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In a recent paper, Bender and Klevansky [Phys. Rev. A 84, 024102 (2011)] considered PT -symmetric matrix
representations for fermionic operator algebras of the form ξ 2 = ξ̄ 2 = 0, ξ ξ̄ + ξ̄ ξ = ε1, where ξ̄ is the PT
transform of ξ . They constructed such algebras for ε = −1 and established that it is not possible to construct
a matrix representation for the standard fermionic algebra (ε = 1). Bender and Klevansky used the formalism
developed by Jones-Smith and Mathur [ Phys. Rev. A 82, 042101 (2010)] which extends PT -symmetric quantum
mechanics to the case of odd time-reversal symmetry (fermionic case). By using the same formalism, we show
that PT -symmetric matrix representations exist for both standard (ε = 1) and abnormal (ε = −1) fermionic
algebras if one takes ξ̄ as adjoint ξ with respect to the CPT and PT inner products, respectively. This general
result is illustrated for the example of a typical quaternionic four-level model by an explicit construction of the
fermionic creation and annihilation operators which satisfy all the criteria of PT quantum mechanics for the odd
time-reversal symmetry.
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I. INTRODUCTION

The quantum mechanics which deals with pseudo-
Hermitian and PT -symmetric Hamiltonians has attracted a
great deal of interest over the last decade [1–3]. In this
framework, Jones-Smith and Mathur [4] have developed a
formalism in which they extend the construction of PT -
symmetric quantum mechanics to the case of odd time-reversal
symmetry (T 2 = −1), the case appropriate for fermions.
Recently, Bender and Klevansky [5] have used the formalism
developed in Ref. [4] in order to construct PT -symmetric
matrix representations for fermionic operator algebras of
the form ξ 2 = ξ̄ 2 = 0, ξ ξ̄ + ξ̄ ξ = ε1, where ξ̄ = ξPT =
PT ξP−1T −1, which is the PT reflection of ξ . In Ref. [5] it
was shown that it is not possible to find matrix representations
which correspond to ε = 1, but the matrix representation for
such a fermionic algebra corresponds only to the value ε = −1.

On the other hand, fermionic algebra in quantum mechanics
has been extended to the case of pseudo-Hermitian quantum
mechanics by Mostafazadeh [6], showing that there exist
two types of fermionic algebras which depend on whether
the associated metric operator is definite or indefinite. In the
first one, which corresponds to the definite metric operator η,
the defining algebra is the pseudo-Hermitian generalization
of the usual fermion algebra [6], namely, α2 = α#2 = 0,

αα# + α#α = 1, where α# = η−1α†η is the pseudoadjoint of
α with respect to the inner product 〈φ,ψ〉η = 〈φ,ηψ〉, which
means that α# and α satisfy 〈φ,αψ〉η = 〈α#φ,ψ〉η for all
states φ and ψ . α# and α are, respectively, the creation and
annihilation operators of what is called the pseudo-Hermitian
fermion, or simply the phermion [6] . We remark that when η =
1, we have α# = α†, i.e., the phermion algebra reduces to the
usual fermion algebra. The second type of fermionic algebra
corresponds to the indefinite metric operator η, and the defining
operator algebra is called an abnormal pseudo-Hermitian
fermion [6], which satisfies α2 = α#2 = 0, αα# + α#α = −1.
We would like to point out that the main guiding principle in
this pseudo-Hermitian extension is to replace in the standard
fermion algebra the adjoint operator α† by the pseudoadjoint
one, α# = η−1α†η.

In light of PT quantum mechanics with odd time-reversal
symmetry introduced in Ref. [4] and the pseudo-Hermitian
extension of the fermionic algebra achieved in Ref. [6], we
introduce an alternative extension of fermionic algebra in the
framework of PT quantum mechanics. The main guiding
principle of our PT -symmetric extension is to replace the
adjoint operator α† in the standard fermion algebra (i) by the
PT adjoint operator, denoted αD in the indefinite metric case,
and (ii) by the CPT adjoint operator, denoted α‡ in the definite
metric case.

This paper is organized as follows. In Sec. II, after reviewing
the main definitions of thePT and CPT inner products and the
PT and CPT adjoints in the PT quantum mechanics for the
odd time-reversal symmetry, we introduce our PT -symmetric
extension of fermionic algebras. For illustration, we provide
in Sec. III an explicit construction of the fermionic algebras
in PT quantum mechanics in the typical quaternionic four-
level model which satisfies all the conditions of PT quantum
mechanics for the odd time-reversal symmetry [4]. We end
with concluding remarks.

II. FERMIONIC ALGEBRAS IN PT QUANTUM
MECHANICS

The PT inner product in the PT quantum mechanics for
the odd time-reversal symmetry is defined by Ref. [4]

(φ,ψ)PT = (PT φ)T Zψ = φ†Sψ = 〈φ,Sψ〉. (1)

Here 〈φ,ψ〉 = φ†ψ denotes the ordinary inner product. S and
Z correspond to the linear operators used to define the parity
and time-reversal operators, respectively [4]. The action of the
time-reversal operator T on any state ψ is to multiply the
complex conjugate of ψ by the matrix Z: T ψ = Zψ∗, where
Z is the quaternion real diagonal matrix with all the diagonal
terms equal to a 2 × 2 matrix e2,

e2 =
(

0 1

−1 0

)
, (2)
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and all the off-diagonal terms equal to zero [4]. The action of
the parity operator P on any state ψ is to multiply ψ by the
matrix S, which is real matrix given by

S =
(

I 0

0 −I

)
, (3)

where I is the 2 × 2 identity matrix.
The PT inner product is not positive definite. Then in

view of Eq. (1), the PT inner product in the odd case
is the pseudo-Hermitian inner product corresponding to the
indefinite metric η = S. Moreover, the PT adjoint YD of an
operator Y , defined through the PT inner product [4], takes
the form of S-pseudoadjoint [7]:

YD = S−1Y †S = SY †S. (4)

Since the metric is indefinite in this case, one deduces that
the defining PT -symmetric (fermionic) operator algebra is an
abnormal fermion algebra [6],

Y 2 = Y 2
D = 0, YYD + YDY = −1. (5)

In order to formulate a consistent PT quantum mechanics
in the odd case, a positive-definite CPT inner product has been
introduced in Ref. [4]. This inner product is used in lieu of the
standard inner product. The CPT inner product is defined for
the odd case as [4]

(φ,ψ)CPT = (CPT φ)T Zψ = (CPZφ∗)T Zψ
(6)

= (KSZφ∗)T Zψ

= φ†(KSZ)T Zψ = φ†(ZT SKT )Zψ, (7)

where AT is the transposed A. In view of the relations ZT =
−Z, C PT = PT C, and SK†S = ZT KT Z = −ZKT Z [4],
the CPT inner product takes the compact form

(φ,ψ)CPT = φ†K†Sψ ≡ 〈φ,K†Sψ〉. (8)

The operator K†S is positive definite, Hermitian [(K†S)† =
S†K = SK], and invertible. Therefore, denoting it as η+,
we can rewrite the odd time-reversal symmetry CPT scalar
product (8) in the form of Mostafazadeh η+ inner product [7],
with η+ ≡ PC = SK ,

(φ,ψ)CPT = φ†SKψ = 〈φ,η+ψ〉. (9)

We have to note that our result (8) for the CPT inner product
differs slightly from the result found in Ref. [4], where it
has been given by (φ,ψ)CPT = φ†KT Sψ , i.e., they found the
transpose KT in lieu of the adjoint K† of K . As a consequence
of our corrected result, we get that in the odd case the CPT
adjoint Y ‡ of an operator Y coincides with Mostafazadeh η+
pseudoadjoint,

Y ‡ = (SK)−1Y †SK = η−1
+ Y †η+. (10)

From this, and in accordance with Ref. [6], we deduce that
(the fermionic operators) Y ‡ and Y satisfy the conventional
fermionic algebra, namely,

Y 2 = Y ‡2 = 0, YY ‡ + Y ‡Y = 1. (11)

III. ILLUSTRATION

In this section we illustrate the above general result by
explicit matrix construction of the example of the simplest
nontrivial quaternionic four-level model, which satisfies all the
criteria of PT quantum mechanics for the fermionic odd time-
reversal symmetry. The model is described by the following
Hamiltonian [4]:

H =
(

a ib

ib† −a

)
, (12)

where b = b0σ0 + ib1σ1 + ib2σ2 + ib3σ3 is a real quaternion
and a = a0σ0 is the real quaternion proportional to the identity,
where σi (i = 1,2,3) are the Pauli matrices. By setting B± =
b1 ± ib2 and C± = b3 ± ib0, this Hamiltonian H can also be
written as a four-level Hamiltonian as follows:

H =

⎛
⎜⎜⎜⎝

a0 0 −C− −B−
0 a0 −B+ C+

C+ B− −a0 0

B+ −C− 0 −a0

⎞
⎟⎟⎟⎠ . (13)

According to Ref. [4], the eigenvalues of H are E = ±	,

with 	 =
√

a2
0 − |b|2, where |b|2 = b2

0 + b2
1 + b2

2 + b2
3, which

is the magnitude of the quaternion b. These eigenvalues are
twofold degenerate. As in Ref. [4], we deal with the real
eigenvalues (i.e., a2

0 > |b|2).
We construct the PT doublets (|ψ1〉, − PT |ψ1〉) and

(|ψ2〉, − PT |ψ2〉) associated with the negative and positive
energies, respectively, as follows. For the negative energy
E = −	,

|ψ1〉 = 1√
2	

⎛
⎜⎜⎜⎜⎝

√
a0−	

|b| (iC−)
√

a0−	

|b| (iB+)

i
√

a0 + 	

0

⎞
⎟⎟⎟⎟⎠ ,

(14)

PT |ψ1〉 = 1√
2	

⎛
⎜⎜⎜⎜⎝

−
√

a0−	

|b| (iB−)
√

a0−	

|b| (iC+)

0

−i
√

a0 + 	

⎞
⎟⎟⎟⎟⎠ .

For the positive energy E = 	,

|ψ2〉 = 1√
2	

⎛
⎜⎜⎜⎜⎝

√
a0+	

|b| (iC−)
√

a0+	

|b| (iB+)

i
√

a0 − 	

0

⎞
⎟⎟⎟⎟⎠ ,

(15)

PT |ψ2〉 = 1√
2	

⎛
⎜⎜⎜⎜⎝

−
√

a0+	

|b| (iB−)
√

a0+	

|b| (iC+)

0

−i
√

a0 − 	

⎞
⎟⎟⎟⎟⎠ .

The action of PT on the eigenstates |ψi〉 (i = 1,2) is given by

PT |ψi〉 = SZ |ψi〉∗ , (16)
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where S and Z are given in the case of the four-level system
by Ref. [4]

S =
(

I2 0

0 −I2

)
, Z =

(
e2 0

0 e2

)
, (17)

where I2 is 2 × 2 identity matrix and e2 is the 2 × 2 matrix
given in Eq. (2).

According to Ref. [4], we write the PT doublet (|ψ1〉,
− PT |ψ1〉), which forms two column vectors as a single
quaternion state |ϕ1〉, and the PT doublet (|ψ2〉,−PT |ψ2〉),
which forms two column vectors as a single quaternion state
|ϕ2〉. Explicitly, |ϕ1〉 and |ϕ2〉 are given by

|ϕ1〉 = 1√
2	

( √
a0−	

|b| b

i
√

a0 + 	σ0

)
,

(18)

|ϕ2〉 = 1√
2	

( √
a0+	

|b| b

i
√

a0 − 	 σ0

)
.

The quaternion columns |ϕ1〉 and |ϕ2〉 are also eigenstates of H

associated with the negative and positive energies, respectively.
It is useful to mention that the forms of the PT doublets |ϕ1〉
and |ϕ2〉 are in agreement with the general form of a state
given in Ref. [4] which is invariant under PT . In other words,
the upper terms of |ϕ1〉 and |ϕ2〉 are real quaternions, and the
lower terms are real quaternions multiplied by i.

The eigenstates (PT doublets) |χ1〉 and |χ2〉 associated
with H † are obtained from the action of S on |ϕ1〉 and |ϕ2〉,

respectively, and are given by

|χ1〉 = 1√
2	

( √
a0−	

|b| b

−i
√

a0 + 	 σ0

)
,

(19)

|χ2〉 = 1√
2	

( √
a0+	

|b| b

−i
√

a0 − 	 σ0

)
.

These states satisfies the relations

(ϕ1,ϕ1)PT = 〈ϕ1,Sϕ1〉 = 〈ϕ1,χ1〉 = −1, (20)

(ϕ2,ϕ2)PT = 〈ϕ2,Sϕ2〉 = 〈ϕ2,χ2〉 = 1, (21)

(ϕn,ϕm)PT = 0,(n �= m). (22)

Thus, |ϕ1〉 has a negative PT norm, while |ϕ2〉 has a positive
PT norm. We note that H is pseudo-Hermitian with indefinite
metric S:

H † = SHS−1 , (23)

where S is given in Eq. (17).
We introduce the annihilation operator Y associated with

the Hamiltonian H given in Eq. (12) by

Y = |ϕ1〉〈χ2| = 1

2	

(
|b| σ0

i(a0−	)
|b| b

i(a0+	)
|b| b† − |b| σ0

)
. (24)

The operator Y can be written in four dimensions as

Y = 1

2	

⎛
⎜⎜⎜⎜⎝

|b| 0 − (a0−	)
|b| C− − (a0−	)

|b| B−
0 |b| − (a0−	)

|b| B+ (a0−	)
|b| C+

(a0+	)
|b| C+ (a0+	)

|b| B− − |b| 0
(a0+	)

|b| B+ − (a0+	)
|b| C− 0 − |b|

⎞
⎟⎟⎟⎟⎠ . (25)

We remark that Y has a vanishing trace and determinant. Its
adjoint operator reads

Y † = 1

2	

(
|b| σ0 − i(a0+	)

|b| b

− i(a0−	)
|b| b† − |b| σ0

)
, (26)

and its PT adjoint YD (which is equal to the S-pseudoadjoint)
is given by

YD = SY †S (27)

and takes the form

YD = 1

2	

(
|b| σ0

i(a0+	)
|b| b

i(a0−	)
|b| b† − |b| σ0

)
. (28)

After calculation, we find that YD and Y satisfy the abnormal
fermionic algebra, namely,

Y 2 = Y 2
D = 0, YYD + YDY = −1. (29)

Y and YD act on states |ϕi〉 as follows:

Y |ϕ1〉 = 0, Y |ϕ2〉 = |ϕ1〉 , (30)

YD |ϕ2〉 = 0, YD|ϕ1〉 = −|ϕ2〉 . (31)

We embark now on the construction of the fermionic algebra
in terms of operator Y and its CPT adjoint. As we have
mentioned previously, the CPT adjoint Y ‡ of an operator
Y with respect to the CPT inner product is nothing but the
η+ pseudoadjoint with η+ = SK ≡ PC. Moreover, H is also
pseudo-Hermitian with positive-definite metric operator η+:

H † = η+Hη−1
+ , (32)

where η+ and η−1
+ are given explicitly by the matrices

η+ = 1

	

(
a ib

−ib† a

)
,

(33)

η−1
+ = |ϕ1〉〈ϕ1| + |ϕ2〉〈ϕ2| = 1

	

(
a −ib

ib† a

)
.
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Here |ϕ1〉 and |ϕ2〉 are the eigenstates (PT doublets) of H

given in Eq. (18). They satisfy the biorthonormal relations

〈ϕn|λm〉 = δnm,
∑

n

|λn〉 〈ϕn| =
∑

n

|ϕn〉 〈λn| = 1, (34)

where |λ1〉 and |λ2〉 are the eigenstates of H †. They are
obtained through the action of η+ on eigenstates |ϕ1〉 and
|ϕ2〉, respectively, and read

|λ1〉 = 1√
2	

( √
a0−	

|b| (ib)√
a0 + 	σ0

)
= − |χ1〉 ,

(35)

|λ2〉 = 1√
2	

(
−

√
a0+	

|b| (ib)

−√
a0 − 	σ0

)
= |χ2〉 .

Indeed, we find that the expression of η+ given in Eq. (33) is
equal to SK ≡ PC, where S is given in Eq. (17) and K is the
normalized Hamiltonian matrix:

K = H

	
= 1

	

(
a ib

ib† −a

)
. (36)

We introduce now the annihilation operator Y ′ associated with
the Hamiltonian H † as

Y ′ = |ϕ1〉〈λ2|. (37)

In view of Eq. (35) we see that Y ′ coincides with Y , Eq. (24).
Next we have to construct the CPT adjoint Y ‡ of Y . By taking
into consideration Eqs. (10) and (33), we find that Y ‡ is given
explicitly by

Y ‡ = 1

2	

(
− |b| σ0 − i(a0+	)

|b| b

− i(a0−	)
|b| b† |b| σ0

)
. (38)

After calculation, we find that Y ‡ and Y satisfy the conven-
tional fermionic algebra, namely,

Y 2 = Y ‡2 = 0, YY ‡ + Y ‡Y = 1. (39)

The action of Y and Y ‡ on states |ϕi〉 is the same as that of the
lowering and raising operators:

Y |ϕ1〉 = 0, Y |ϕ2〉 = |ϕ1〉 , (40)

Y ‡ |ϕ2〉 = 0, Y ‡|ϕ1〉 = |ϕ2〉. (41)

Y is the lowering operator, annihilating the lowest eigenstates
|ϕ1〉, and Y ‡ is the raising operator, mapping |ϕ1〉 onto the
upper eigenstates |ϕ2〉.

IV. CONCLUDING REMARKS

In this article, we have achieved the fermionic algebra in the
framework of the odd time-reversal PT quantum mechanics.
We have shown that, like the case of fermionic algebras in
the pseudo-Hermitian quantum mechanics [6], there exist
two types of fermionic algebras which depend on whether
the associated metric operator is definite or indefinite. In the
definite metric case, the defining algebra is of the form Y 2 =
Y ‡2 = 0, YY ‡ + Y ‡Y = 1, where Y ‡ = KSY †SK is the CPT
adjoint of Y , with S and K being the matrix representations
of the P and C operators, respectively. In the indefinite metric
operator case, the defining operator algebra is of the form
Y 2 = Y 2

D = 0, YYD + YDY = −1, where YD = SY †S is the
PT adjoint of Y .

Moreover, we have shown that, as in the PT quantum
mechanics with even time-reversal symmetry, the CPT inner
product in the PT quantum mechanics with odd time-reversal
symmetry is nothing but the positive-definite η+ pseudo-
Hermitian inner product with η+ = PC. We have illustrated
our general results in the interesting model of a quaternionic
four-level system which meets all the conditions of PT
quantum mechanics for the odd time-reversal symmetry [4],
providing five parameter families of 4 × 4 matrices that
realize the PT -symmetric representations of both standard
and abnormal fermionic algebras.
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