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Particle in a box in PT -symmetric quantum mechanics and an electromagnetic analog
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In PT -symmetric quantum mechanics a fundamental principle of quantum mechanics, that the Hamiltonian
must be Hermitian, is replaced by another set of requirements, including notably symmetry under PT , where
P denotes parity and T denotes time reversal. Here we study the role of boundary conditions in PT -symmetric
quantum mechanics by constructing a simple model that is the PT -symmetric analog of a particle in a box. The
model has the usual particle-in-a-box Hamiltonian but boundary conditions that respect PT symmetry rather than
Hermiticity. We find that for a broad class ofPT -symmetric boundary conditions the model respects the condition
of unbroken PT symmetry, namely, that the Hamiltonian and the symmetry operator PT have simultaneous
eigenfunctions, implying that the energy eigenvalues are real. We also find that the Hamiltonian is self-adjoint
under the PT -symmetric inner product. Thus we obtain a simple soluble model that fulfills all the requirements
of PT -symmetric quantum mechanics. In the second part of this paper we formulate a variational principle
for PT -symmetric quantum mechanics that is the analog of the textbook Rayleigh-Ritz principle. Finally we
consider electromagnetic analogs of the PT -symmetric particle in a box. We show that the isolated particle in
a box may be realized as a Fabry-Perot cavity between an absorbing medium and its conjugate gain medium.
Coupling the cavity to an external continuum of incoming and outgoing states turns the energy levels of the box
into sharp resonances. Remarkably we find that the resonances have a Breit-Wigner line shape in transmission
and a Fano line shape in reflection; by contrast, in the corresponding Hermitian case the line shapes always have
a Breit-Wigner form in both transmission and reflection.
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I. INTRODUCTION

In PT -symmetric quantum mechanics the canonical prin-
ciple that the Hamiltonian must be Hermitian is relaxed.
Nonetheless it remains possible to consistently formulate
quantum mechanics if the Hamiltonian operator respects
certain conditions, notably PT symmetry. In principle, PT
quantum mechanics expands the set of Hamiltonians that can
be used to describe natural phenomena. The purpose of this
paper is to add to known examples of PT quantum mechanics
by formulating an especially simple model: the particle in a
box.

Prior work on PT quantum mechanics has considered
Hamiltonians in which the potential is imaginary [1–3] and
hence the Hamiltonian is manifestly non-Hermitian. Here we
keep the usual particle-in-a-box Hamiltonian. Non-Hermiticity
enters the problem through the boundary conditions. There
is a well-developed theory of self-adjoint extensions that
determines the boundary conditions that are permissible
in quantum mechanics if one imposes Hermiticity on the
Hamiltonian [4,5]. Here we develop thePT counterpart of this
body of knowledge by consideration of a simple example. In
complementary prior work Nelson and Hatano [6] have studied
a model with non-Hermitian periodic boundary conditions.

*Present address: Physics Department, Princeton University,
Princeton, NJ 08544, USA.

Another result in this paper is the formulation of a
variational principle that is thePT quantum mechanics analog
of the textbook Rayleigh-Ritz variational principle.

In a development parallel to, but separate from, PT
quantum mechanics it has been found that photonic structures
with PT symmetry have many remarkable properties [7–9],
notably the coexistence of lasing and perfect coherent ab-
sorption [10–13]. In this paper we also construct a classical
electromagnetic analog of the PT -symmetric particle in a
box. By allowing the modes of the box to couple to an
external continuum of incoming and outgoing modes we
obtain an electromagnetic structure that has sharp resonances
in place of the bound states of an isolated box. Remarkably
we find that these resonances have a Breit-Wigner line shape
in transmission and a Fano line shape in reflection.

II. PARTICLE IN A BOX

A. Boundary conditions

We consider a nonrelativistic spinless particle in one
dimension with position x confined to lie in a box of size L so
that 0 � x � L. The particle is governed by the Hamiltonian

h = − h̄2

2m

∂2

∂x2
; (1)

hereafter we shall work in units wherein h̄ = 1 and m = 1.
Parity applied to the wave function has the effect

Pψ(x) = ψ(L − x), (2)
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while time reversal is the antilinear operator

T ψ(x) = ψ∗(x). (3)

Note that P2 = 1 and T 2 = 1 while [P,T ] = 0. By the
linearity of quantum mechanics the wave function must obey
the boundary conditions [14]

ψ(0) = λ1ψ
′(0), ψ(L) = λ2ψ

′(L), (4)

where (λ1,λ2) are complex numbers. Thus any boundary
condition is fully characterized by the pair (λ1,λ2).

Thus far we have described features common to both the
canonical particle in a box and its PT -symmetric counterpart
being introduced here. We now turn to the differences. In
canonical quantum mechanics one supposes that the inner
product of two states is defined as

(φ,ψ) =
∫ L

0
dx φ∗(x)ψ(x) (5)

and moreover, the Hamiltonian is Hermitian or self-adjoint
with respect to this inner product. In order to ensure that
the Hamiltonian is self-adjoint we must pay attention to the
boundary conditions that are imposed on the wave functions.
Integration by parts reveals that the self-adjointness condition
(φ,hψ) = (hφ,ψ) is fulfilled provided the surface term

[φ∗ψ ′ − ψ∗φ′]L0 = 0 (6)

vanishes.
If we impose the boundary conditions (4) on ψ , then it is

easy to verify that one must impose the boundary conditions

φ(0) = λ∗
1φ

′(0), φ(L) = λ∗
2φ

′(L) (7)

on φ(x) in order to fulfill the surface condition (6). Note that
in general the boundary conditions we must impose on φ are
different from those we must impose on ψ ; the boundary
conditions on φ are said to be the adjoint of the boundary
conditions on ψ .

In the special case that λ1 and λ2 are real, the same boundary
condition is imposed on ψ and φ, and the boundary condition
is said to be self-adjoint. To ensure that the Hamiltonian equa-
tion (1) is Hermitian we must impose self-adjoint boundary
conditions on the wave functions. Textbook treatments of the
particle in a box tend to focus exclusively on the hard wall
case λ1 = λ2 = 0 but in fact any member of the two-parameter
family of self-adjoint boundary conditions may be used. Which
one should be used in practice depends on the physics of the
problem that is being modeled as a particle in a box. So long
as we use self-adjoint boundary conditions we may be sure
that the eigenvalues of the Hamiltonian h are real and the
eigenfunctions are complete.

Now let us put aside considerations of Hermiticity and
ask what kinds of boundary conditions are permissible in
PT quantum mechanics. The criterion we impose is that the
boundary conditions must be PT symmetric in the sense that
if ψ(x) obeys the boundary conditions, then so does

ξ (x) = PT ψ(x) = ψ∗(L − x). (8)

It is only with PT -symmetric boundary conditions that the
Hamiltonian may properly be said to commute with the
operator PT , one of three necessary conditions for PT

quantum mechanics, according to the criteria enumerated by
Jones-Smith and Mathur [15].

To obtain the form of the PT -symmetric boundary con-
ditions more explicitly, note that Eq. (8) implies ξ (0) =
ψ∗(L) and ξ (L) = ψ∗(0). Also ξ ′(0) = −ψ

′∗(L) and ξ ′(L) =
−ψ

′∗(0). If we now impose that ψ obeys Eq. (4) we find that
ξ automatically follows suit if and only if λ2 = −λ∗

1. Thus
PT -symmetric boundary conditions form the two-parameter
family (�1 + i�2, −�1 + i�2) where �1 and �2 are real, whereas
Hermitian boundary conditions correspond to (λ1,λ2) where
λ1 and λ2 are real. Note that the two families intersect along the
lines �2 = 0 and λ1 = −λ2, respectively. On the other hand,
the case that �1 = 0 is maximally non-Hermitian [16].

We now briefly consider the PT -symmetric generalization
of periodic boundary conditions. We will show that these
boundary conditions lead to a model studied many years ago
by Nelson and Hatano [6] in connection with the pinning of
superconducting vortex lines. To this end we consider a particle
on a ring. In canonical quantum mechanics the wave function
of the particle must obey periodic boundary conditions, or, for
a ring threaded by flux, twisted boundary conditions, given by

ψ(θ + 2π ) = λψ(θ ). (9)

Here λ = exp(iφ), where φ is the flux threading the ring
in units of the Aharonov-Bohm flux quantum and θ is the
angular coordinate around the ring. If we relax the condition
of Hermiticity it is permissible to consider λ to be an
arbitrary complex number, not necessarily of unit modulus.
The criterion we now impose is that the boundary condition (9)
must be PT symmetric in the sense that if ψ(θ ) obeys the
boundary condition, then so does

ξ (θ ) = PT ψ(θ ) = ψ∗(θ + π ). (10)

Imposition of this constraint forces the boundary parameter
λ to be real. Whereas in the Hermitian case the parameter λ

must lie on the unit circle in the complex plane, in the PT -
symmetric case it must lie on the real axis. These are precisely
the boundary conditions studied by Nelson and Hatano. For a
free particle Nelson and Hatano’s boundary conditions do not
lead to real eigenvalues, except for the Hermitian cases λ =
±1, but if there is a potential well, or a disordered potential, real
eigenvalues are obtained for some range of λ, followed by a
PT transition to complex eigenvalues (dubbed a delocalization
transition by Nelson and Hatano). It is worth noting that one
can further generalize the Nelson and Hatano model to the case
that the wave function and its derivative at θ and θ + 2π are
related by a 2 × 2 transfer matrix which may be constrained by
either Hermiticity or by PT symmetry. However, in this paper
we will not investigate periodic boundary conditions further.
Instead we focus on the complementary problem of a particle
in a box with PT -symmetric boundary conditions.

B. Eigenvalues and eigenfunctions

Now let us compute the eigenvalues and eigenfunctions
of the particle in a box subject to PT -symmetric boundary
conditions (hereafter called the PT -symmetric particle in a
box). Since we are now analyzing a non-Hermitian eigenvalue
problem there is no guarantee that we will obtain real
eigenvalues or that the eigenfunctions we obtain will be
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complete. Nonetheless we find that under a broad set of
circumstances the spectrum of the PT -symmetric particle
in a box is entirely real. Furthermore the corresponding
eigenfunctions can therefore be chosen to be simultaneous
eigenfunctions of the Hamiltonian and PT , a condition called
“unbroken PT ” in the literature [2]. Unbroken PT is the
second condition a Hamiltonian must fulfill according to the
criteria of Ref. [15]. Thus we arrive at the important conclusion
that the PT -symmetric particle in a box meets the condition
of unbroken PT for a broad range of circumstances.

We attempt solutions of the form

ψ = A exp(ikx) + B exp(−ikx), (11)

where k may be complex. These solutions are eigenfunctions
of the Hamiltonian equation (1) with energy

E = 1
2k2. (12)

Note that the energy is real only if k is real or pure imaginary.
Imposing PT -symmetric boundary conditions leads to the

quantization condition

exp(i2kL) = 1 − i2k�1 − k2
(
�2

1 + �2
2

)
1 + i2k�1 − k2

(
�2

1 + �2
2

) (13)

and the amplitude ratio

A

B
= −1 − k�2 + ik�1

1 + k�2 − ik�1
. (14)

The quantization condition (13) determines the allowed values
of k and hence the energy levels; Eqs. (11) and (14) then
determine the corresponding eigenfunctions.

Note that in the Hermitian case �2 = 0 the right-hand side
of the quantization condition has magnitude unity leading to
the expected result that the allowed k values and hence the
energy levels are both real. Remarkably for the maximally non-
Hermitian case �1 = 0, the right-hand side of the quantization
condition is exactly unity, once again leading to real k values
and energy levels. It is also clear that the only solutions to
Eq. (13) lie on the real axis in the complex k plane so long as
�1 > 0. For �1 < 0 it is possible to obtain complex solutions
corresponding to broken PT symmetry.

Here for simplicity let us focus on the maximally non-
Hermitian case �1 = 0 where it is easy to see that the allowed
wave vectors are

kn = πn

L
with n = 1,2,3, . . . (15)

with corresponding energy levels

En = π2n2

2L2
. (16)

The corresponding eigenfunctions are

ψn(x) = Nn [sin(knx) + ikn�2 cos(knx)] , (17)

where Nn is a normalization factor to be determined. Thus we
see that the energy levels of the maximally non-Hermitian box
are identical to the energy levels of the textbook particle in a
box with hard wall boundary conditions. The eigenfunctions,
however, are quite different. The relationship between the max-
imally non-Hermitian model and the textbook particle in a box
is discussed further in the Appendix. It is easy to verify that the

eigenfunctions (17) are also eigenfunctions of the symmetry
operator PT with eigenvalue (−1)n+1. Thus PT is unbroken.

We turn now to the normalization of the eigenfunctions (17).
Note that eigenfunctions corresponding to distinct eigenvalues
are not orthogonal with respect to the canonical inner prod-
uct (5), reflecting the non-Hermiticity of the problem. Thus we
cannot use this inner product for normalization. Although the
eigenfunctions of a non-Hermitian operator are not orthogonal,
a weaker result called biorthogonality remains applicable [17].
One can show that the eigenvalues of h and its adjoint h† are
complex conjugates of each other. Moreover if ψ is an eigen-
function of h and ϕ is an eigenfunction of h† with eigenvalues
that are not complex conjugates of each other, then ϕ and
ψ will be orthogonal. Translated to the present context, the
adjoint of a particle in a box with boundary conditions (i�2,i�2)
is a particle in a box with the adjoint boundary conditions
(−i�2, −i�2). The eigenfunctions of the former problem are
given by Eq. (17); the eigenfunctions of the latter by

ϕn(x) = Ñn [sin(knx) − ikn�2 cos(knx)] . (18)

These eigenfunctions will respect the biorthonormality

(ϕn,ψm) =
∫ L

0
dx ϕ∗

n(x)ψm(x) = δn,m (19)

if we choose the normalization factors

ÑnNn = 2

L

1

1 − k2
n�

2
2

. (20)

A symmetric way to partition Eq. (20) is to choose

Nn =
√

2

L

1∣∣1 − k2
n�

2
2

∣∣1/2 (21)

and Ñn = −sgn(n)Nn, where the sgn(n) is the sign of k2
n�

2
2 − 1.

For some non-hermitian operators the eigenfunctions also
satisfy a bi-completeness relation which in the present context
would state

∞∑
n=1

ϕ∗
n(x)ψn(x ′) = δ(x − x ′) (22)

However, bicompleteness is not guaranteed and must be proved
on a case by case basis. We do not at present have a proof that
it holds in the case under consideration here.

In summary, in this section we have shown that the
PT -symmetric particle in a box has unbroken PT symme-
try for all boundary conditions wherein �1 > 0. We have
explicitly computed the eigenvalues and eigenfunctions for
the maximally non-Hermitian case �1 = 0 and found that the
eigenvalues are real for all �2 and that the eigenfunctions of
the Hamiltonian may also be chosen to be eigenfunctions of
the operator PT . Finally, we have used biorthogonality to
normalize the eigenfunctions.

C. Inner products

In this section we introduce the PT -symmetric inner
product and demonstrate that the Hamiltonian equation (1)
subject to PT -symmetric boundary conditions is self-adjoint
with respect to the PT inner product. Self-adjointness under
the PT inner product is the third key condition that a PT
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quantum Hamiltonian must meet according to Ref. [15]. It
follows from PT self-adjointness that the eigenfunctions of
the PT -symmetric particle in a box are orthogonal under the
PT inner product. At least conceptually, this eigenfunction
orthogonality is different from the biorthogonality discussed
above and it provides another way to normalize the eigenfunc-
tions. These results then allow us to define the C operator and
the associated CPT inner product and thereby complete the
formulation of the particle in a box inPT quantum mechanics.

For a finite-dimensional system the wave function may
be represented as a column of complex numbers denoted
ψ and the canonical inner product (5) of two states ψ and
φ may be written as (φ,ψ) = φ†ψ . On the other hand, the
PT inner product is given by (φ,ψ)PT = (PT φ)T ψ [2,15].
Generalizing to a particle in a box we may write the PT inner
product as

(φ,ψ)PT =
∫ L

0
dx φ∗(L − x)ψ(x). (23)

Equation (23) should be contrasted with the standard inner
product (5). The PT inner product suffers from the defect that
it is not positive definite; nonetheless, it plays an important
role in the formulation of PT quantum mechanics.

Having defined the PT inner product let us now show
that the Hamiltonian equation (1) is self-adjoint under this
inner product. To this end we equate (φ,hψ)PT = (hφ,ψ)PT .
Simple integration by parts then reveals this equality will hold
provided the surface term

[φ∗(L − x)ψ ′(x) + φ′∗(L − x)ψ(x)]L0 (24)

vanishes. If we now impose that ψ obeys the PT -symmetric
boundary condition (�1 + i�2, −�1 + i�2) we find that in
order for the surface term to vanish, φ must obey the same
boundary condition. Thus we have shown that the Hamiltonian
equation (1) subject to PT -symmetric boundary conditions is
self-adjoint under the PT inner product as claimed.

An immediate consequence of PT self-adjointness is that
the eigenfunctions of the PT -symmetric particle in a box with
distinct eigenvalues should be orthogonal under the PT inner
product. For the maximally non-Hermitian case �1 = 0, a short
calculation reveals

(ψn,ψm)PT = (−1)n+1 L

2

(
1 − k2

n�
2
2

)
N2

nδn,m. (25)

Here we have made use of Eqs. (17) and (23) but not
yet committed ourselves to the choice equation (21) for
the normalization factor. Note that there is a sequence of
�2 values �2 = L/πn, where n = 1,2,3, . . . for which we
obtain an orthogonality catastrophe: The nth eigenfunction
is self-orthogonal under the PT inner product. Except at these
isolated points we may adopt the normalization equation (21)
in which case the expression for the PT inner product
simplifies to

(ψn,ψm)PT = (−1)nsgn(n)δn.m, (26)

where sgn(n) is the sign of k2
n�

2
2 − 1.

Armed with these results we may now define the linear C
operator via

Cψn = (−1)nsgn(n)ψn. (27)

Equation (27) fixes the action of the operator C in the Hilbert
space of states spanned by the Hamiltonian eigenfunctions
ψn. We shall call this space the physical space of the
PT -symmetric particle in a box. Within this space the C
operator may be written as an integral kernel with the spectral
representation

C(x,x ′) =
∞∑

n=1

(−1)nsgn(n)ψn(x)ϕ∗
n(x ′) (28)

based on the biorthogonality equation (19). Noting that ϕ∗
n(x ′)

and ψn(x ′) differ only by a factor of −sgn(n) we may simplify
the expression for C to

C(x,x ′) =
∞∑

n=1

(−1)n+1ψn(x)ψn(x ′), (29)

where ψn(x) is given by Eqs. (17) and (21).
Finally, following [2,15], we define the CPT inner product

of two states as

(φ,ψ)CPT =
∫ L

0
dx(CPT φ)(x)ψ(x)

=
∫ L

0
dx

∫ L

0
dx ′ψ(x)C(x,x ′)φ∗(L − x ′).

(30)

Evidently for the eigenstates of h, by construction,
(ψn,ψm)CPT = δn,m. Thus the CPT inner product is positive
definite.

In PT quantum mechanics the CPT inner product,
also known as the dynamically determined inner prod-
uct, is deemed the physically correct inner product [2,15].
It is positive definite and time evolution is unitary with respect
to it. With the construction of the CPT inner product we have
therefore completed our formulation of the PT -symmetric
particle in a box.

III. VARIATIONAL PRINCIPLE FOR PT QUANTUM
MECHANICS

The variational principle is a powerful reformulation of
Schrödinger’s equation. It facilitates the proof of theorems,
such as the existence of bound states for arbitrarily weak
binding potentials in one and two dimensions, and it is
the basis of fruitful approximation schemes, especially in
quantum many-body physics. It is therefore worthwhile to
ask whether there is a similar variational formulation in
PT quantum mechanics. Remarkably we find that it is
possible to reformulate PT quantum mechanics as a vari-
ational principle, but only for Hamiltonians that meet the
threefold criteria of PT symmetry, unbroken PT , and PT
self-adjointness.

For comparative purposes it is useful to briefly recall the
variational principle in the Hermitian case. For simplicity,
consider a finite-dimensional Hilbert space in which the state
ψ can be represented as an N component column vector
with components ψi . The Hamiltonian is then an N × N
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matrix with elements hij . The Rayleigh functional R is
defined as

R = ψ†hψ. (31)

It is easy to verify that R is real for Hermitian h. According to
the variational principle the eigenstates of the Hamiltonian are
the states that extremize the Rayleigh functional subject to the
normalization constraint ψ†ψ = 1. According to the method
of Lagrange multipliers we must therefore extremize

F = ψ†hψ − λ(ψ†ψ − 1). (32)

By setting ∂F/∂ψ∗
i = 0 we recover the Schrödinger equation

hψ = λψ. (33)

On the other hand, the condition ∂F/∂ψi = 0 implies

ψ†h = λψ† ⇒ h†ψ = λ∗ψ. (34)

Note that for h Hermitian equations (33) and (34) are
equivalent since h† = h and λ is real. But for h non-Hermitian
the two equations are not equivalent and indeed, in general,
are incompatible. Thus Hermiticity plays an essential role
in the variational principle. Minimization of R subject to
normalization is equivalent to the Schrödinger eigenvalue
problem only for Hermitian h.

We turn now to the PT -symmetric case. Again for
simplicity we consider a finite-dimensional Hilbert space.
Without loss of generality [15] we may assume that we are
in a basis such that T ψ = ψ∗ and Pψ = Sψ , where S is a
diagonal matrix with all its diagonal entries equal to ±1. To
be definite we assume that our Hilbert space is 2n dimensional
and

S =
(
I 0
0 −I

)
, (35)

where I denotes the n × n identity matrix and 0 denotes the
n × n matrix with all entries equal to zero. The PT inner
product is then given by

(φ,ψ)PT = (PT φ)T ψ = φ†Sψ. (36)

The condition of PT symmetry, that the Hamiltonian should
commute with PT , implies hS = Sh∗. This enforces the form

h =
(

a ib

ic d

)
, (37)

where a, b, c, and d are real n × n matrices. The condition
that the Hamiltonian is self-adjoint with respect to the PT
inner product, (φ,hψ)PT = (hφ,ψ)PT , implies Sh = h†S, or
equivalently c = bT in Eq. (37).

Armed with this notation we now introduce the PT
counterpart of the Rayleigh functional

B = (ψ,hψ)PT = ψ†Shψ. (38)

To show that the functional B is real it is convenient to write

ψ =
(

ξ

η

)
, (39)

where ξ and η are n component columns. Then

B = ξ †aξ − η†dη + iξ †bη − iη†bT ξ. (40)

The first two terms are evidently real and the last two are the
sum of a conjugate pair, revealing that B is indeed real.

According to the variational principle for PT quantum
mechanics we must extremize B subject to each of three
constraints: (a) (ψ,ψ)PT = 1, (b) (ψ,ψ)PT = 0, and (c)
(ψ,ψ)PT = −1. To show that the variational principle is
equivalent to the eigenvalue equation for h let us examine
case (a). The other cases can be handled similarly. By the
method of Lagrange multipliers we must look for states ψ that
extremize

FB = ψ†Shψ − λ(ψ†Sψ − 1). (41)

Imposing ∂FB/∂ψ∗
i = 0 yields the eigenvalue problem

Shψ = λSψ ⇒ hψ = λψ, (42)

the desired result, but imposing ∂FB/∂ψi = 0 leads to

ψ†Sh = λψ†S ⇒ h†Sψ = λ∗Sψ. (43)

To show that Eq. (43) is equivalent to Eq. (42), we use h†S =
Sh (PT self-adjointness) and the reality of the eigenvalues λ =
λ∗ (unbroken PT ). Thus we see that the three fundamental
conditions of PT quantum mechanics play an essential role in
the formulation of the variational principle just as Hermiticity
does in the Hermitian case.

We conclude with a brief consideration of the variational
principle for the particle in a box. Here we must extremize

B = −1

2

∫ L

0
dx ψ∗(L − x)

∂2

∂x2
ψ(x) (44)

subject to the constraints
∫ L

0 dx ψ∗(L − x)ψ(x) = −1, 0, or
1. Making variations with respect to ψ∗ leads immediately to
the Schrödinger equation

−1

2

∂2

∂x2
ψ = λψ. (45)

Making variations with respect to ψ leads to the equation

−1

2

∂2

∂x2
ψ∗ = λψ∗ (46)

provided the surface term

[ψ∗(L − x)δψ ′(x) + ψ ′∗(L − x)δψ(x)]L0 (47)

vanishes. The vanishing of the surface term is ensured by
requiring the variation δψ to obey the same PT -symmetric
boundary conditions as ψ . Thus we see the essential role for the
variational principle of PT -symmetric boundary conditions
(which ensure both PT symmetry and PT self-adjointness).
Finally we must invoke unbroken PT since Eqs. (45) and (46)
are equivalent only if the eigenvalues λ are real.

IV. ELECTROMAGNETIC ANALOG

A. Isolated cavity

In order to construct the electromagnetic analog of the PT -
symmetric particle in a box let us examine more closely what
happens at the boundary points. Close to the left boundary the
wave function is

ψ = A1 exp(ikx) + A2 exp(−ikx). (48)
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By imposing ψ(0) = (�1 + i�2)ψ ′(0) we conclude that the
reflection coefficient

rL = A1

A2
= −1 + k�2 + ik�1

1 − k�2 − ik�1
. (49)

On the other hand, if we write Eq. (48) as

ψ = A1 exp(ikL)eik(x−L) + A2 exp(−ikL)e−ik(x−L) (50)

and impose the boundary condition ψ(L) = (−�1 + i�2)ψ ′(L)
we find that the right reflection coefficient is

rR = A2 exp(−ikL)

A1 exp(ikL)
= −1 − k�2 + ik�1

1 + k�2 − ik�1
. (51)

Thus we conclude

rR = 1

r∗
L

. (52)

The reflection coefficients have the same phase but reciprocal
magnitudes. The quantized energy levels of the box may be
determined by solving

rLrR exp(i2kL) = 1. (53)

This is identical to the quantization condition deduced earlier,
Eq. (13). Equation (52) is the key feature of thePT -symmetric
particle in a box that we will seek to emulate in the
electromagnetic analog.

To construct the electromagnetic analog first imagine that
the half space x < 0 is occupied by an absorbing medium,
while x > 0 is void. The electromagnetic field to the right
of the interface may be written as a sum of an incident and
reflected wave as

Ey = E1e
ikx + E2e

−ikx, Hz = E1

cμ0
eikx − E2

cμ0
e−ikx . (54)

We consider only the case of normal incidence and linear
polarization here. The field to the left of the interface may be
written as

Ey = β exp−inkx, Hz = −βn

c

1

μ0μr

e−iknx . (55)

Here n = n′ + in′′ = √
εrμr is the reflective index of the

medium. We assume n′′ > 0 corresponding to an absorbing
medium. Note that the wave equation (55) is evanescent and
decays inside the absorbing medium. The amplitude of the
wave β is determined by the continuity of Ex and Hy across the
interface [18]. Performing the match we find that the reflection
coefficient is

rL em = E1

E2
= 1 − n/μr

1 + n/μr

. (56)

Next imagine that the half space x > 0 is occupied by an
active medium, while x < 0 is empty. The active medium
is assumed to have refractive index n∗ and permeability
μ∗

r conjugate to the absorbing medium considered in the
preceding paragraph. Since n′′ < 0, this medium is active.
The electromagnetic field to the left of the interface may be
written as a sum of an incident and reflected wave exactly as

in Eq. (54). The field to the right, inside the medium, is given
by

Ey = α exp(−ikn∗x), Hz = −α
n∗

c

1

μ0μ∗
r

exp(−ikn∗x).

(57)

Note that the field in the medium is evanescent and decays
away from the interface. By continuity of Ex and Hy across the
interface we may calculate the amplitude α and the reflection
coefficient

rR em = E2

E1
= 1 + n∗/μ∗

r

1 − n∗/μ∗
r

. (58)

Note that rL em and rR em have the desired inverse conjugate
relationship, Eq. (52).

It follows that if we build a structure wherein the space
x < 0 is occupied by the absorbing medium, the space x > L

is occupied by its conjugate active medium, and the slot 0 <

x < L is left empty, we will obtain an electromagnetic analog
of the PT -symmetric particle in a box. The electromagnetic
cavity will support undamped oscillations at wave vectors
that meet the quantization condition (53), where the reflection
coefficients are given by Eqs. (56) and (58).

B. Scattering analysis

One way to realize a particle in a box in semiconductor
physics is to create a double barrier structure, for example, a
GaAs/AlGaAs sandwich [19]. In the limit that the barriers are
infinitely high a particle localized in between is essentially
a particle in a box. For finite barrier height, however, the
eigenstates of the particle in a box broaden into long-lived res-
onances that can be mapped out by measuring the transmission
through the double barrier structure as a function of energy.
The resonances appear as Lorentzian peaks in the transmission
plotted against energy. The natural PT -symmetric analog of
the double barrier model is a two-slab structure in which one
slab is absorbing, and the other, its active conjugate.

In quantum mechanics scattering is powerfully constrained
by current conservation which leads to unitarity for the scat-
tering matrix and pseudounitarity [U(1,1) symmetry] for the
transfer matrix. The structure we analyze is instead constrained
by PT symmetry. Moreover, it is built of components that do
not individually respect PT symmetry, though, for simplicity,
we assume that they do respect parity. In the remainder of
this section we discuss the form of S and T matrices in the
absence of current conservation and with reduced symmetry.
In the next section these results are used to analyze resonant
scattering from the PT -symmetric two-slab structure.

First let us consider a single slab. In general, the slab may
be illuminated from both sides. Thus the field far from the slab
is given by

Ey = Aeikx + Be−ikx as x → −∞
(59)

= Ceikx + De−ikx as x → +∞.

As before, we consider only normal incidence and linearly po-
larized waves. By linearity it follows that the field amplitudes
to the left of the slab are related to those on the right via the
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transfer matrix (
C

D

)
= T

(
A

B

)
. (60)

We now make one simplifying assumption, namely, that the
slab is parity symmetric. Parity applied to the field of Eq. (59)
leads to a field in which the amplitudes to the left and right are
exchanged, thus A ↔ D and B ↔ C. Thus symmetry under
parity has the consequence that

σxT σx = T −1. (61)

Equation (61) implies that det T = ±1. The case det T =
−1 leads inexorably to the unphysical result T = ±σx . Thus
we focus on the physical case det T = 1. Equation (61) then
leads to the result

T =
(

a b

−b d

)
. (62)

Here the matrix elements a, b, and d are complex and satisfy
ad + b2 = 1. Thus a transfer matrix that is constrained only
by parity has four real parameters.

The S matrix relates the outgoing amplitudes (C,B) to the
incoming amplitudes (A,D) via(

C

B

)
= S

(
A

D

)
. (63)

We write the elements of the S matrix as

S =
(

tL rR

rL tR

)
. (64)

tL and rL are the transmission and reflection amplitudes when
there is an incoming wave from the left (A = 1, D = 0); tR
and rR are for the case that the incoming wave is from the
right (A = 0, D = 1). Straightforward algebra reveals that
for the parity-symmetric transfer matrix equation (62) the
corresponding S matrix is

S = 1

d

(
1 b

b 1

)
. (65)

It is evident from this form that the eigenvalues of the S matrix
are

z1 = 1 + b

d
, z2 = 1 − b

d
. (66)

The associated eigenvectors are, respectively, the symmetric
vector ( 1

1 ) and the antisymmetric vector ( 1
−1 ).

Using Eq. (66) it is straightforward to write the elements of
T in terms of z1 and z2, thus

a = 2z1z2

z1 + z2
, b = z1 − z2

z1 + z2
, d = 2

z1 + z2
. (67)

The expression for a results from rearranging the constraint
ad + b2 = 1 as a = (1 + b)(1 − b)/d = z1z2d. Thus we may
treat z1 and z2 as two basic complex parameters in terms of
which the transfer matrix may be written. The virtue of using z1

and z2 as the basic parameters is that they have a transparent
physical interpretation. In quantum mechanics the S matrix
is unitary and hence its eigenvalues are unimodular. Hence
|z1| = |z2| = 1 corresponds to the unitary case. The case that
|z1| < 1 and |z2| < 1 corresponds to a strictly absorbing slab;
the case that |z1| > 1 and |z2| > 1 corresponds to a strictly
gainful one.

In the following it will sometimes be convenient to
decompose z1 and z2 into their magnitudes and phases as

z1 = ρeμeiφ1 , z2 = ρe−μeiφ2 . (68)

We will refer to ρ as the mean absorbance and to μ as the
asymmetry parameter.

In the quantum or unitary case ρ = 1 and μ = 0. In that
case the expression for the T matrix simplifies to

T =
[

sec
(

φ1−φ2

2

)
e(1/2)(φ1+φ2) i tan

(
φ1−φ2

2

)
−i tan

(
φ1−φ2

2

)
sec

(
φ1−φ2

2

)
e−(1/2)(φ1+φ2)

]
.

(69)

We are at liberty to choose the phases φ1 and φ2 so that −π <

φ1 − φ2 � π . Then it is permissible to write

sec

(
φ1 − φ2

2

)
= cosh θ, tan

(
φ1 − φ2

2

)
= sinh θ,

(70)
ei(1/2)(φ1+φ2) = eiφ,

and thereby replace the parameters (φ1,φ2) with new param-
eters (θ,φ). In terms of these parameters Eq. (69) becomes

T =
(

cosh θeiφ i sinh θ

−i sinh θ cosh θe−iφ

)
. (71)

The corresponding S matrix is

S =
(

sech θeiφ i tanh θeiφ

i tanh θ sech θeiφ

)
. (72)

Comparing to Eq. (64) we see that the corresponding trans-
mission probability is 1/ cosh2 θ . Thus θ is a measure of the
penetrability of the barrier via quantum tunneling, with large
θ corresponding to an impenetrable barrier.

Thus it will prove most transparent to write the parity
symmetric transfer matrix equation (61) in terms of the
parameters ρ, μ, θ , and φ. Making use of Eqs. (67), (68),
and (70) we obtain

T = 1

cosh μ + i sinh μ sinh θ

[
ρ cosh θeiφ sinh μ + i cosh μ sinh θ

− sinh μ − i cosh μ sinh θ 1
ρ

cosh θe−iφ

]
. (73)

Note that Eq. (73) reduces to Eq. (71) in the limit ρ = 1 and
μ = 0.

Equation (73) parametrizes the transfer matrix of any
structure that respects parity. In the Appendix we compare
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the general expression to the transfer matrix of a simple
rectangular slab of refractive index n and permeability μr .

Having parametrized the transfer matrix of a single slab
we now determine T R , the transfer matrix of its time
reversed counterpart. Time reversing the field configuration
equation (59) yields

Ey = A∗e−ikx + B∗eikx as x → −∞
= C∗e−ikx + D∗eikx as x → +∞. (74)

It follows that (
D∗
C∗

)
= T R

(
B∗
A∗

)
, (75)

where T R is the transfer matrix of the time reversed slab.
Comparing Eq. (75) to Eq. (60) we conclude that

T R = σxT
∗σx, (76)

the result we sought.
Using Eqs. (62), (67), and (76) it is easy to verify that if T

is characterized by the parameters (z1,z2), then the parameters
of T R are (1/z∗

1,1/z∗
2). Physically this means that if T is

absorbing (|z1| < 1 and |z2| < 1), then T R has gain (|z1| > 1
and |z2| > 1) and vice versa, as one might expect intuitively.
Note furthermore that if we impose time-reversal symmetry,
T = T R , we obtain a unitary S matrix since z1 and z2 are
unimodular.

Explicitly if T is given by Eq. (73), then T R is given by

T R = 1

cosh μ − i sinh μ sinh θ

[ 1
ρ

cosh θeiφ − sinh μ + i cosh μ sinh θ

sinh μ − i cosh μ sinh θ ρ cosh θe−iφ

]
. (77)

Finally we note that if the slab is shifted to the right by a
distance δ, its transfer matrix changes according to

T → U (δ)T U †(δ) (78)

where the shift matrix

U (δ) =
(

e−ikδ 0
0 eikδ

)
. (79)

C. Transmission spectroscopy of a PT -symmetric
double barrier

We construct a structure with an absorbing slab at x = −δ/2
and its time-reversed counterpart at x = δ/2. The transfer
matrix T D of the composite structure is given by

T D = U (−δ/2)T U †(−δ/2)U (δ/2)T RU †(δ/2). (80)

Here T is the transfer matrix of the absorber if it were located
at x = 0; T R , of its time reversed counterpart, at the same
location. It is easy to verify that T D satisfies the condition of
PT symmetry T DT D∗ = 1 [12,13]. In addition, det T D = 1
since it is a product of matrices with unit determinant. From
the transfer matrix T D we can easily construct the S matrix SD

which is more directly connected to the results of scattering
experiments.

It is useful to first consider the unitary case ρ = 1, μ = 0.
In this case both T and T R are given by Eq. (71). A short
calculation reveals that tL = tR = t , given by

t = ei2φ

cosh2 θ + sinh2 θei2kδei2φ
. (81)

Equation (81) reveals the classic textbook resonance phe-
nomenon. For

ei2kδei2φ = −1 (82)

we obtain perfect transmission, |t |2 = 1. To analyze this
resonance write k = kc + q, where kc is the resonant wave
vector that meets the condition (82) and q is the detuning.

Close to resonance and in the limit of low penetrability (large
θ ), the expression for t simplifies to yield the classic Lorentzian
line shape

|t |2 = 1

1 + q2/Q2
, (83)

where 1/Q = 2δ sinh2 θ . In deriving Eq. (83) we assume
that (θ,φ) are independent of q, justified a posteriori if the
resonance is sufficiently narrow [20]. Since |t |2 + |r|2 = 1,
the reflection shows a corresponding feature as well.

Next up in complexity let us suppose the absorbing slab
has ρ < 1 but the asymmetry μ = 0. Making the same
approximation, in this case the formula for the S matrix
simplifies to

S = ei2φ

1 − iq/Q

[
1 ±i(q/Q)(1/ρ)

±iρ(q/Q) 1

]
, (84)

where the − sign applies if the resonant numerator satisfies
exp(ikcδ + iφ) = +i (even resonance), and the + sign if
exp(ikcδ + iφ) = −i (odd resonance). From the S matrix we
see that there is again a Lorentzian peak in transmission given
by Eq. (83). Furthermore the transmission is the same for
incidence from the left or the right; |tL|2 = |tR|2 = |t |2. The
reflection, however, breaks left-right symmetry

|rL|2 = ρ2 q2

Q2 + q2
, |rR|2 = 1

ρ2

q2

Q2 + q2
. (85)

Since ρ < 1, the reflection for radiation incident from the
right is enhanced relative to incidence from the left. Note
that in the former situation the radiation is incident directly
on the active slab; in the latter on the absorbing slab first.
The absorption may be computed from the conservation law
|t |2 + |r|2 + |a|2 = 1. Thus we find

|aL|2 = (1 − ρ2)
q2

Q2 + q2
, |aR|2 =

(
1 − 1

ρ2

)
q2

Q2 + q2
.

(86)
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Note that |aR|2 is negative, corresponding to a net generation
of radiation rather than absorption, in the case of incidence
from the right.

It is instructive to calculate the eigenvalues and eigenvectors
of the S matrix (84). Focusing on the case of even resonance we
find that the eigenvalues of the S matrix are ei2φ and ei2φei2ξ ,
where tan ξ = q/Q. The corresponding eigenvectors are

v1 = 1√
1 + ρ2

(
1
ρ

)
, v2 = 1√

1 + ρ2

(
1

−ρ

)
, (87)

respectively. Remarkably, although the S matrix is not unitary,
its eigenvalues are unimodular, a circumstance dubbed unbro-
ken PT by Ref. [13]. Note that the eigenvectors (87) are not
orthogonal in the sense v

†
1v2 = 0 as they would be for a unitary

S matrix.
Unbroken PT has the physical interpretation that ab-

sorption happens by interference. If the incident radiation is
in either eigenmode, Eqs. (87), it will emerge unattenuated
from the structure. If, however, the incident radiation is a
superposition αv1 + βv2, then the incident power is

|α|2 + |β|2 + 1 − ρ2

1 + ρ2
(α∗β + β∗α), (88)

while the transmitted power is

|α|2 + |β|2 + 1 − ρ2

1 + ρ2
(α∗βei2ξ + β∗αe−i2ξ ). (89)

Note that both expressions contain interference terms by virtue
of the nonorthogonality of the S-matrix eigenmodes and this
interference is modified by passage through the structure.

Finally we turn to the most general case ρ < 1 and permit
nonzero asymmetry μ. Again we find tL = tR = t . Right
on resonance we find the remarkable effect of superunitary
transmission, |t |2 � 1. More explicitly, we find |t |2 = 1/Z2,
where

Z = 1 − sinh2 μ cosh2 θ

1 + sinh2 μ cosh2 θ
. (90)

Near resonance we find

|t |2 = 1

Z2 + q2/Q2
, (91)

a Lorentzian with reduced oscillator strength. Here Q is
defined as

Q = 1

2δ

1 + sinh2 μ cosh2 θ

sinh2 θ + sinh2 μ cosh2 θ
. (92)

Although the transmission resonance remains Lorentzian, the
reflection is found to be

|rL|2 = ρ2 (� + q/Q2)2

(1 + q2/Q2)2
, |rR|2 = 1

ρ2

(−� + q/Q2)2

1 + q2/Q2
.

(93)

Here

Q2 = 1

2δ

1 − sinh2 μ cosh2 θ

sinh θ cosh θ cosh μ
(94)

and

� = sinh μ cosh θ

1 − sinh2 μ cosh2 θ
. (95)

Thus the reflection coefficients have an asymmetric form
associated with Fano rather than Lorentzian lines [21]. Note
that rL vanishes at q = −�Q2 and rR at q = �Q2. Thus the
reflection minima are displaced symmetrically away from the
q = 0 peak in the transmission.

V. CONCLUSION

In this paper we study the role of boundary conditions in
PT quantum mechanics by consideration of a simple example.
There is a well developed theoretical understanding of the role
of boundary conditions in determining whether an operator
is self-adjoint [4,5], but the corresponding problem in PT
quantum mechanics has not previously been investigated to
our knowledge. We show that for a Hermitian particle in a
box the allowed boundary conditions can be parametrized
by the pair (λ1,λ2) where λ1 and λ2 are real numbers.
On the other hand, for a PT -symmetric particle in a box
the allowed boundary conditions may be parametrized as
(�1 + i�2, −�1 + i�2) where �1 and �2 are real. Thus the
two sets of boundary conditions overlap for the case that
λ1 = −λ2 and �2 = 0, respectively. This case corresponds to
Hamiltonians that are Hermitian and separately respect both
P and T . Here, however, we are interested in Hamiltonians
that are not Hermitian but respect the combined symmetry
PT . For such Hamiltonians we find that as long as �1 > 0,
not only does the Hamiltonian commute with PT , one also
obtains the stronger result that PT is unbroken. In other words
one can find simultaneous eigenfunctions of the Hamiltonian
and PT and the Hamiltonian eigenvalues are necessarily real.
Furthermore we find that the Hamiltonian for a particle in a box
with PT -symmetric boundary conditions is self-adjoint under
the PT inner product. Thus the PT -symmetric particle in a
box fulfills all three requirements of PT quantum mechanics
of which it constitutes a simple soluble example.

A second development in this paper is the formulation of a
variational principle for PT quantum mechanics that is the
analog of the textbook Rayleigh-Ritz principle. The latter
principle is the basis for many approximations and insights
into quantum mechanics and its generalization toPT quantum
mechanics may therefore prove of similar value.

Finally we study classical electromagnetic analogs of the
PT -symmetric particle in a box. We show that the natural
photonic analog of the isolated particle in a box is a Fabry-Perot
cavity bounded by an absorbing medium and its conjugate
gain medium. One way to experimentally realize and probe
a particle in a box is to consider a double barrier structure.
In the limit of infinite barrier height this system is an ideal
particle in a box but for finite height the bound states of
the particle in a box are broadened into resonances that
can be mapped out by measurements of the transmission,
reflection, and absorption through the structure. In textbook
quantum mechanics the transmission and reflection resonances
have a classic Breit-Wigner shape; there is no absorption. In
the PT -symmetric case we find that the transmission has a
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Breit-Wigner shape but the reflection and absorption have an
asymmetric Fano line shape.

We conclude by identifying some problems that are left
open. (a) The potential real xM tends to the ordinary particle in
a box in the limit M → ∞. The authors of Ref. [3] have studied
the eigenvalues of thePT -symmetric potential xMxiε and have
derived asymptotic results in the limit M → ∞ and ε → ∞.
It would be desirable to study the relationship between their
asymptotic results and the PT -symmetric particle-in-a-box
model studied here. (b) We do not at present have a proof of
the completeness of the eigenfunctions for the non-Hermitian
particle in a box. In the Hermitian case the completeness
can be proved by regulation and direct evaluation of the
completeness sum, Eq. (22), or by use of the variational
principle [17]; it is guaranteed by general theorems moreover
[5]. The non-Hermitian case is more subtle. In particular,
the variational proof [17] does not generalize because the
variational principle for PT quantum mechanics is based
on the PT -symmetric inner product which is indefinite.
(c) Spontaneous PT symmetry breaking is a remarkable
feature of PT quantum mechanics [2]. Our model may
provide a simple tractable example of such a transition for
�1 < 0. (d) In the maximally non-Hermitian case �1 = 0 our
model has a sequence of critical points at which it has an
orthogonality catastrophe. These critical points correspond
to the circumstance that a particular eigenstate becomes
weightless (zero norm) with respect to the PT inner product, a
phenomenon worthy of further elucidation. (e) In this paper we
limited attention to a nonrelativistic spinless particle for which
time-reversal symmetry is even in the sense that T 2 = 1. Two
natural generalizations are to consider a particle with spin
1
2 for which time-reversal symmetry is odd T 2 = −1 and a
particle that obeys the relativistic Dirac equation. (f) Finally
we describe a possible experimental realization of the PT -
symmetric particle in a box using the Fe-doped LiNbO3 system
studied by Ref. [7]. We envisage forming a waveguide by
forming a suitable refractive index profile nR(x) transverse to
the direction of propagation as in Ref. [7]. Asymmetric optical
gain can then be provided by two-wave mixing and a suitable
amplitude mask that allows the pump beam to illuminate
only one side of the waveguide. The temporal dynamics of
the PT -symmetric particle in a box can be mapped out by
spatial propagation of light down the waveguide, much as the
temporal dynamics of a two-level non-Hermitian system was
mapped out in Ref. [7]. The experiment we envisage would
be particularly well suited to study the PT phase transition
and the orthogonality catastrophes that occur in our system.
More detailed consideration of this and other experimental
realizations are left for future investigation.
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APPENDIX: MAPPING TO TEXTBOOK PARTICLE
IN A BOX

In this Appendix we examine more closely the relationship
of the maximally non-Hermitian particle in a box with
boundary conditions (i�2,i�2) to the textbook particle in a
box with boundary conditions (0,0). Since the two problems
are isospectral it is easy to find a similarity transformation
between them. Denoting the eigenfunctions of the textbook
problem

ξn(x) =
√

2

L
sin

πnx

L
, (A1)

with n = 1,2,3, . . ., we see that the kernel

K(x,x ′) =
∞∑

n=1

ψn(x)ξn(x ′) (A2)

maps eigenfunctions of the textbook box to the eigenfunctions
of the maximally non-Hermitian problem. Here ψn(x) is given
by Eq. (17). Conversely, the kernel

M(x,x ′) =
∞∑

n=1

ξn(x)ϕ∗
n(x ′) (A3)

maps eigenfunctions of the non-Hermitian box back to the
textbook eigenfunctions by virtue of the biorthogonality
equation (19). The kernel M is the inverse of K in the sense
that ∫

dx ′′ M(x,x ′′)K(x ′′,x ′) = δ(x − x ′) (A4)

by virtue of the completeness of the eigenfunctions of the
textbook particle in a box. At present we lack a proof that M

is also the right inverse of K; that would be tantamount to a
proof of bicompleteness.

The existence of a mapping between the two problems
raises the question whether they in fact represent the same
physics in a different representation. However, it can be shown
that the kernels K and M are nonlocal. Thus the perturbation
of the ideal box problem that is local in one representation
will look nonlocal in the other. Thus the two problems may
in fact be considered physically distinct. Note also that the
existence of this mapping is a peculiarity of the maximally
non-Hermitian box. More general PT -symmetric boundary
conditions should not be isospectral with any Hermitian
boundary conditions.

To conclude we now prove that the kernel K is nonlocal.
If K were local it would have a delta function spike at x = x ′
and it would vanish for x and x ′ distinct. Thus our task is to
show that K(x,x ′) 	= 0 for at least some distinct x and x ′. To
this end it is convenient to split the expression for K into a
sum of two terms. The first of these terms is

K1 = 2

π�2

∞∑
n=1

1

n
sin

πnx

L
sin

πnx ′

L

+ i
2

L

∞∑
n=1

sin
πnx ′

L
cos

πnx

L
. (A5)
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The convergence of these sums is a bit delicate but they may
be evaluated analytically with the result

K1 = i

L
cot

π (x ′ − x)

L
+ i

L
cot

π (x ′ + x)

L

+ 1

π�2
ln

∣∣∣∣ sin[π (x + x ′)/L]

sin[π (x − x ′)/L]

∣∣∣∣ . (A6)

Thus K1 does not vanish for x and x ′ distinct. Indeed it diverges
as x → x ′. We will now show that the second term, K2, remains
finite and therefore cannot cancel the divergent term. Hence
K1 + K2 also does not vanish at least for x and x ′ sufficiently
close, showing the K is indeed nonlocal.

The exact expression for the second term is

K2 = 2

L

∞∑
n=1

[∣∣∣∣
(

π�2n

L

)2

− 1

∣∣∣∣
−1/2

−
(

π�2n

L

)−1 ]

× sin
πnx

L
sin

πnx ′

L

+ i
2

L

∞∑
n=1

[
π�2n

L

∣∣∣∣
(

π�2n

L

)2

− 1

∣∣∣∣
−1/2

− 1

]

× sin
πnx ′

L
cos

πnx

L
. (A7)

Neither sum depends on the oscillatory terms for its conver-
gence in contrast to the situation for K1. It follows

|K2| � 2

L

∞∑
n=1

∣∣∣∣
∣∣∣∣
(

π�2n

L

)2

− 1

∣∣∣∣
−1/2

−
(

π�2n

L

)−1 ∣∣∣∣

+ 2

L

∞∑
n=1

∣∣∣∣π�2n

L

∣∣∣∣
(

π�2n

L

)2

− 1

∣∣∣∣
−1/2

− 1

∣∣∣∣. (A8)

The right-hand side of Eq. (A8) is finite since the sum is highly
convergent. It therefore provides a bound on K2 that is constant
(independent of x and x ′). This completes the demonstration
that K is nonlocal.
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