(E - Ho) appear­
ing in the effective Hamiltonian (8) vanishes because the dis­
crete states have different symmetries [consult Eq. (9)]. 
Thus, the indirect vibronic coupling mec~is not effec­
tive. Furthermore, since U\2 is an odd function of Q .. , the 
diagonal and nondiagonal elements of K and hence also the 
corresponding elements of its .resolvent transform according 
to different symmetry representations. Consequently, either 
T\I and Tn or TI2 and T21 are equal to zero depending on 
whether an odd or even number of quanta of the nontotally 
symmetric mode are excited. The differential cross section 
for vibrational excitation now reaQ.s 

(
dO' ) (21T)4 2 

dO. ".even = k: ITIt + T221 , 

(
dO') = (21T)4 IT + T 12 
dn k2 12 21' 

u ",.odd i 

(12a) 

(12b) 

The number of n, of totally symmetric quanta is arbitrary. If 
the target molecule is not in its vibrationless ground state 
10,0), but in some excited state Im,m .. ), we may just substi­
tute in Eq. (lib) the former state by the latter one. Then Eqs. 
(12) hold for (n .. - m .. ) being even and odd numbers, respec­
tively. 

Once the vibronic coupling mechanism is neglected, i.e., 
U\2 = 0, the cross section for the excitation of an odd num­
ber of nontotally symmetric quanta vanishes. Only even 
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quanta of the coupling mode can be excited. The situation 
changes if the expansion of Vpk in Q,. contains odd powers. 
In this case an odd number of nontotally symmetric quanta 
can be excited by the resonant process, without vibronic cou­
pling, but we expect the corresponding cross sections to be 
small. The vibronic coupling mechanism, on the other hand, 
may lead to substantial cross sections. This is demonstrated 
by the dynamical calculations of Sec. IV. The situation is 
somewhat related to that encountered in optical spectrosco­
py. Within the well-known Condon approximation, where 
the oscillator strength is taken to be constant in Q, only even 
quanta of nontotally symmetric modes can be excited.37 The 
vibronic coupling mechanism is often found to be responsi­
ble for the strong excitation of an odd number of quanta of 
these modes.36 

To calculate the integral cross section for each vibra­
tional excitation, we integrate over all final angles of the 
outgoing electron and average over the orientation of the 
molecular target. Here and in the following we choose the 
ground state energy to be the zero point of our energy scale, 
i.e., E = k 2/2 is the kinetic energy of the incoming electron 
and no contains no zero-point energy. The angular depen­
dence of the Tmatrix is carried by the elements V pk' Because 
of the different symmetries of the discrete states, integration 
over the angles of the outgoing electron eliminates the mixed 
forms T12TfIt T21Tt2' TllTf2' and T22Ttl' We introduce 
the new quantities 

IVPE 12 = 217 f dOk IVPk 12; P = 1,2 (13) 

and "T-matrix elements" (p,q = 1,2) 

Tpq(E) = (ngn,.IV;E,(El- KJ..,; IVqEIO,O). (14) 

To avoid confusion we shall always write T pq (E) and T pq to 
indicate that the definitions ( 14) and (11 b), respectively, hold. 
The cross sections now take on the appearance 

o1E;n,.even) = ~ITll(EW + IT22(EW), (lsa) 
2E 

o1E;n,.odd) = ~IT12(EW + IT21(EW). (lsb) 
2E 

The expressions (15) for the cross sections are particu­
larly simple, since mixed terms do not appear. The scattering 
process may be viewed as the incoherent superposition of 
two "scattering processes". For n,. being an even number, 
for instance, 1 T pp (E) 12 describes that the incoming electron 
first hops into the discrete state Idp ) and the outgoing elec­
tron leaves the molecule from the same state. Of course, dur­
ing the scattering process the electron has visited both dis­
crete states. We may thus introduce the partial integral cross 
sections 

O"pq(E) = ..!:...ITpq(EW (16) 
2E 

and consider the continua coupled to the respective discrete 
states as quasiscattering channels. 

Under certain conditions the differential cross sections 
(12) can be related to the integral cross sections (15). In the 
case of a single discrete state it is known3

8-40 that for scatter­
ing in a single partial wave, the differential cross section can 
be expressed as the product of an energy-independent angu-

lar factor and the integral cross section. If in the absence of 
vibronic coupling the scattering is dominated by a single par­
tial wave for each discrete state, we may derive analogous 
relations which hold in the presence of vibronic coupling. 
For the excitation of an odd number of nontotally symmetric 
quanta the result is partiCUlarly simple and reads 

( dO") =/(0)[0"12(E) + O"21(E)] 
dO n.odd 

+/dO~[TdE)Tfl(E) 
2E 

+ TT2(E)T21(E)], (17a) 

where 0 is the scattering angle. The angular factors/(O) and 
/dO) are given in Appendix A. The analogous result for n,. 
being an even number is 

(:~t,.even = gll(O Pll(E) + g22(0 )0"22(E) 

+gdO~[Tll(E)Tf2(E) 
2E 

+ TTdE )T22(E)]. (17b) 

The angular factorsgll(O ),g22(0), andgdO) areals.o given in 
Appendix A. gll(O) andg22(0) are the same as those derived 
for single discrete states.3

8-40 In contrast to Eq. (12), the dif­
ferential cross sections (17) are averaged over the orienta­
tions of the molecular target. 

According to Eqs. (ISH 17) the angular dependence of 
the differential cross sections varies with the total energy E. 
The factors/(O), gll(O), andg22(0) are symmetric functions 
withrespecttoO = 17/2. TheangularfactorsfdO )andg12(O), 
on the other hand, are antisymmetric about 0 = 17/2. Of 
course, all angular factors and thus the differential cross sec­
tions are periodic functions with period 17. In the presence of 
a single resonance only, the angular part of the cross sections 
does not depend on the energy and is symmetric about 
o = 17/2. Hence, a strong dependence on energy and an 
asymmetric shape of the differential cross sections are indi­
cations for the presence of two or more resonances. The ap­
pearance of odd quanta of nontotally symmetric modes im­
plies, furthermore, that the vibronic coupling mechanism is 
active in these resonances. 

III. LOCAL APPROXIMATIONS 

In the preceding section the general theory of nuclear 
dynamics in vibronically coupled resonance states has been 
discussed. The nuclear motion is found to be governed by an 
effective, complex, energy-dependent, and nonlocal matrix 
potential. Although the relevant working equations are of 
simple structure, explicit computations for realistic systems 
with such an effective Hamiltonian are extremely tedious. 
As usually done in the simpler case of a single resonance 
state, we discuss in the following a few approximations 
which, in general, simplify the computational procedure and 
allow for the interpretation of the results which is difficult 
otherwise. These approximations have in common that the 
nonlocal Hamiltonian is replaced by a local Hamiltonian. 
Thefixed-nuclei limit, TN-o, is a convenient starting point 
for the discussion of local approximations. In this limit the 
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theory is particularly transparent and contact can be made 
with fixed-nuclei electronic ab initio calculations. 

A. The fixed-nuclei limit 

In the fixed-nuclei limit the operator E -Ho appearing 
in the argument of the level-shift operator in Eq. (S) reduces 
to 

E' = E - Vo(Q). (IS) 

For a fixed total energy of the system, E ' is the kinetic energy 
of the electron and is a function of the internuclear distances 
because the threshold itself has become a function of these 
distances. 

Considering a single resonance state, the scattering 
cross section in the fixed-nuclei limit takes on the appear­
ance similar to the standard Breit-Wigner formula41 

o{E') = 2;' IT(E'W 

21T [r(E')/2]2 

=£7" [E' - E(Q) - a(E'W + [r(E')I2F' 
(19) 

E(Q) is the energy of the discrete state relative to threshold 
and a - ir /2 is the level-shift function for this state. We 
remind that this function depends also explicitly on Q as can 
be seen from Eq. (9). Another quantity of interest is the fixed­
nuclei phase shift 8(E') which can be obtained from the K 
"matrix" K (E') according to 

t 8(E') =K(E') = - r(E')/2 (20) 
g E' - E(Q) - alE') 

In the case of vibronically coupled resonances the re­
sulting expressions for the fixed-nuclei electron-molecule 
scattering cross section and the corresponding phase shift 
are more complicated than for a single resonance. These ex­
pressions can be obtained from the working equations of the 
preceding section. To introduce the fixed-nuclei limit for vi­
bronically coupled resonances, it is convenient to rewrite 
Eqs. (14H16). We define a matrix T(E), 

(21) 

which allows the evaluation of the cross section according to 

o{E) = ~Tr[Tt(E)T(E)], 
2E 

(22) 

where Tr(A) is the trace of A. The K matrix corresponding to 
T(E) is defined as usual41 (apart from a factor 1T) 

K(E) = - T(E)[ 1 - i T(E)) -I. (23) 

The fixed-nuclei limit is obtained if E is replaced by E' de­
fined in Eq. (IS) and the elements Tpq(E'),p,q = 1,2, are de­
fined by 

Tpq(E') = [rpp(E')] 1/2[ E'l- K FN(E')];; I [rqq(E')] 1/2, 
(24a) 

K = (VI + Fll(E') FdE') + Ul2) (24b) 
FN F21(E') + UI2 V2 + F22(E') , 

where F pq (E') is the fixed-nuclei level-shift function, see Eq. 
(9). 

The fixed-nuclei K matrix corresponding to the exact K 
matrix in Eq. (23) reads 

K(E') = _ 1 
(AIA2 - U~2) 

(
A2rll - UI2[rllr22P/2) 

X _ Ul2[rllr22p/2 Alr 22 ' 

(2Sa) 

Ap = E' - Ep(Q) - applE '); p = 1,2. (2Sb) 

It should be remembered that Ep = Vp - Vo is the energy of 
the discrete state Idp) relative to the threshold Vo which is 
the potential energy surface of the target. The cross section is 
now obtained from 

o{E') = ;;: ~ sin2 8j (E '), (26) 

where the phase shifts are related to the eigenValUes K ± (E') 
ofK(E') by 

tg 8 ± (E') = K ± (E '). (27) 

Neglecting vibronic coupling in the resonance states, i.e., 
UI2 = 0, the matrix K(E ') becomes diagonal and we recover 
Eq. (20) for a single resonance state. 

In the presence of a single resonance and for weakly 
energy-dependent level-shift functions, the K matrix (20) 
possesses only one pole. Indeed, this pole is commonly used 
to define the potential energy curve of the reso­
nance.26,30,31,42 In the present case of two resonances the K 
matrix Eq. (25) exhibits two poles which can be used to define 
potential energy curves for these resonances. These poles are 
obtained as the zeros of AIA2 - U~2' We may write 

A)A2 - U~2 = [E' - W+(E')][E' - W_(E')], (2Sa) 

where the new quantities 

2W ± = EI + all + E2 + a 22 

± [(EI + a l - E2 - a 2)2] + 4U~2 1/2 (2Sb) 

help to express the phase shift as 

11 , r±[ 1 1] tgu±(E)= -- - , (29a) 
2 E'-W+ E'-W_ 

r ± (E') = [rllA2 + r2~1 ± [(rllA2 - r2~1)2 

+4rllr22u~dI/21/2(W+ - W_). (29b) 

As discussed in the preceding section, the interaction of 
the discrete states with the continuum gives rise to the level­
shift functions Fpp = a pp - irppl2. The index p, which 
takes on the values 1 and 2, characterizes the discrete states 
which are diabatic states. The nuclear motion in the diabatic 
resonance which has developed from the discrete state Idp > 
is governed by the effective potential Jj, + app - irpp/2. In 
the present section we have diagonalized the matrix K, Eq. 
(25), and thus obtained the quantities 

Vo + W ± (E') - ir ± (E')/2 

which, in analogy to the single-resonance case, can be viewed 
as the effective potentials describing the nuclear motion in 
the adiabatic resonances. From Eq. (29) we see that both 
adiabatic resonances contribute to the phase shifts 8 + and 
8 _. It will become clear in Sec. III B that this is due to the 
dependence of the effective potentials on the energy. 

J. Chern. Phys., Vol. 84, No.1, 1 January 1986 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.89.98.137 On: Sun, 30 Nov 2014 02:07:35



Estrada, Cederbaum, and Domcke: Vibronic coupling 157 

B. Local potentials 

The energy dependence of the level-shift functions 
F pq (E') complicates the calculations of the cross sections. In 
the presence of a single resonance it has been shown43 that a 
complex potential which depends solely on the nuclear co­
ordinates may explain the experimental observations in 
some cases. This model has been termed the boomerang 
model.43 We, therefore, extend this model to the present situ­
ation ofvibronically coupled resonances. The elimination of 
the energy dependence of F pq is achieved by the Breit­
Wigner approximation.41

,44 However, this approximation is 
not unique and may lead to different local potentials.45 

Here we follow the most widely used local approxima­
tions25-31.42 obtained by replacing F pq (E ') by their values at 
the resonance energy which is defined by the pole of the 
fixed-nuclei K matrix. For a single resonance this energy is 
determined via Eq. (20), 

E '(Q) - E(Q) - a [E '(Q)) = O. (30a) 

E '(Q) is now a function of the nuclear coordinates and the 
width r[E '(Q)] and shift a[E '(Q)) become functions of these 
coordinates only. We denote these energy independent func­
tions by r(Q) and a(Q), respectively. In the case of two re­
sonances, the fixed-nuclei K matrix (25) exhibits two poles 
giving rise to two resonance energies W +(Q) and W _(Q). 
These are determined via 

E'(Q) - W ± [E'(Q)) = 0, (30b) 

where W ± (E') have been given in Eq. (28). 
By noting that AIA2 - U~2 in Eq. (28a) vanishes at 

E' = W ± (Q), we easily obtain the following expressions for 
the phase shifts in the local approximation 

tnB (E') = _ r ± (Q)l2 
;t: E'- W±(Q) 

(31a) 

In contrast to the original expression (29) for the phase shifts 
where both W+(E') and W_(E') have been seen to contri­
bute, only a single resonance energy contributes to a phase 
shift in the local approximation. The situation is now very 
similar to that encountered in the case of noninteracting re­
sonances, except that this interaction is implicitly taken into 
account in r ± and W ± . We may thus identify r (Q) with 
the widths corresponding to the energies W ± (Q).From Eq. 
(29b) one finds 

r ± (Q) = Irll [ W ± (Q)]A 2 [ W ± (Q)] 

+ r 22 [ W ± (Q)]Al [W ± (Q)] I/[ W +(Q) - W _(Q)). (3Ib) 

The local, energy independent effective potential needed 
to compute the vibrational excitation cross sections cannot 
be obtained in analogy to the single resonance case by replac­
ingE' in the energy dependent potential by E '(Q). Two solu­
tions of Eq. (30b) are available and it is not clear how the 
replacement should be performed in the working equations. 
This difficulty arises because the Hamiltonian K is in the 
diabatic representation and W ± (Q) are the adiabatic reso­
nance energies. W +(Q) and W _(Q) do not arise naturally as 
the eigenvalues of a single Hermitian matrix. There are infi­
nitely many ways to construct Hermitian matrices with 
W ± (Q) as eigenvalues all differing by a unitary transforma­
tion. This contrasts the situation encountered for noninter-

acting resonances, where the diabatic and adiabatic repre­
sentations are equivalent and unique. The problem can be 
partially solved by considering W ± (Q) - ir ± (Q)/2 as the 
potentials controlling the nuclear dynamics in the adiabatic 
resonances which are assumed not to interact with each oth­
er. This procedure is useful in those cases where nonadiaba­
tic effects are small (see Sec. III C). 

To avoid the abovementioned difficulty one can alterna­
tively introduce the diabotic resonance energies by solving 
two equations of the type (30a), one for each diabatic reso­
nance, and subsequently insert the solutions E 1 (Q) and 
Ei(Q), 

E;(Q) - Ep(Q) - app [E;(Q)] = 0; p = 1,2 (32) 

into the level-shiftfunctionsFII (E') andF22(E '), respectively, 
or, more precisely, into the matrix elements VIE' and V 2E" 

In particular, the Hamiltonian K FN (E') introduced in Eq. 
(24) is replaced in a unique way by a Q-dependent Hamilton­
ian, which we denote by K FN (Q). After these replacements 
of energy dependent quantities by energy independent ones, 
the following expression for the T matrix can be used to 
evaluate the cross sections 

(33) 

Note that r pq(E) = V;E VqE . In principle one may also re­
place the entry and exit amplitudes40 VpE, and VpEf in Eq. (33) 
by the corresponding energy independent quantities. 

This approach via diabatic resonance energies should be 
particularly useful if the level-shift functions depend only 
weakly on the energy or if the coupling element U12 is small. 
In other cases it could be of advantage to proceed via the 
adiabatic resonance energies. 

C. The adiabatic approximation 

In optical spectroscopy of bound electronic states and in 
other related fields the so-called Franck-Condon and adia­
batic approximations are commonly used.46 The adiabatic 
potential energy surfaces are calculated and subsequently 
the nuclear motion is determined independently for each 
electronic state. The same procedure could also be useful in 
the case of resonance states. To keep the discussion short we 
follow here Ref. (36) which treats the analogous electronic 
bound state problem and refer to this reference for more 
details. 

Our starting point is expression (33) for the Tmatrix in 
which K FN(Q) is the effective potential describing the nu­
clear motion in the coupled resonance states. The eigenval­
ues V ± of the effective potential are obtained using the ei­
genvector matrix S(Q) according to 

V(Q) = S(Q)K FN(Q)st(Q) = (: +(~~(Q~). (34a) 

2 V ± = VI + FII + V2 + F22 ± [( VI + FII - V2 - F22)2 

+ 4(U12 + FI2)2j1/2 (34b) 

where the superscript "t" indicates the operation "trans-
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pose". Care must be taken at degeneracies V + = V_at 
which S st = t might not be valid. The eigenvalues V + and 
V_are functions of the nuclear coordinates and can be con­
sidered as the adiabatic potential energy surfaces of the adia­
batic resonances. In contrast to the bound state problem, 
these surfaces are complex. The nuclear motion on these 
surfaces is thus more complicated in the case of resonances 
than for bound states. 

Since the eigenvector matrix S depends on the nuclear 
coordinates, this matrix does not commute with the nuclear 
kinetic energy operator TN appearing in Eq. (33). In com­
plete analogy to the situation found for bound states, the 
transformed Hamiltonian reads 

K'=:S[TNt + KFN(Q)]St = TNt + V-A. (35) 

In addition to the adiabatic potential energy surfaces there 
appears in the Hamiltonian K' a nondiagonal matrix opera­
tor A. The nondiagonal term AI2 depends on the nuclear 
momenta and couples the nuclear motions in the adiabatic 
resonances. The nonadiabatic operator A-as we shall call it­
is neglected in the adiabatic approximation. For vibronically 
coupled bound states its behavior as a function of the nuclear 
coordinates gives much information on the validity of the 
adiabatic approximation. Its investigation should also be 
helpful in the understanding of the nuclear dynamics in re­
sonances. Here, the additional complication arises that the 
nonadiabatic operator is complex. The explicit expressions 
for the elements of A are very similar to those given in Ref. 36 
for bound states and are not repeated here. We shall rather 
discuss these elements in Sec. IV in the context of an explicit 
example pointing out the major differences between bound 
and resonance states. 

In the adiabatic approximation the nonadiabatic opera­
tor A is neglected and each element T (E) of the scattering 
Tmatrix (33) reduces to pq 

Tad(E) = T+(E) + T_(E), (36a) 

(36b) 

where Xi + and X I _ are given by Slq VqE and S2q V E' re­
spectively, for any element Tpq(E), and Xf + and X;_' are 
defined analogously. It is seen that the Tmatrix in the adia­
batic approximation decouples into two individual T matri­
ces T + and T _. Each of T + and T _ describes the scattering 
via a single adiabatic resonance, the nuclear motion in this 
resonance being governed by the complex potential energy 
surface V + and V _, respectively. We may thus treat the 
reSOnances separately in the adiabatic approximation. In or­
der to compute the scattering cross sections we must super­
pose T + and T _ according to the general formulas (15H 17). 
This gives rise to interference effects. 

In optical spectroscopy the so-called Franck-Condon 
approximation is widely used. This approximation can be 
determined by starting from the adiabatic approximation 
and neglecting the dependence of optical transition matrix 
elements on the nuclear coordinates. For resonance states 
we may use the same procedure and consider the quantities 
Xf ± and XI ± in Eq. (36) to be independent of Q. It is con­
venient to define these Q-independent quantities by evaluat­
ing them at some reference geometry Qo, which is usually the 

equilibrium geometry of the target. Consequently, the Tma­
trix in the Franck-Condon approximation reads (p = 1,2) 

(Tpclpp = V;Ef(nl [E - TN - V ± ] -110) VpE" (37a) 

(Tpclpq = 0 for p-::j:.q. (37b) 

Whether V + or V_appears in Eq. (37a) for a given index p 
depends on the discrete state Idp ) from which this adiabatic 
potential energy surface originates. Interestingly, TI2 and 
~21 vanish in the Franck-Condon approximation implying, 
vIa Eq. (15), that an odd number of quanta of nontotally 
sym~etri.c vibrational modes cannot be excited in this ap­
proxImatIon. The same situation is encountered in the treat­
ment of bound states.37,46 

IV. MODEL EXAMPLES OF NUCLEAR DYNAMICS IN 
INTERACTING RESONANCES 

Numerical nonlocal calculations of the nuclear dynam­
ics in vibronically coupled resonances are prohibitively diffi­
cult for realistic systems. Even in the case of a single reso­
nance state, complete nonlocal calculations are hardly 
available. They exist for the nitrogen molecule,49 the hydro­
gen molecule, so and a nearly complete nonlocal calculation 
also for the fluorine molecule.sl If two or more nuclear co­
ordinates are involved, as is expected for polyatomic mole­
cules, the computation is extremely tedious even for an iso­
lated resonance. Making use of local approximations 
reduces considerably the numerical effort, but the computa­
tions are still cumbersome for real polyatomic molecules and 
are beyond the scope of this paper. 

Nevertheless, we are interested in investigating possible 
dynamical effects due to vibronic coupling, which can be 
done by resorting to models. In this way we may not repro­
duce or predict the details of experimental observations, but 
rather aim at the general aspects of the possible phenomena. 
We have a particular model in mind which has been success­
ful in the case ofvibronic coupling in bound states.36,S2,53 To 
be specific we consider here two discrete states of different 
symmetry coupled by a nondegenerate nontotally symmet­
ric vibrational mode described by the normal coordinate Q ... 
Furthermore, we include the action of a totally symmetric 
mode with the normal coordinate Qg. For this situation Eqs. 
(15H 17) apply. The model now consists of the following ef­
fective Hamiltonian: 

(38) 

where the nomenclature of Ref. 36 is used. Comparing with 
the general expression (8) we note that the discrete-state 
quantities VI - Yo, V2 - Yo, and Ul2 have been expanded 
about Qo = 0 in powers of Qg and Q" up to the linear term. 
EI and E2 are the vertical energy differences at.Qo between 
the target potential energy surface and the corresponding 
diabatic surfaces of the discrete states Idl ) and Id2 ), respec­
tively. The quantities K l' K2' and A. are called intra- and inter­
state coupling constants.36 

The target system is taken to be a two dimensional har­
monic oscillator, i.e., Ho takes on the appearance 

Ho = TN + Yo, (39a) 
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FIG. 1. Adiabatic potential energy curves of the square-root intersection model along the nontotally symmetric coordinate Q. for two characteristic values of 

the Q. coordinates. Left side (lA): Q. is chosen at the intersection, i.e., Q. = Q;. Rightside (lB): Qg is chosen such thatthe energy dilference at Q. = 0 is 0.25 

eV. The relevant parameters areA = 1.1, r ll = 0.25, r 22 = 2.5, and iii. = 0.15, allin eV. 

a2 a2 

TN = - ~g aQ; - !(()u aQ! ' (39b) 

Vo = !(()gQ; + !(()uQ;, (39c) 

where (()g and (()u are the vibrational frequencies of the total­
ly symmetric and nontotally symmetric modes, respectively. 
The diabatic potential energy surfaces of the discrete states 
are thus shifted harmonic surfaces. These states are coupled 
to the continuum resulting in the nonlocallevel-shift opera­
tors Fll and F22, and to each other via the vibronic coupling 
term U12 = AQu. 

A. Static aspects of the model 

As discussed above, the potential energy surfaces of the 
discrete states are harmonic surfaces shifted with respect to 
the target surfaces. Despite this simple structure of the dia­
batic surfaces, the adiabatic surfaces are of considerable 
complexity. Since the discrete states are of different symme­
tries, the adiabatic surfaces may cross at Qu = O. As soon as 
Qu takes on values different from zero the adiabatic surfaces 
repel, giving rise to a conical intersection. 54-56 Conical inter­
sections play an important role in the nuclear dynamics in 
bound electronic states of polyatomic molecules.36 In the 
case of resonance states, the coupling to the continuum may 
considerably change the picture. The potential energy sur­
faces become complex functions of Q. In the following we 
briefly discuss within the present model the major differ­
ences between bound and resonance states. To keep the dis­
cussion as transparent as possible we put the widths r 11 and 
r 22 to be constants, i.e., independent of the energy and the 
nuclear coordinates. 

In the bound state problem, i.e., r 11 = r 22 = 0, the 
adiabatic·surfaces V +(Qg,Qu) and V _(Qg,Qu)exhibitaconi­
cal intersection at Q~ = 0 and Q; = (E2 - El)/(Kl - K2)' A 
perspective view of these surfaces for a prototype conical 
intersection can be seen in Fig. 6 of Ref. 36. In the present 
model these real surfaces are identical with the poles of the 
fixed-nucleiKmatrix, W+ and W_,definedinEq. (30b). We 
sluUl use this notation to distinguish between the complex 
and the corresponding real surfaces. In the resonance-state 
situation the surfaces V ± are given by the eigenvalues of 
K - TNt and read 

V ± (Qg,Qu) = Vo(Qg,Qu) + { [ZI + Z2] 

± [(ZI - Z2)2 + 4A 2Q!] 1/2}/2, (4Oa) 

Zp(Qg) = Ep + KpQg - irpp/2; p = 1,2. (40b) 

Being complex, these surfaces may intersect at two points, 
the coordinates of which are given by 

Q u± = ± (rll - r 22)/4A, (41a) 

(41b) 

The value of Qg at these intersections is the same as for the 
conical intersection in the corresponding bound state prob­
lem obtained for vanishing widths. In Fig. IA the surfaces 
V ± are shown as a function of Qu at Qg = Q;. The real and 
imaginary parts of the curves are shown separately. For val­
ues of Qu between the degeneracy points Q u+ and Q;: the 
real parts, Re V + and Re V _, are identical while the imagi­
nary parts, 1m V + and 1m V _, are not. These parts are iden­
tical everywhere else and the widths become (r 11 + r 22)/2. 
The two curves repel each other giving rise to an energy split 
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FIG. 2. Perspective view of the adiabatic energy surfaces of the square-root 
intersection model. Only the real parts of the surfaces are shown. 

U· [Q! - (Q !)2] '/2 compared to the split of UQu in the 
bound state problem. 

Figure IB shows the surfaces V ± as a function of Qu for 
a value of Qg which is different from Q ~. The degeneracies of 
Re V + and Re V_and also of 1m V + and 1m V_are lifted. 
For small values of IQg - Q~ I the energies at the points (41) 
split proportionally to [Qg - Q ~ ] '/2, in contrast to a coni­
cal intersection situation, where the split is linear in 
Qg - Q ~. The vicinity of the intersection of V + and V_is 
thus characterized by the square roots of Qg - Q ~ and 
Qu - Q! along the Qg and Qu coordinates, respectively. 
This "square-root intersection", as we call it, is typical for 
complex surfaces. A perspective view of the real part of the 
surfaces V + and V_is given in Fig. 2 for a square-root inter­
section situation. The types of intersections typical for 
bound state potential energy surfaces are discussed in Ref. 
56. 

The existence of two intersection points of V + and V_ 
gives rise to another interesting difference between the real 
parts of these functions and W ± • In a conical intersection 
situation, W + exhibits as a function of Qu a single minimum 
at Qu = o. W _ possesses a maximum at this point, but may 
show two minima at Qu 1= 0; The condition for this symmetry 
breaking is 

IU 2/fd ,,(E, + K,Qg - E2 - K2Qg)i > 1. 

The symmetry breaking by a nontotally symmetric coupling 
mode is a well·known phenomenon for bound states.57 As 
seen in Figs. 1 and 2, the real part of V_may exhibit three 
minima, one at Q" = 0 and two at Q" 1=0. The minimum of 

FIG. 3. Perspective view of the real part of the nonadiabatic coupling ele­
ment g. in the square-root intersection model. 

V_at Q" = 0 has its origin in the fact that for Qg = Q ~, the 
curves Re V + and Re V_are parallel to the target surface Vo 
for values of Qu between Q;; and Q u+ . It is worth noting 
that the two minima at Qu 1= 0 may energetically lie above or 
below the one at Qu = O. 

In the bound state situation, the nuclear motions on the 
adiabatic potential energy surfaces W + and W _ are coupled 
by a nonadiabatic operator. This coupling is singUlar at the 
conical intersection.36 In the present resonance model, the 
nonadiabatic operator, defined via Eq. (35), reads 

~ fda A= - k -
a=g,u 2 

gg = (Z, - Z2)2 + 4A. 2Q~ , 

(Z, -Z2)A. 

(42a) 

(42b) 

(42c) 

As an example the real part of the elementgu is depicted in 
Fig. 3 for a prototype square-root intersection. Both com­
plex elementsgu andgg exhibit two singularities at the inter­
section points given by Eq. (41). The elementgg vanishes at 
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Qu = 0 where Igu I takes on its minimum for fixed values of 
Qg in the vicinity ofQ~. When Ir11 - r221 grows, the inter­
section points around which the elementsgg andgu are sub­
stantial move away from Qu = O. This weakens the nonadia­
batic effects, at least those present in the elastic scattering, 
since the ground vibrational state of the target molecule is 
localized at Qu = o. 

B. Numerical Investigation of the nuclear dynamics 

In this subsection we discuss integral and differential 
cross sections computed using the effective model Hamilton­
ian (38). Although this Hamiltonian is of simple structure, 
the numerical evaluation of the cross sections requires con­
siderable effort. Assuming the hopping matrix elements VIE 

and V2E to solely depend on energy, the expressions for the 
cross sections simplify somewhat and read (p,q = 1,2) 

upq(E) = ~rpp(E f )rqq(Ei)1 (nlRpq lOW, (43) 
2E 

whereRpq is thep,q element ofthe resolvent (El- ~-I. 
Since the Hamiltonian describes linear vibronic coupling, 
the vibrational matrix elements of the resolvent can be calcu­
lated by continued fraction methods.47,48,s8 The evaluation 
of these elements is described in Appendix B. 

We have performed numerous computations of the vi­
brational excitation cross sections for various values of the 
parameters appearing in the Hamiltonian (38). The results 
obtained exhibit several interesting effects originating from 
the vibronic interaction of the resonances. Out of these re­
sults we discuss here a few examples which should help in 
identifying typical vibronic coupling effects. For the sake of 
transparency we begin with examples of single-mode dy­
namics, i.e., only the coupling mode Qu is considered and the 
totally symmetric mode Qg is discarded. Furthermore, we 
put the widths to be constants. In our first example we con­
sider two discrete states with the same energy and identical 
coupling to the continuum, i.e., E I = E2 and r 11 = r 22' 

These states should interact through the nontotally symmet­
ric mode Qu' Short lived states which fulfill these conditions 
to a sufficiently high accuracy are, for instance, core hole 
states of symmetric polyatomic molecules likes9 CO2, The 
problem is exactly solvable, since the effective Hamiltonian 
(38) can be explicitly diagonalized by a Qu-independent or­
thogonal transformation. The result simply reads 

(nuIRpqIO) = L ~~ulm)(mIO)., 
m E - EI + /(i)u - m(i)u + ,r11/2 

(44) 
where 1m) are the vibrational states of the harmonic oscilla­
tor shifted by AQu. Explicit expressions for the product of 
Franck-Condon factors (nu Im)(mIO) can easily be given, 
see, e.g. Ref. 60. It should be remembered that Eq. (44) holds 
forp = qwhennu is an even number and forp:/:q when nu is 
odd. 

The integral and differential cross sections obtained for 
the first example are exhibited in Fig. 4 for the elastic and the 
first inelastic channel. Shown are also the quantities uu(E) 
and udE) [see Eq. (16)]. The differential cross sections are 
normalized to unity at 0 = O. These normalized differential 
cross sections do not depend on the energy E as can be readi­
ly anticipated by considering Eq. (44). The transformation 
leading to this equation tells us that the nuclear motion takes 
place on two decoupled shifted harmonic oscillators, one 
shifted by + AQu and the other by - AQu. Consequently, 
TI2 = T21 and Tu = T22 in every channel and according to 
Eq. (17) the normalized differential cross sections are given 
by 

[/(0) + 112(O)]I[ 1(0) + 1 dO)] 

and 
[gl1(O) +g22(O) + 2gdO)]I[gl1(O) +g22(0) + 2gdO)] 

for an odd and even number of quanta, respectively. 
Since 1(0), gl1(O), and gdO) are symmetric functions 

and 1 dO) as well as gI2(O) are antisymmetric functions of 
o - 1T /2, the differential cross sections shown in Fig. 4 are 
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FlO. S. Integral and dilferential resonant cross sections for the elastic channel n. = ().....() and first vibrationaIly inelastic channel n. = 0-+ I. The differential 
cross sections are normalized to unity at the scattering angle 8 = 00. They are shown for three values of the electron energy: E = 5.3 eV (solid curve), E = S.7 
eV (solid curve with squares), and E = 6.5 eV (solid curve with a few <;irc1es). Partial integral cross sections are also shown below the integral cross sections. 
ul1(E) and u21(E) ascirclesandu22(E) anduI2(E) as crosses. The values of the parameters are the same as in Fig. 4exceptofr 11 = 0.05 eV and r 21 = 0.4SeV. 

"maximally" nonsymmetric about f) = 11"/2. In particular, 
I(f)) + I 12(f)) vanishes at f) = 11" for all kinds of waves parti­
cipating in the scattering. To draw Fig. 4 as well as in the 
following examples studied here we have chosen d waves and 
p waves to dominate the scattering associated with the dis­
crete states Id1) and Id2), respectively. The corresponding 
angular factors are given in Table Al of Appendix A for 
11 = 2, m1 = ± I and 12 = I, m2 = ± I, respectively. 

The parameters in our second example are the same as in 
the first example except that the widths of the two diabatic 
resonances are not equal. We have chosen r II = 0.05 and 
r 22 = 0.45 eV. Their mean value is the same as in the first 
example. The computed cross sections are displayed in Fig. 
5. The elastic cross sections reflect the major differences 
between the two· examples. For ~r¥o, where 
~r = r 22 - r 11' the elastic cross section is more asymme. 
tric and exhibits two main humps. Particularly noticeable is 
the striking difference between the quantities 0"11 (E) and 
0"22(E) which are equal to each other in the first example 
where~r = o. In Fig. 5,O"dE)dominatesoverO"ll(E)which 
is noticeable only around the energy Ell = E22 ofthe diaba­
tic resonances. The ratio of 0"11 and 0"22 can partly be realized 
by considering the prefactors in Eq. (43) which are strongly 
in favor of 0"22' In spite of the smallness of O"ll(E), the exis­
tence of two resonances has considerable impact on the 
asymmetry and energy dependence of the differential cross 
section. 

For the excitation of an odd number of vibrational quan­
ta the partial integral cross sections 0"12(E) and 0"21(E) also 
differ from each other. As can be seen in Fig. 5, both quanti­
ties are substantial. Consequently, the normalized differen­
tial cross section remains highly asymmetric about 11"/2 for 
most enerpes and is similar to that shown in Fig. 4. The most 
sensitive test for the underlying energy dependence is at 

f) = 11", wheredO"/dO vanishes ifT12(E) = T21(E). It should 
be noticed that in the fixed-nuclei approximation we always 
find T I2(E) = T21(E) as can easily be anticipated from Eq. 
(24). For ~r¥o the remarkable deviation of 0"12 from 0"21 
changes strongly with energy E and is of dynamical origin 
and thus difticult to understand in simple terms. Instead of 
being equal, one rather finds 

TI2(E + 7Ui)" ;n-+m) = T21(E + 11U»" ;m-+n) (45) 

which implies that, apart from a shift of the energy axis, the 
cross sections for the vibrational excitations n-+m and m-+n 
are equal to each other for oddln - mi. Note that E is the 
kinetic energy of the incident electron and E + nCiJ" and 
E + mCiJ" are total energies. 

To gain some insight into the partial cross sections 0"12 
and 0"21 we express them in terms of 0"11 and 0"22 for the elastic 
channel. These quantities possess counterparts in the spec­
troscopy of bound states and are thus simpler to rationalize. 
Using the basic relation (43) one obtains the following rela­
tion which is of relevance for small interstate coupling con­
stantA. (p¥q): 

2...t 2 
4 O"qp(E;O-+I) = --Lq(E - CiJ,,)upp(E;O-+O) + o (A. ), 

r 11 r 22 (46a) 
where Lq(E) is a Lorentzian given by 

Lq(E) = [rqq/2]2/{[E-Eq]2+ [rqq/2]2}. (46b) 

In general, 0"12 and U21 for the first inelastic channel can only 
be substantial at energies where the elastic partial cross sec­
tions U22 and 0"11' respectively, are not too small. This finding 
applies to Fig. 5 and in particular to Fig. 6 which shows the 
results of the next example. Following Eq. (46), the presence 
of a small width, say r II' acts on U22 as a "window" via the 
narrow Lorentzian L I giving rise to a sharp peak at 
E~El + CiJ". Such peaks have been observed in some of the 
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FIG. 6. Integral and differential resonant cross sections. For more details see Fig. 5. The values of the parameters are the same as in Fig. 5 except of E, = 5.45 
eV andE2 = 5.85 eV. 

computed inelastic excitation functions. Of course, Eq. (46) 
only applies when A is small or, more precisely, when 
a(E;~2) can be neglected compared to a(E;Q.....+()). 

The results shown in Fig. 6 have been computed using 
the same parameters as used in the preceding example except 
that the diabatic state with the smaller width has been shifted 
downwards by 2tv,,: E2 = E I + 2tv1l • The major impact of 
this change of parameters on the cross sections is the remark­
able increase of the weight of the second hump at about 
E = 6 eV. To explain this finding we resort to Fig. IB which 
shows the adiabatic potential energy curves V ± in a situa­
tion similar to the present one. Assuming the adiabatic ap­
proximation to apply (see Sec. III C), the real part of the 
"lower" curve, Re V _, gives rise to the progression of peaks 
constituting the first hump in the (elastic) cross section of 
Fig. 6. The energy spacing of adjacent peaks is indeed :::::td" 

as expected in such a situation. The second hump corre­
sponds to the real part of the "upper" curve Re V +. This 
curve is steep and leads to large spacings of the energy levels. 
The substructure of the second hump is due to the nonadia­
batic interaction of these levels with nearby lying levels of 
Re V _. The situation in the preceding example, Fig. 5, is 
somewhat different. In this example the adiabatic potential 
curves V + and V_are degenerate at two points as seen in 
Fig. IA. The nonadiabatic matrix elements discussed in Sec. 
IV A diverge at these points and the adiabatic approxima­
tion fails completely. The cross sections resemble, therefore, 
those in our first example shown in Fig. 4, where a QII-inde­
pendent transformation has lead to the exact solution of the 
problem, i.e., where the diabatic picture61 and not the adia­
batic one applies. 

It is encouraging to see that the concepts of adiabatic 
potential energy curves widely used in spectroscopy oflong­
lived states are also useful in the context of scattering via 
resonance states. For a discussion of a related model in spec­
troscopy see, e.g., Ref. 36. In the resonant scattering situa­
tion not only the real parts, but also the imaginary parts of 

the potential curves V + and V_are helpful in the under­
standing of the computed cross sections. At first sight it 
seems peculiar that we do not observe any sharp peaks in 
Figs. 5 and 6 although one of the discrete states couples very 
weakly to the continuum, i.e., r II is very small. A glance at 
the corresponding 1m V ± in Figs. IA and IB explains this 
peculiarity which is typical for vibronic coupling situations. 
Except for a range of Qu symmetric about Q" = 0, where 
Re V + and Re V_are close to each other, one finds that 
1m V + ::::: 1m V _ ::::: (r II + r 22)/2. In other words, if a nar­
row resonance interacts vibronically with a broad one, the 
resulting widths of the adiabatic resonances take on the 
mean value of the original widths and no sharp peaks will 
occur. It is only the region around QII = 0 or, more precisely, 
those vibrational wave functions which have considerable 
contributions in this region, to which this picture does not 
apply. On the other hand, the nonadiabatic operator (see 
Sees. III C and IV A) is most effective at the degeneracy 
points and will lead to a mixing of these vibrational wave 
functions of V + and V_and thus tend to equalize the widths. 

In the examples corresponding to Figs. 5 and 6, r II has 
been chosen to be small compared to the vibrational frequen­
cy tdll and the opposite is true for r 22' Their mean value is the 
same as in our first example where both widths have been set 
equal. By comparing the cross sections in Figs. 5 and 6 with 
those of the first example, Fig. 4, we indeed observe the peaks 
to be of comparable width in all three figures. In Fig. 6 this 
applies in particular to the peaks of the first hump which 
correspond to wave functions of the double-well curve 
ReV_. 

In the following we investigate the influence of an addi­
tional vibrational degree offreedom on the nuclear dynamics 
in vibronically coupled resonances. We employ the full Ha­
miltonian (38) and choose the widths to be functions of ener­
gy but independent of the nuclear coordinates. The nuclear 
dynamics is thus governed by a nonlocal potential. We 
choose 
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r (E) =a E(21+ll!2 exp{_b E} pp p p (47) 

which fulfills Wigner's threshold law62 for scattering domi­
nated by I waves at threshold in the absence of long-range 
forces. The real part Il.pp (E) of the complex level-shift 
Fpp (E) can be calculated via the Hilbert transform of 
rpp (E) according to Eq. (9c). For the specific width func­
tion in Eq. (47) the level-shift function is explicitly given in 
Ref. 49. The use of width functions which fulfill the thresh­
old law is particularly important for resonances which over­
lap the threshold.42 The vibronic coupling mechanism inter­
mingles the diabatic resonances and may drastically change 
the behavior of the cross sections in the vicinity of the thresh­
old as a function of energy and channel number. Here, we 
shall not further pursue this point. 

Because of the large number of parameters entering the 
model Hamiltonian (38), a discussion of all the relevant 
multimode effects contained in it is not possible. Since we 
present here the first two-mode nuclear dynamics calcula­
tion in coupled resonances, we concentrate on a single exam­
ple which brings to light an interesting vibronic pheno­
menon. 

Figure 7 shows integral cross sections for the vibrational 
excitations (O,O)-(ng,n,,) of the totally symmetric and 
non totally symmetric modes. The parameters used in the 
computations are listed in the figure caption. Except of the 
widths, all the relevant parameters are taken from a realistic 
bound-state example which has been investigated previous­
ly.36 In the absence ofvibronic coupling, the inelastic cross 
sections for odd quantum numbers n" of the nontotally sym­
metric mode vanish. In this case the elastic scattering cross 
section consists of two humps centered at EI and E2 corre­
sponding to the two diabatic resonance states. Since r II (E I ) 
is considerably smaller than r22 (E2), the hump at lower 
energy is much narrower than that at higher energy. The 
vibronic coupling mechanism is a very efficient mechanism 
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for the excitation of nontotally symmetric modes. Figure 7 
demonstrates that even for moderate interstate and intras­
tate coupling the excitation of a single quantum number of 
the nontotally symmetric mode can easily be stronger than 
that of the totally symmetric mode. The elastic cross section 
in the presence of vibronic coupling again exhibits two 
humps. As can be seen in Fig. 7 these humps overlap strong­
ly. In particular, a third hump which is masked by substruc­
tures emerges between these two humps. This central hump 
originates from the partial cross section U22(E) and the sub­
structure from u 11 (E). The appearance of a three hump 
structure is nicely documented by the (0,0)-(0,1) excita­
tion function shown in Fig. 7. For other choices of param­
eters we have obtained a more pronounced central hump. 

The existence of a central hump is a multimode vibronic 
effect. To underline this finding we have repeated the com­
putation using the same set of parameters but discarding the 
totally symmetric mode, i.e., K I = K2 = O. The results ob­
tained for this single-mode problem are shown in Fig. 8 for 
the elastic and first inelastic channels. There is no indication 
for a central hump in both cross section. 

The different relative heights of the two humps in Fig. 8 
and the two terminal humps in Fig. 7 is eyecatching for the 
elastic channel. Whereas both humps in the two-mode case 
and the first hump in the single-mode case ascend to about 5 
A2, the second single-mode hump reaches lOA2. This differ­
ence in relative heights becomes much more spectacular for 
other values of the model parameters. This phenomenon is a 
typical multimode vibronic coupling phenomenon. 

In the single-mode situation the upper potential curve 
Re V + is steep, giving rise to large spacings of the vibrational 
levels. Since Re V + is more or less parallel to the ground 
state curve Vo(Q,,), only a few of these levels are accessible in 
elastic scattering owing to the rapid decrease of the Franck­
Condon factors with growing quantum numbers. Because of 
the vibronic coupling these vibrational levels interact with 

FIG. 7. Integral cross sections for the two-mode nonloca1 problem (solid lines). ng and n. are the final quantum numbers of the totally and nontota11y 
symmetric mode, respectively. Partial integral cross sections are also shown: u" (E) and U21 (E) as circles and U22 (E) and u 12 (E) as crosses. The values ofthe 
parametersare:E1 = 2.45,E2 = 2.85,A = 0.318,K1 = - 0.212,K2 = 0.254,,,,. = 0.258,,,,. = 0.091,a l = 0.086,a2 = 0.186, allineY, andbl = 0.833ey-l, 
b2 = 0.375 ey-I. Note that ap and bp are used to define the energy dependent width rpp (E) in Eq. (47). 
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FIG. 8. Integral and dift'erential cross sections for the single-mode nonlocal problem corresponding to Fig. 7. Only the coupling mode is considered and the 
dect of the totally symmetric mode is discarded. The dift'erential cross sections normalized to unity at (J = cr are shown for three values of the electron 
energy: E = 2.3 eV (solid curve). E = 2.7 eV (solid curve with squares). and E = 3.1 eV (solid curve with afew circles). For further details see caption of Fig. 7. 

vibrational levels ofRe V_which are close by in energy and 
their "intensity" is spread over the resulting vibronic levels. 
The situation is similar in the multimode case except that the 
effects are much more pronounced. The density of vibration­
al levels of Re V_at the levels of Re V + which are well 
accessible is much higher and the magnitude of the nonadia­
batic effects is enhanced due to the presence of a square-root 
intersection of V+(Q"Q .. ) and V_(Qq,Q .. ) as has been de­
scribed in Sec. IV A (see also Figs. 2 and 3). Consequently, 
the intensity of the vibrational levels ofRe V + is spread over 
numerous vibronic levels. According to Eq. (43) the overlap 
of the vibrational ground state 10,0) with these vibronic 
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states enters the expression for the cross section in thefourth 
power which explains why the hump at high energy originat­
ing from V + is much higher in the single-mode case. Of 
course, the arguments brought above suffer somewhat from 
the fact that the imaginary parts of V + and V_are also of 
importance. Nevertheless, they have been found to be appli­
cable to explain the computed results at least qualitatively. 
In particular, the vibronic coupling mechanism tends to 
equalize the widths. If the widths are equal and constant, 
their influence on the cross sections is trivial and the above 
arguments fully apply. Finally, we mention that similar ef­
fects are present in the spectroscopy of related multimode 
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FIG. 9. Dilferential cross sections for the nonlocal two-mode problem of Fig. 7. The cross sections are normalized to unity at (J = cr. They are shown for three 
values ofthee1ectron energy: E = 2.3 eV (solid line). E = 2.7 eV (solid line with squares). and E = 3.1 eV (solid line with a few circles). For further details 
consult caption of Fig. 7. 
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bound state systems.36 In spectroscopy, however, the effects 
are less pronounced as the line intensity is related to the 
second power of the above mentioned overlap of states. 

The normalized differential cross sections correspond­
ing to the integral ones of Fig. 7 are shown in Fig. 9 for three 
different electron energies. For the elastic and the nu = I 
first inelastic channel the differential cross sections are very 
similar to those found in our second and third single-mode 
examples. This is partly due to the fact that, as in these exam­
ples, the partial cross section U22(E) is large everywhere and 
that u21(E) and udE) are of comparable magnitude. The 
normalized differential cross sections for the (0,0)-(1,0) and 
(O,OHI,I) excitations exhibit a more remarkable energy 
dispersion. The behavior of the partial cross sections reflects 
this energy dispersion. The quantity U22(E) for the former 
excitation falls off more rapidly at lower energies than for the 
elastic scattering and u dE) is surprisingly small in the cen­
tral part of the cross section for the latter excitation. It 
should be mentioned that, in general, the differential cross 
sections for the higher channels may depend more strongly 
on energy and on the scattering angle than those for the 
lower channels. For the (0,OH2, I) excitation of the present 
example, for instance, the normalized differential cross sec­
tion grows by a factor of 10 at E = 3.1 eV but falls off to 
nearly zero at E = 2.3eV when going from 0 = 0 to 0 = 1T. 

V. BRIEF SUMMARY 

The nuclear dynamics in coupled resonance states is 
governed by an effective, complex, energy dependent, and 
nonlocal matrix potential. This potential describes two dif­
ferent coupling mechanisms. The resonances may interact 
via the coupling to the nonresonant scattering continuum 
and via the direct vibronic coupling of the discrete states out 
of which they emerge. In the present work the latter mecha­
nism is discussed in greater detail. 

The computation of the nuclear dynamics in the vibron­
ica1ly coupled resonance states for real systems involves an 
enormous numerical effort because of the complicated na­
ture of the potential involved. To simplify the problem, local 
approximations are discussed. Furthermore, the local poten­
tial and in particular the complex adiabatic potential sur­
faces associated with it allow for the interpretation of the 
complicated nuclear dynamics within the combination of 
common frameworks used in the discussion of isolated reso­
nance states and of the vibronic coupling in bound states. 

To learn about the influence of the vibronic coupling 
mechanism on the vibrational excitation of molecules by res­
onant electron impact, a model is introduced which allows 
the computation of the nuclear dynamics for two modes in a 
nonloca1 energ.y dependent potential. The model is an exten­
sion of a model which has been successfully applied to vi­
bronie coupling of bound states. The results obtained for a 
few examples are discussed. Particularly interesting is the 
vibronic coupling between a narrow and a wide resonance. 
In this "competition" the wide resonance wins in the sense 
that there is a tendency for the narrow peaks to widen con­
siderably due to the interaction. In general it is found that 
the vibronic coupling between resonances provides an effi­
cient mechanism for the excitation of odd quanta of nonto-

tally symmetric modes by resonant electron scattering. Vi­
bronic coupling can markedly influence the angular 
distribution of the scattered electrons and the behavior of the 
vibrational excitation cross sections at threshold. 

Of course it is desirable to analyze the nuclear dynamics 
in vibronica1ly coupled resonances for a real molecule. To do 
so requires detailed fixed-nuclei data obtained, preferably by 
ab initio methods, on the discrete states and their coupling to 
the continuum and/or detailed experimental scattering 
data. e.g .• vibrational excitation functions for various modes. 
These data are not yet available for a suitable molecule. The 
present investigation may help to identify the vibronic cou­
pling effects and provides a first insight into the nature of the 
underlying interesting mechanism. 
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APPENDIX A: EXPLICIT EXPRESSIONS FOR THE 
ANGULAR FACTORS 

In this appendix we quote the results obtained for the 
angular factors introduced in Eq. (17) under the condition 
that for each isolated resonance the scattering is in a single 
partial wave.lp • in the molecule-fixed frame. i.e .• 

Vpk = Vpe Y~P(k), (Al) 

wherep indicates the discrete state Idp ). Equation (Al) has 
to be transformed to the laboratory frame to compute the 
differential cross section. In linear molecules account must 
be taken of the orbital angular momentum m ± about the 
axis. where for m;fO the subscript + or - distinguishes 
between the two possible directions. The differential cross 
sections are obtained by averaging those in Eq. (12) over the 

"'-
molecular orientations R, 

( du) = (21T)4_I_fdR IT + T 12 (A2) 
dO. ".even k 2 41T II 22. 

( du) = (21T)4_I_fdR IT + T 12. (A3) 
dO. ".odd k 2 41T 12 21 

In the case m;fO care must be taken to superimpose the T­
matrix elements for all possible values of m. 

Inserting Eq. (AI) into Eq. (11) and using the usual rela­
tions for the spherical harmonics we obtain the following 
expressions for the differential cross sections: 

( du) =~ {gll(O)lTII(EW +gdO)IT22(EW 
dO. ".even 2E 

+ 2gdO )Re[ TII(E)Tf2(E)]}. (A4) 

( du) =~ {f(O)[ITdEW+ I T21(EW1 
dO. ""odd 2E 

+ 2fdO)Re[TI2(E)Tfl(E)]}. (AS) 

All angular factors are determined as linear combinations of 
Legendre functions P L (cos ° ). 
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gpq(e) = ~A~PL(COS e), 

I(e)= ~BLPL(COSe), 

112(e) = ~ CLPL(COS e). 

(A6) 

(A7) 

(A8) 

The coefficients are given by the following equations: 

(A9) 

x( II 12 L ) (II 12 mq~mJ, mp -mq mq -mp m; -m~ 

(AlO) 

CL = [xg]2 L ( _ l)mp-m; 

X(~~p 12 L ) (II 12 
mp ~m)' mq mp -mq m; -m~ 

(All) 

where 

[
(2L + l)(Up' + l)(U" + 1)]112 

X,q' = ap'aq' 2 

x(~ ~ ~). (A12) 

The constants a I and a2 are determined by the conditions 

f gpp(e)dO == f I(e)do = 1. (A13) 

Note that 

f gI2(e)dO = f 112(e)dO = O. (A14) 

Equations (A6) to (A8) have been evaluated explicitly for 
several values of the quantum numbers II and 12, The results 
are collected in Table At. In the numerical calculations dis­
cussed in Sec. IV B we have exclusively used II = 2 
(ml = ± 1) and 12 = 1 (m2 = ± I). For linear symmetric 
molecules this choice corresponds to discrete states of ". 
and " .. symmetry, respectively. These states may couple vi­
bronical1y through a vibrational mode of 1:.. symmetry 
which does not lift the degeneracy of these states. In this case 

the computed cross sections u(E) should be multiplied by a 
factor of 2 to account for the degeneracy of the discrete 
states. Analogous factors must be introduced in other degen­
eracy situations. In particular, if the degeneracy is lifted by 
vibronic coupling, each component of the degenerate dis­
crete states should appear as a state in the Hamiltonian K. 

APPENDIX B: MATRIX CONTINUED FRACTION 
METHOD 

In this appendix we discuss the evaluation of the matrix 
elements ofe == (E 1 - k')-I in the basis In.n .. ) which are 
the vibrational eigenstates of the target molecule. The effec­
tive Hamiltonian K is defined in Eq. (38). We may write 

Cll = [E -HI - U(E -H2)-IU]-I, (Bl) 

C21 = - (E-H2)-IUCll = - C22U(E-HI)-I, (B2) 

where the following abbreviations have been introduced 
(p = 1,2): 

Hp =Ep +lio+KpQ. +l1pp(E-lio) 

- ir pp (E -lio)/2, 

U=IlQ". 

(B3) 

(B4) 

The elements C22 and CI2 are obtained from Cll and C21 by 
interchanging the subscripts 1 and 2 in Eqs. (BI) and (B2), 
respectively. 

We begin with the evaluation of (n.n .. ICllIOO). The 
derivation of the more general (n.n .. IClllm.m .. ) can be 
done analogously. The evaluation is.carried out in two steps. 
In the first step k" == (n .. ICllIO) is calculated and subse-

A. A 

quently (n.IR".IO). The hat on R". and on other quantities 
to be introduced below is to remind that these quantities are 
operators in Q. space. The starting point is the identity 

(BS) 

Inserting i = 1:lm,,) (m .. 1 in between C ill and Cll in the 
above identity, we readily notice that because of 

only m .. = n.. and m .. = n .. ± 2 contribute. This finding 
leads to the recursion relations 

A A A A A A 

A".R". -B".R"u+ 2 -B"._2R"._2 =/) ... 0' (B7) 

where 

TABLEAl. Explicit expressionafortheangularfactoragu (8 ),g22(8 ).gI2(8 ),/(8). and!.2(8). Wedefincx55 cos 8. Note that interchanging the subscripts "1" 
and "2" leavesgI2./and!.2 unchanged andgu++f22' 

II(m l ) 12(m2) ~u ~12 Iml 1m!.2 

0(0) 1(0) 1 i x 1 x 
1(0) 2(± 1) J(1 +2r) 2\'V'2(Sx+xl) ~2+r) ~( -x+4xl) 

I(± I) 0(0) :1(1 + 7r) 1X I x 
2(± I) I(± I) WI - 3x2 + yx") HV2(-x+~) ~2+r) ~-x+4xl) 
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(BS) 

(B9) 

(BIO) 

Apart from the zero-point energy, HOI is the usual h~onic 
oscillator Hamiltonian for the Q,l mode: HOI I nil) 
= nlllVllln,l ). A A 

Once the element Ro is known, one obtains R2jro­
m Eq. (B7) with the choice nu = O. The next element R4 is 
then obtained from the relation (B7) with nu = 2, and so on. 

A 

On the other hand, Ro can also be determined via the recur-
sion relations (B7). By introducing a hYRothetical maximum 
number for nu in (B7) above which the Rn. vanish, and mak­
ing successive use of the recursion relations, we obtain 
A A A A A A A _1"""'" _I"'" -1"-"'0 -1 
Ro = [Ao - Bo[A2 - B2[A4 - B4 [···] B4] BJ Bo] 

(BIl) 

which is ~ continued fraction of operators in Q,l space. 
The Rn. for even numbers nu are fully determined by 

Eqs. (B7) and (B 11). For odd numbers nu , on the other hand, 
A 

all Rn vanish. This can be seen by inspection. The set of . 
linear equations (B7) decouples into two subsets, one for odd 
and one for even numbers nu . The former subset is homogen­
eous and its solutions are 

(BI2) 

Odd quantum numbers appear in the matrix elements of C21 • 

With the aid of Eqs. (B2) and (B6) one readily obtains 

A A I 
(nu IC21 10) = -- [E-H2(nu )r 

.J2 
X [~Rn._1 +~nu + 1 Rn.+d· 

(B13) 

Because of Eq. (BI2) the matrix elements of C21 vanish for 
even quantum numbers. 

The numerical evaluation of (n,ln u ICpq 100> is now 
strai,.1.tforward. In the first step of the calculation the oper-

&"A A 

ators An. and B". are represented as matrices in the basis of 
the harmonic oscillator states In ,l >. In the second step the 
matrix continued fraction (B 11) is computed to determine 
the matrix ( (m,lIRolm;) }. Finally, the recursion relations 
(B7) are used in matrix representation to compute all other 

A 

matrices { (mil IRn. 1m; ) }. In the two-mode numerical cal-
culations discussed in the present paper we have used 20 
basis states I nil> and computed, depending on the energy, up 
to 150 steps in the continued fraction. We have checked that 
the results are converged. In the single-mode cases the quan-

A 

tities Rn. are, of course, c numbers and the calculations are 
very efficiently carried out with the aid of Eqs. (B7) and 
(Bll). 
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