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a b s t r a c t

This review is focused on various properties of quantum phase transitions (QPTs) in
the Interacting Boson Model (IBM) of nuclear structure. The model describes collective
modes of motions in atomic nuclei at low energies, in terms of a finite number N of
mutually interacting s and d bosons. Closely related approaches are applied in molecular
physics. In the N → ∞ limit, the ground state is a boson condensate that exhibits
shape–phase transitions between spherical (I), deformed prolate (II), and deformed oblate
(III) forms when the interaction strengths are varied. Finite-N precursors of such behavior
are verified by robust variations of nuclear properties (nuclear masses, excitation energies,
transition probabilities for low lying levels) across the chart of nuclides. Simultaneously,
the model serves as a theoretical laboratory for studying diverse general features of QPTs
in interacting many-body systems, which differ in many respects from lattice models
of solid-state physics. We outline the most important fields of the present interest: (a)
The coexistence of first- and second-order phase transitions supports studies related to
the microscopic origin of the QPT phenomena. (b) The competing quantum phases are
characterized by specific dynamical symmetries, and novel symmetry related approaches
are developed to also describe the transitional dynamical domains. (c) In some parameter
regions, the QPT-like behavior can be ascribed also to individual excited states, which is
linked to the thermodynamical and classical descriptions of the system. (d) The model
and its phase structure can be extended in many directions: by separating proton and
neutron excitations, considering odd-fermion degrees of freedomor different particle–hole
configurations, by including other types of bosons, higher order interactions, and by
imposing external rotation. All these aspects of IBM phase transitions are relevant in the
interpretation of experimental data, and important for a fundamental understanding of the
QPT phenomenon.
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1. Introduction

During the last decades, the classical notion of thermodynamical phase transitions [1] has been extended in several
directions. One of these extensions is connectedwith finite systems, counting from thousands down to just few tens of particle
constituents, see e.g. Refs. [2–5]. The corresponding objects are Bose–Einstein condensates, atomic clusters, quantum dots
and other mesoscopic systems. As the temperature or other external parameters are varied, different ‘‘phases’’, i.e. specific
structural configurations of these systems, suddenly emerge. Finiteness of the system unavoidably results in smoothing of
all relevant phase transitional observables, but it makes sense to treat these effects as precursors of true phase transitions
that would take place in an asymptotic regime. In particular, phase transitions are related to the scaling of some essential
properties with increasing size.
Another extension of standard phase transitions is to systems of interacting quantum objects at zero temperature. It

turns out, that when changing the interaction strength in some systems of this sort, one crosses a certain critical point of
a nonanalytic change (in the infinite size limit) between ordered and disordered ‘‘phases’’, which are represented by two
distinct types of the ground statewave function. Since at zero temperature, thermal fluctuations disappear, the only internal
motions that can be responsible for the onset of disorder are quantum fluctuations. This situation is therefore referred to as
the quantum phase transition (QPT). Quantum phase transitions were quickly recognized as being very relevant in a wide
range of systems in condensed matter and many-body physics, see e.g. Refs. [6–12].
Atomic nuclei are at an intersection of both above-outlined extensions of phase transitions. ‘‘Classical’’ phase transitions

in nuclei are driven by intensive thermodynamical variables – temperature and/or rotational frequency – and take several
well-known forms: (a) Transition fromFermi liquid to an ideal gas of nucleons is observed inmultifragmentationphenomena
induced by heavy-ion collisions [13–15]. (b) Experimental and theoretical studies (see e.g. [16,17]) support the idea that
nuclear matter exhibits a phase transition from the paired (superfluid) to an unpaired phase [18,19]. (c) An analogous, and
maybe related effect is observed in the lowest rotational band of many nuclei as a sudden growth of the moment of inertia
[20]. (d) Transitions between different quadrupole deformed shapes are anticipated to appear in awide range of hot rotating
nuclei [21].
Manifestations of ‘‘quantum’’ phase transitions in nuclei at zero temperature can bemostly observed as abrupt changes of

nuclear shapes when crossing certain borders in the plane of neutron versus proton number,N ×Z, see e.g. [9,22–24]. Such
transitions can be studied theoretically within some phenomenological models of nuclear structure, in which the variation
of effective interaction strengths defines the relevant domain of application on the chart of nuclides, see e.g. Refs. [9,25–28].
This review is aimed at quantum phase transitions in the interacting boson model (IBM). Since its introduction by Arima

and Iachello in 1975 [29–31], this model has played an important role in modeling collective motions of atomic nuclei [32–
37]. The success of the IBM is based on a simple and elegant algebraic formulation, and on awide span of relevant dynamical
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regimes. Closely related algebraic approaches are applied in molecular physics [37,38], hadronic physics [39,40], and other
areas [41,42].
The IBM in its sd-boson ‘‘incarnation’’ exhibits both first- and second-order phase transitions between spherical,

deformed-prolate and deformed-oblate shapes of the ground state [9,43–45]. Although the nonanalytic nature of these
transitions can be verified only in the unrealistic limit of the infinite boson number, N →∞ (while in application to nuclei,
N coincides with the number of valence particle or hole pairs, so N < 20 in all realistic cases), some finite-size precursors
turn out to be very neat already at low boson numbers [23]. The shape transitional predictions of the IBM can be applied to
low-energy spectroscopic data for numerous isotopic/isotonic chains.
Apart from describing actual data, the IBM can also be considered as a valuable theoretical tool for studying some general

features of many-body quantum and mesoscopic systems. More than 30 years of the model history gradually disclosed that
seemingly simple IBM hamiltonians encode a rich variety of complex physical phenomena, such as ground- and excited-
state quantum phase transitions, effects of coexisting regular and chaotic motions, manifestations of various types of exact
and approximate symmetries etc. The model offers a deeper insight into the roots of these phenomena. In this sense, it can
be compared to the Hubbardmodel of solid-state physics, whichwas designed as amodel describing rather specific systems,
but in the course of time, turned into a general testing ground for the application of diverse theoretical concepts.
In attempts to understand the origin and consequences of quantum phase transitions in the IBM, considerable effort has

been spent, and a large number of results obtained—see the impressive (but certainly still incomplete) list of references [43–
117] below. Although these efforts are probably not yet completed, this might be about the right time to make a current
summary.
In this review, the focus is set on both experimental and theoretical applications of the interacting boson model. With

regard to the recent reviews of mostly experimental aspects of shape–phase transitions in nuclei [23,24], more emphasis
is put to the theoretical side of the problem. We start by describing some general features of quantum phase transitions in
finite bosonic models and by pointing out some differences from the lattice models. A considerable part of the review deals
with phase-transitional features of the simplest version of themodel, the so-called IBM-1. It is presented as a solid reference
frame for experimental studies, which at the same time serves as a theoretical workshop for analyzing the QPT underlying
mechanisms. Applications in some of the more advanced versions of the IBM are illustrated afterwards. At the end, we will
discuss recent generalization of the QPT type of behavior to excited states.

2. Quantum phase transitions in finite bosonic systems

Effective models of nuclear structure contain free parameters (interaction strengths) whose variations naturally induce
changes of the ground-statewave function. In a finite system, such changes are always of the ‘‘crossover’’ type, i.e., smooth in
all observables. However, in some situations, rather sharp transitions are encountered,whichmay signal true quantumphase
transitions in the ‘‘thermodynamical limit’’. To decidewhether this is the case or not, one needs to identify a parameter, let us
denote itℵ, thatmeasures the size of the system. Through this paper, the role ofℵ is played by the total number of bosons,N .
A necessary requirement for calling a given abrupt structural change of the ground state a ‘‘quantumphase transition’’ (more
precisely, a finite-ℵ precursor of QPT) is that some of the related observables become discontinuous in the limit ℵ → ∞.
Let us use this feature as a working definition of the quantum phase transition in the type of finite many-body systems that
we study here.
Since in this review the focus is set on sharp transitions of nuclear shapes, the collective degrees of freedom are of

primary interest. These can be represented by bosonic types of excitations, with individual bosons occupying a suitable
finite-dimensional single-particle Hilbert space. The theoretical framework for this type of description is provided by the
family of interacting bosonmodels (Section 3), whose quantum phase transitions will be studied in the following sections. It
turns out, however, that in relation to QPTs all finite bosonicmodels have some general properties in common.We therefore
start our discussion by summarizing these properties, and showing related examples in simpler IBM-like models.

2.1. Infinite-size limit of finite bosonic models

Consider a bosonic many-body hamiltonian with one- and two-body (and possibly higher) interaction terms conserving
the total number of particles:

H = E0 +
∑
k

εkb
Ď
kbk +

∑
k,l,m,n

νklmnb
Ď
kb

Ď
l bmbn + · · · . (1)

Here bĎk and bk, respectively, create and annihilate a boson of the kth type, while εk, and νklmn represent one- and two-body
interaction strengths satisfying the condition

νklmn = νlkmn = νklnm = νlknm = νnmlk = νnmkl = νmnlk = νmnkl,

which follows from the exchange symmetry and hermicity. E0 is just an arbitrary energy shift. Let us note that (a part of)
the subscript values may also be understood as denoting different components of the same boson species (e.g. different
angular-momentum projections). Afterwards, it will become important that one of the bosons can be treated separately
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from the others, and for this boson we reserve the subscript k = 0. We therefore choose the numbering k = 0, 1, 2, . . . , f ,
where f will be shown to coincide with the number of classical degrees of freedom associated with the system.
The total number of bosons, N =

∑
k b

Ď
kbk, is conserved by the hamiltonian (1). Therefore, we can consider realizations

of the many-body system with different values of N . However, because of the finiteness of the single-particle Hilbert space
(its dimension is f +1), the increasing number of interacting particles makes the total energy grow faster than linearly with
N . Namely, the two-body part will grow proportional to N(N − 1), the three-body part (if any) as N(N − 1)(N − 2) etc.
Thus the energy is not an extensive quantity. To solve this problem, we have to attenuate individual terms by the respective
factors, which means that we switch to a modified (extensive) hamiltonian H with interaction strengths decreasing with N .
Expressing then the energy per particle,H ≡ 1

NH (an intensive quantity), one has:

H = ε0 +
1
N

∑
k

εkb
Ď
kbk +

1
N(N − 1)

∑
k,l,m,n

νklmnb
Ď
kb

Ď
l bmbn + · · · (2)

(we keep the adjustable energy shift, now denoted as ε0). Strictly speaking, this hamiltonian represents a different system
than the original hamiltonian (1), although via an appropriate readjusting of the interaction strengths in Eq. (2) we can
return to the system (1) for each individual value of N .
Now, we can introduce self-adjoint coordinate and momentum operators

qk =
1
√
N

(
αkb

Ď
k + α

∗

k bk
)
, pk =

i
√
N

(
βkb

Ď
k − β

∗

k bk
)
, (3)

or, equivalently,

bĎk =

√
N
Γ

(
β∗k qk − iα

∗

kpk
)
, bk =

√
N
Γ

(βkqk + iαkpk) , (4)

with Γ = αkβ∗k + α
∗

kβk. The commutator of qk and pl reads as:

[qk, pl] = i
Γ

N
δkl. (5)

We want the commutator to be universal, independent of k, so we take αk and βk such that Γ represents a constant. For the
sake of simplicity we may choose αk = α∗k = βk = β

∗

k =
1
√
2
, hence Γ = 1.

The value ΓN in the commutator (5) plays the role of the Planck constant h̄. We therefore conclude, that in finite bosonic
systems, in which the scaling H → H from Eqs. (1) and (2) makes the coordinate-momentum representation (3) suitable,
the N → ∞ limit represents just the classical limit. This is rather important finding, since in the QPT systems with an
infinite single-particle Hilbert space, where the scaling (2) is not employed, the N → ∞ limit represents the transition to
the quantum field theory.
It is obvious that if Eq. (4) is substituted to Eq. (2), while replacing N(N − 1) by N2 for large N , we obtain a coordinate-

momentum representation of H with no explicit dependence on N . Using the commutation rule (5) and neglecting the
O(N−1) contraction terms, the hamiltonian can be written in the following simple form:

Hcl(q, p) = ε0 +
1
2

∑
k

εk
(
p2k + q

2
k

)
+
1
4

∑
k,l,m,n

νklmn (pkplpmpn + qkqlqmqn)

+
1
2

∑
k,l,m,n

νklmn (plpnqkpm + plpmqkqn − pmpnqkpl) . (6)

Note that here we have used the above special choice of coefficients α and β . In fact, as the contractions were skipped, Eq.
(6) represents the classical (i.e. N →∞) limit of hamiltonian (2).
The classical hamiltonian (6) can be equivalently obtained using condensate states [8,9,43,44,118–123]

|N, c〉 ∝

[∑
k

ckb
Ď
k

]N
|0〉, ck =

1
√
2
(qk − ipk) (7)

where |0〉 is the boson vacuum, and taking

Hcl(q, p) ≡
〈N, c|H |N, c〉
〈N, c|N, c〉

= 〈H〉|N,c〉 (8)

in the limit N →∞. The condensate states (7) respect the conservation of the total boson number. Alternatively, one may
use the Glauber coherent states [124]

|〈N〉, d〉 ∝ exp

[∑
k

dkb
Ď
k

]
|0〉, (9)
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which do not have a fixed N but the average 〈N〉 =
∑
k |dk|

2. For N, 〈N〉 → ∞, both Glauber and condensate states yield
the same results if taking ck ∝ 〈N〉−1/2dk.
It is easy to show that quantum fluctuations measured by the dispersion of the energy per particle in states (7) vanish

for asymptotic N:

〈H2
〉|N,c〉 − 〈H〉

2
|N,c〉 = O(N−1). (10)

This is a consequence of the attenuation of interaction terms in Eq. (2), with an increasing number of bosons. As both
condensate and coherent states form overcomplete bases in the bosonic Hilbert space, the above result illustrates the fact
that the asymptotic number of bosons indeed represents the classical limit of the present class of systems. In contrast, for
an infinite lattice system with a finite range of interactions (not hindered by ∝ N−1) a quantity analogous to (10) behaves
as O(1).
There is an additional condition, following from the conservation of the total boson number, namely

∑
k

(
p2k + q

2
k

)
= 2,

which is equivalent to the normalization 〈N, c|N, c〉 = 1. This constraint can be used to eliminate one of the degrees of
freedom, for instance that connected with the b0 boson. Indeed, the absolute value |c0| can be calculated from the other
values |ck| with k > 0 through the normalization condition, while the phase φ0 of c0 can be chosen arbitrarily, e.g. φ0 =
0 ⇒ p0 = 0. We therefore obtain a system with f degrees of freedom restricted by the condition

∑
k>0(p

2
k + q

2
k) ≤ 2.

Furthermore, all coordinates qk with k > 0 can be expressed relative to q0 using the transformation qk 7→ q̃k =
√
2(qk/q0),

which is (for p0 = 0) equivalent to setting c0 = 1 in Eqs. (7) and (9). The phase space of the new coordinates (q̃1, . . . , q̃k)
and the correspondingmomenta (p̃1, . . . , p̃k) is unlimited. This procedure, however, implies the appearance of characteristic
‘‘form factors’’ inHcl, namely the factors [1+

∑
k>0(p

2
k + q

2
k)]
−m in the terms withm-body interactions.

The above results can be viewed as a consequence of a more sophisticated group theoretical procedure, based on so-
called coset spaces [8,125]. The procedure starts by the identification of a certain subalgebra (called maximum stability
subalgebra) of the spectrum generating algebra U(f + 1) associated with the bosonic system under study (the spectrum
generating algebra is formed of bilinear products bĎkbl). In the present case, the maximum stability subalgebra is taken as
U(f )⊗ U(1), where the single separated degree of freedom is the one connected with the b0 boson. The algebraic coherent
states [125] associated with the factor algebra U(f + 1)/[U(f )⊗ U(1)] read as

|N, z〉 ∝ exp

[∑
k>0

(
zkb

Ď
kb0 + z

∗

k b
Ď
0bk
)] [

bĎ0
]N
|0〉. (11)

Using the Baker–Campbell–Hausdorf formula, one can prove that Eq. (11) transforms into the form (7) with c0 = cosh |z|
and ck =

zk
|z| sinh |z|, where |z| =

√∑
k>0 |zk|2.

In the following, we implicitly use the above reduced set of f normalized coordinates and the associated momenta, but
skip tildes from the notation. We utilize shorthand symbols q ≡ (q1, . . . , qf ) and p ≡ (p1, . . . , pf ). An important quantity
for the analysis of the ground-state phase transitions is the potential energy. It is obtained from the hamiltonian by setting
all momenta to zero, hence V (q) ≡ Hcl|p=0. Although the original hamiltonian (6) with f + 1 degrees of freedom contains
only quadratic and quartic terms in its potential V (q), the elimination of q0 creates also cubic terms. Moreover, the factors
(1 +

∑
k>0 q

2
k)
−m make the Taylor expansion of V (q) infinite. An explicit formula for the potential will be given below in

relation to the interacting boson model (Section 3.2). Here, the whole procedure was described just to elucidate the general
method for obtaining V (q) that will be needed in the following.

2.2. Nonanalytic evolutions with control parameters

In the classical limit, N → ∞, the ground state of hamiltonian (1) can be identified with the global minimum of
the potential energy V (q) ≡ Hcl|p=0. Coordinates of the global minimum are qm and the ground-state energy reads as
E0 = V (qm). Under ‘‘normal’’ conditions, V and qm depend on the hamiltonian parameters εk and νklmn in a smooth, analytic
way. However, in some cases – and these are of interest in this review – the changes of both qm and E0 are nonanalytic for
some values of the hamiltonian parameters. Such situations are of course well documented in the literature. There exist two
standard approaches which make it possible to treat nonanalytic evolutions in a systematic way: the catastrophe theory
and the Landau theory.

2.2.1. Catastrophe theory
The catastrophe theory, initiated by Thom in the mid 1970’s, has been broadly advertised among all kinds of scientists

and technicians. In short, the theory deals with systems in which ‘‘continuous causes’’ can lead to ‘‘discontinuous effects’’.
Its application in quantum physics was pioneered by Gilmore [10], who showed that the catastrophe theory describes
and classifies nonanalytic evolutions of the ground state properties of some many-body systems. The application of the
catastrophe theory in the interacting boson model was first outlined by Feng, Gilmore, and Deans [44] and later elaborated
by López-Moreno and Castaños [47].
The key idea opening the whole field is the concept of structural instability [126]. It can be easily explained on the

potential of the quartic form V (x) = x4, which will turn out to be very relevant in the forthcoming analyses. But consider



P. Cejnar, J. Jolie / Progress in Particle and Nuclear Physics 62 (2009) 210–256 215

Fig. 1. The topology of the cusp catastrophe (left). The surface schematically indicates local equilibrium points (stable and unstable) of potential (13),
depending on control parameters a and b. The bent part of the surface demarcates region (14) of bistable potentials. Sample potentials from this region are
shown on the right-hand side.

at first, the harmonic-oscillator potential V (x) = x2. Add a small perturbation to it, V ′(x) = x2 + εf (x), with ε being an
infinitesimally small number and f (x) a smooth function with all derivatives locally (around x ≈ 0) restricted by a common
bound. Although the perturbation distorts the harmonic behavior close to the potential minimum, it is not difficult to see
that there is no way how it could change the local topology of the problem, i.e., the number and ordering of the minima
and maxima (if any) around x ≈ 0. The harmonic potential is structurally stable. The same holds, less trivially, e.g. for a
double-well potential V (x) = x4− x2, with the boundedness of f (x) now being imposed within a broader interval including
all local extremes of V (x).
On the other hand, the pure quartic oscillator, V (x) = x4, is structurally unstable, since a small perturbation εx2 with

ε < 0 does change the topology of the problem: the local minimum at x = 0 becomes a maximum and emits two minima

located symmetrically at x = ±
√
1
2 |ε|. If we consider a family of potentials

V (η; x) = (2η − 1)x2 + (1− η)x4 (12)

depending on parameter η ∈ [0, 1], a structurally unstable pure quartic potential ∝ x4 is trapped at η = 1
2 in between

structurally stable potentials on both sides η < 1
2 and η >

1
2 .

Let us consider more general families of potentials with variables x, y, z, . . . (denote their number by n) and adjustable
parameters a, b, c, . . . (there are r of them). It turns out that for r ≤ 5 all possible forms of such families can be smoothly
mapped (the transformation affecting the parameters as well as the variables) onto 13 ‘‘canonical’’ forms [126]. These forms
classify all possible catastrophes in low dimension (r ≤ 5). Example (12) belongs to the equivalence class called the cusp.
Since ground-state phase transitions between spherical and deformed shapes in nuclei, and other many-body systems are
closely related to the cusp, we will introduce this special type of catastrophe.
The general cusp potential reads as

Vcusp(a, b; x) = x4 + ax2 + bx, (13)

so it has r = 2 and n = 1. In the parameter plane a× b the potential has a single minimum, except in the cusp-like region

a < 0, |b| ≤
4

3
√
6

√
(−a)3, (14)

where two local minima exist and one local maximum in between (a bistable form), see Fig. 1. Both minima are degenerate
at b = 0, so that if b changes from negative to positive values, the minima swap and the system described by potential (13)
undergoes a phase transition. In the region of parameter b demarcated by condition (14) the two coexistingminima indicate
a phase coexistence interval typical for first-order phase transitions. The limiting parameter values for the bistable form of
the potential are called spinodal and antispinodal points.
We assume that the system driven through the phase coexistence region is ideally equilibrated, i.e., dwells at the bottom

of the lowest potential minimum. Crossing the critical point b = 0 (for a < 0) then implies that the rate of change of the
system’s energy flips from the value characteristic for one minimum to the value characteristic for the other minimum.
The evolution of the ground-state energy has its first derivative discontinuous, which is indeed the defining condition of a
first-order phase transition.
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Consider nowconstant b = 0 and adecreasing frompositive to negative values. In this case, the single potentialminimum
present at a > 0 bifurcates at a = 0, forming two degenerate branches characterizing the situation at a < 0. The system
can choose any of these branches, as they are fully equivalent. If doing so, it turns out that the first derivative of the lowest
energy varies in a continuous way this time, but the second derivative jumps. This is so-called second-order phase transition.
Hence the cusp catastrophe accommodates both basic archetypes of phase transitional evolution in the systems which are
of interest in this review.

2.2.2. Landau theory
Landau theory of phase transitions was formulated in the late 1930’s [127] as an attempt to develop a general method

of analysis for various types of phase transitions in condensed matter physics (especially in crystals). It relies on two basic
conditions, namely on (a) the assumption that the free energy is an analytic function of a quantity called order parameter,
and on (b) the fact that the expression for the free energy must obey the symmetries of the system. Condition (a) is further
strengthened by expressing the free energy as a Taylor series in the order parameter. It is now known that the Landau theory
– being essentially the mean-field theory – fails in many systems. However, in the class of models we look at here it holds.
The reason is the above-explained coincidence of the N →∞ and h̄→ 0 limits in models with finite single-particle Hilbert
spaces and properly scaled strengths of interactions.
The hamiltonian (1) has a number of external parameters. We will now assume a one-dimensional smooth path in the

multidimensional parameter space, i.e., consider the hamiltonian parameters depending on a single real parameter η. A
phase-transitional evolution of the ground state (if any) shows up as a nonanalytic change of the ground-state energy
E0(η) = V (η; qm(η)) at a certain critical point η = ηc. Since the dependence of the potential V (η; q) on η is smooth
(as the path is smooth), the nonanalytic evolution of E0(η) is always connected to a nonanalyticity in the trajectory qm(η)
of the potential minimum. We can write

discontinuity of
dk

dηk
E0 ⇔ discontinuity of

dk−1

dηk−1
qm ⇔ k th order phase transition.

This results from the following sequence of expressions

d
dη
E0 =

(
∂

∂η
V
)

qm

+ (∇V )qm︸ ︷︷ ︸
0

·
d
dη

qm,
d2

dη2
E0 =

(
∂2

∂η2
V
)

qm

+

(
∂

∂η
∇V

)
qm

·
d
dη

qm . . . (15)

(where the dot represents the scalar product), which can be continued to an arbitrary order. Thus if qm jumps, so does ddηE0
(first-order transition), the jump of ddηqm implies the same for

d2

dη2
E0 (second-order transition) etc. The transition orders

introduced here are consistent with the Ehrenfest classification of phase transitions. This classification is not applicable in
general (since in real systems some derivatives may diverge), but it holds within the Landau theory.
Now we come to the essence of Landau theory [127,128]. At zero temperature, the equilibrium free energy coincides

with the ground-state energy, and the role of thermodynamical variables is taken by the hamiltonian external parameters.
The phase of the system can be characterized by a suitably chosen order parameter ξ , which in the present context is a
certain function of coordinates, ξ ≡ ξ(q). The free energy can be expressed as a function of ξ , we denote it VL(η; ξ), and
its equilibrium value, obtained by minimization, coincides with the ground-state energy: VL(η; ξm) = E0(η) = V (η; qm).
Therefore, the above-derived properties of phase transitions of different orders hold also after the replacement V (η; q) 7→
VL(η; ξ).
As will turn out later, the order parameter relevant in our case is given by

ξ = ±

√∑
k>0

q2k . (16)

It represents a radius in the f -dimensional configuration space (the q0 coordinate was eliminated in the way described in
Section 2.1) with the sign±1. Let us note that the existence of phases characterized by ξm > 0 and ξm < 0 is an important
ingredient of the general Landau theory. The concrete meaning of the sign in Eq. (16) will be discussed in Section 3.2. The
above definition implies that for ξm = 0 the system’s ground state is a condensate of b0 bosons, see Eq. (7), while for ξm 6= 0
the ground state is represented by a more complicated mixture of more types of bosons.
We will be mostly interested in transitions between the ξm = 0 and ξm 6= 0 phases. If there is a second-order transition

of this kind, in its vicinity the order parameter takes arbitrarily small values. Therefore, the free energy can be expressed as
a power expansion in ξ ,

VL(η; ξ) = V0(η)+ A(η)ξ 2 + B(η)ξ 3 + C(η)ξ 4 + · · · , (17)

where the linear term was omitted because of symmetry constraints that apply in our case (see Section 3.2) as well as in
Landau’s original context. The condition for the second-order phase transition between ξm = 0 and ξm 6= 0 phases at η = ηc
reads as

A(ηc) = 0, B(ηc) = 0, (18)
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with C(ηc) > 0. The ξm = 0 phase is located on the A > 0 side, while the ξm 6= 0 phase on the A < 0 side of ηc. The evolution
of ξm on the A < 0 side close to A = 0 is ξm ∝

√
|A|, hence for a linear dependence on η one has ξm ∝

√
|η − ηc|. This

implies the critical exponent for the order parameter1 equal to 12 . Note that this particular value is specific for the mean-field
description of phase transitions of the above type [1] and therefore applies in the finite bosonic models studied here.
On the other hand, the first-order phase transition between ξm = 0 and ξm 6= 0 phases takes place if conditions

VL(ηc; ξ) = VL(ηc; 0),
d
dξ
VL(ηc; ξ) = 0 (19)

are fulfilled for a certain value ξ = ξm 6= 0. Close to the second-order phase transition, where the terms of VL with ξ 5 and
higher can be neglected and C > 0, one finds that a simultaneous solution of conditions (19) exists if

B2(ηc) = 4A(ηc)C(ηc). (20)

If higher than quartic terms in the potential (17) are neglected, it can be show that T = B2
AC represents the only essential

parameter of the potential with A, B 6= 0 and C > 0. The remaining three ‘‘unimportant’’ parameters can be associated with
an energy shift and two scale factors. Eq. (20) can therefore be written simply as Tc = 4. The ξm = 0 phase is located on
the T < Tc side and the ξm 6= 0 phase on the T > Tc side. The spinodal and antispinodal points, demarcating the phase-
coexistence region, are given by Ts =

32
9 = 3.555 . . . and Ta = +∞. Let us stress that for an infinite-order potential (17)

these numerical results may in general be valid only in a vicinity of the second-order phase transition (although for some
infinite-order potentials, including those relevant here, they hold everywhere).
A closer inspection of Eq. (17), reveals that besides the first- and second-order transitions between ξm = 0 and ξm 6= 0

phases, there exists also a first-order transition between ξm > 0 and ξm < 0 phases. The critical point for this transition is
given by

A(ηc) < 0, B(ηc) = 0; (21)

at this point the equilibrium order parameter apparently changes the sign. The ξm > 0 phase exists on the B(η) < 0 side
and the ξm < 0 phase on the B(η) > 0 side.
Therefore, the thermodynamical potential (17) describes a systemwith three phases: ξm = 0 (phase I), ξm > 0 (phase II),

and ξm < 0 (phase III). We see that the first-order phase transition between these phases appear on places determined by
a single sharp constraint, either Eq. (20) or (21), while the second-order transition is limited to places determined by two
constraints, Eq. (18). The second-order constraints simultaneously fulfill both first-order constraints. Therefore, in a general
parameter space of dimension p the first-order phase boundaries form two hypersurfaces of dimension (p − 1) and the
second-order phase transition lies in their (p − 2) dimensional intersection. This phase structure will be illustrated by the
interacting boson model.
There is a relation between the Landaupotential (17)with termsup to ξ 4 and the cusp potential (13). Clearly, the potential

VL ∝ ξ 4 at the second-order critical point coincides with the germ of the cusp catastrophe. The transition between the two
forms can be achieved by a smooth transformation which does not affect the cusp topology. If setting C = 1 in the Landau
potential (the scale), the transformation involves just appropriate parameter-dependent shifts x 7→ x− x0 and V 7→ V −V0
in the cusp potential. Themapping (A, B) 7→ (a, b) between topologically equivalent forms (17) and (13) then reads as [103]:

a = A−
3
8
B2, b =

1
2
B
(
1
4
B2 − A

)
. (22)

We may therefore conclude that the phase structure sketched in the previous paragraph belongs to the cusp equivalence
class.

2.3. Hamiltonians with a linear dependence on the control parameter

The classical analysis of the previous subsection needs to be connected with specific quantum signatures. To this end,
consider a class of quantum models with a linear dependence on a single real control parameter η. The hamiltonian reads
as

H(η) = H0 + ηV , (23)

where H0 and V are mutually incompatible terms, [H0, V ] 6= 0. For the Landau analysis the linearity means that coefficients
in Eq. (17) will be linear functions of η, which alone would not be an important achievement. On the quantum level,
however, the linearity represents a considerable advantage. In particular, the knowledge of the whole spectrum Ei(η)
(i = 0, 1, . . . , n − 1) at a single value of the control parameter, together with the complete set of instantaneous matrix
elements 〈ψi(η)|V |ψj(η)〉, where |ψi(η)〉 is the ith eigenstate of H(η), determine all spectral observables for any value of
the control parameter.

1 General definition [1] of the critical exponent λ for a quantity A(ε), where ε ≡ η−ηc
ηc
, is: λ = limε→0 ln A(ε)ln ε .
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In the many-body case, the linear ansatz is naturally satisfied if the control parameter represents a weight factor at
a certain interaction term of the hamiltonian. Otherwise it can be justified by the Taylor expansion of a general nonlinear
hamiltonian around the point of interest. The dimensionless parameterηmay, in principle, varywithin the unlimited domain
η ∈ (−∞,+∞), but in practice we are always interested in a certain restricted interval η ∈ [η1, η2]. Since we can redefine
H0 such that it coincides with H(η1) and absorb the value (η2 − η1) in V , the form (23) in its full generality can be studied
using the constraint η ∈ [0, 1]. An equivalent expression is then

H(η) = (1− η)H(0)︸︷︷︸
H0

+η H(1)︸︷︷︸
H0+V

. (24)

Quantum phase transitions are likely to appear if the limiting hamiltonians H(0) and H(1) correspond to two essentially
different dynamical modes of the system, e.g. such represented by distinct dynamical symmetries (examples given below).
The evolution of the hamiltonian eigenvectors can be expressed as a unitary transformation in the Hilbert space that

naturally conserves traces of all operators. This yields very simple predictions for bulk properties of the spectrum of
hamiltonian (23), namely for the average energy E = 1

n

∑n−1
i=0 Ei and the spread of the spectrummeasured by the statistical

dispersion (∆E)2 = 1
n

∑n−1
i=0 (Ei− E)

2. While the spectrum average behaves linearly with η, the dispersion is quadratic [98]:

nE = TrH0 + ηTrV , (25)

n2(∆E)2 =
[
nTrH20 − Tr

2H0
]
+ 2η [nTr(H0V )− TrH0TrV ]+ η2

[
nTrV 2 − Tr2V

]
. (26)

The minimum of Eq. (26) is at

ηm = −
nTr(H0V )− TrH0TrV
nTrV 2 − Tr2V

, (27)

where the proximity of energy levels induces rapid structural changes of the hamiltonian eigenfunctions |ψi(η)〉, as can be
seen from basic perturbation theory applied to H(η + δη) = H(η)+ δηV , e.g. from the overlap formula

|〈ψi(η)|ψi(η + δη)〉|
2
≈ 1− (δη)2

∑
j(6=i)

|〈ψi(η)|V |ψj(η)〉|2[
Ei(η)− Ej(η)

]2 (28)

with the squared distance of levels in the denominator. On the other hand, for η far away from ηm the second term in Eq.
(23) totally prevails, and the corresponding wave functions approximately coincide with eigenfunctions of V . The spectrum
just linearly blows up.
Themost interesting physics happens around theminimumof dispersion (26). This applies also to ground-state quantum

phase transitions driven by η. If such a transition exists in the given model, it most likely appears at a critical point η = ηc
that lies somewhere close to ηm. We will assume that our choice of H0 and V in Eq. (23) was made so that both ηm and ηc (if
any) are contained in the interval η ∈ [0, 1].
Let us have a closer look on situations when quantum phase transitions related to the structure of the ground state can

typically take place. First, it is clear that since matrix elements of the hamiltonian in an arbitrary fixed basis vary with η in
a smooth (linear) way, any nonanalyticity of the eigenvalue and eigenvector evolutions can only occur if the Hilbert space
dimension increases asymptotically, n→∞ (which for the bosonic models considered here means N →∞).
Elementary calculation yields the following expressions for the derivatives of the ground-state energy:

d
dη
E0(η) = 〈ψ0(η)|V |ψ0(η)〉,

d2

dη2
E0(η) = −2

∑
i>0

|〈ψi(η)|V |ψ0(η)〉|2

Ei(η)− E0(η)
. (29)

Since the second derivative in Eq. (29) cannot be positive (Ei > E0 ∀ i > 0), the ground-state average 〈V 〉0 ≡ 〈ψ0|V |ψ0〉
never increases. A common situation for the ground-state quantumphase transition to appear is when V is a semi-positively
definite operator, or when some constraints do not allow the average 〈V 〉0 to become negative. Then it is likely that the
continuously decreasing average 〈V 〉0 incidentally reaches zero at a certain point ηc. If so, ηc represents a critical point of
the ground-state evolution. Indeed, at this point the first derivative of the ground-state energy in Eq. (29) gets fixed, ddηE0 = 0

for η ≥ ηc, and the second derivative jumps to zero, d
2

dη2
E0 = 0 for η > ηc. From Eq. (29) we know that everywhere on the

right of the critical point there is 〈ψ0|V |ψi〉〈ψi|V |ψ0〉 = 0 for all i (including i = 0), and this yields 〈V 2〉0 ≡ 〈ψ0|V 2|ψ0〉 = 0
for η > ηc. In other words, the ground state becomes an eigenstate of V with zero eigenvalue.
The situation described above constitutes a second-order ground-state phase transition from a ‘‘less symmetric’’, 〈V 〉0 >

0, to a ‘‘more symmetric’’, 〈V 〉0 = 〈V 2〉0 = 0, phase. The notion of symmetry is invoked here in relation to the spontaneous
symmetry breaking: the ‘‘less symmetric’’ form of the ground state usually breaks a certain symmetry that the hamiltonian
itselfmaintains. The ground-state average 〈V 〉0 can be used as a quantumorder parameter and related to the classical (mean-
field) order parameter introduced in Section 2.2.2.
As will be discussed below, in case of the second-order QPT a nonanalytic (for n → ∞) change of this parameter is

connected with a singular growth of the level density at η→ ηc and E → E0. Indeed, as follows from the Pechukas–Yukawa
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theory [129,130], the evolution of levels with η for a linear hamiltonian (23) is analogous to one-dimensional dynamics of
a 2D Coulomb gas (however, with the product charges also subject to specific variations). To make any of the trajectories
nonanalytic, one needs to produce an infinite local growth of ‘‘charge’’ at the corresponding place. The Pechukas–Yukawa
approach and its implications for quantum phase transitions will be discussed in Section 7.2.
For the second-order QPT, the order parameter changes continuously, but with a discontinuous derivative. In contrast,

the first-order QPT involves a discontinuous (for n→∞) jump of the order parameter itself, i.e., the discontinuity of already
the first derivative in Eq. (29) at η = ηc. In terms of the Coulomb gas analogy, this needs locally an infinite ‘‘force’’, which
may be caused by a crossing of a pair of levels (or their sharp anticrossing, indistinguishable from a real crossing). Although
such effects are usually accompanied by an infinite growth of the level density, similar to the second-order transition, this
is not necessarily the case. Therefore, the mechanisms underlying the first- and second-order transitions (a sharp crossing
or anticrossing of two levels and a local singularity of the level density, respectively) may be interrelated, but in general are
different.

2.4. Simple example: Lipkin model

We would like to sketch here QPT properties of the model introduced by Lipkin, Meshkov and Glick in 1965 [131–133],
which is often referred to as the Lipkin model. This will take us very close to the case of the interacting boson model that
will be opened in Section 3. One can find extensive literature investigating various properties of the Lipkin model, including
its phase transitional behavior, see e.g. Refs. [7,10,27,134–138].
The model is formulated in terms of pseudospin operators {Jz, J+, J−} that form the SU(2) algebra. A simplified

hamiltonian may be taken for example as follows,

H ′(ζ ) = Jz − ζ
1
N
(J+ + J−)2, (30)

where ζ is a control parameter that should not yet be identified with η from Eq. (24), see below, and N is related to the spin
quantum number j = 1

2N denoting the chosen SU(2) representation. There exist variousmodifications of Eq. (30) with other
quadratic combinations of the pseudospin operators in the form V = 1

N [J
2
−
+ J2
+
+w(J−J++ J+J−)] containing an additional

parameterw.
The usual interpretation of the SU(2) algebra involved in Eq. (30) is in terms of fermionic operators:

Jz = −
1
2

Ω∑
i=1

aĎi−ai− +
1
2

Ω∑
i=1

aĎi+ai+, J± =
Ω∑
i=1

aĎi±ai∓. (31)

Here, aĎi− and ai− create and annihilate fermions on the lower single-particle level, while a
Ď
i+ and ai+ do the same for the

upper level. Both levels have capacity Ω and the total number of fermions, N =
∑
i(a

Ď
i−ai− + a

Ď
i+ai+) = N− + N+, must

satisfy the condition N ≤ Ω . The hamiltonian (30) and its generalized forms conserve the parity

Π = (−)N+ = (−)Jz+j. (32)

Alternatively, assuming J• = 1
2

∑
i σ

(i)
•
, the Lipkin hamiltonian can be interpreted as describing interactions in an infinite

array of spin- 12 particles. As the strength of interactions between fermions on both levels – or between individual spins –
increases with ζ , the ground state is tempted to switch from the form with (N−,N+) = (N, 0) (all fermions on the lower
level, or all spins down) to a ‘‘diamagnetic’’ formwith both average occupation numbers 〈N+〉 and 〈N−〉 nonzero. Indeed, this
happens at a certain critical point ζc, which will be determined below for a slightly modified hamiltonian by the methods
outlined in the previous subsections.
Using the Holstein–Primakoff mapping,

Jz = bĎb− j, J+ = bĎ
√
2j− bĎb, J− =

√
2j− bĎbb, (33)

one can translate the hamiltonian into the bosonic form. However, this type of bosonic representation is not convenient for
the present purposes, since the total number of bosons bĎb is not conserved and since the boson interactions are of unlimited
order (because of the square root). A simpler alternative is to employ the Schwinger mapping,

Jz =
1
2
(tĎt − sĎs), J+ = tĎs, J− = sĎt, (34)

where sĎ, s and tĎ, t create and annihilate two types of bosons. Since the parity (32) can be expressed asΠ = (−)nt , where
nt = tĎt is the t-boson number operator, it is natural to consider s to be a scalar and t a pseudoscalar boson. The original
pseudospin algebra of the model is now expressed in terms of the spectrum generating algebra U(2) of the system of s and
t bosons with N = sĎs+ tĎt = 2j. We write hamiltonian (30) in a slightly modified form,

H(η) = (1− η)
[
−
1
N
(tĎs+ sĎt)(tĎs+ sĎt)

]
+ ηnt = H ′(ζ )− ζ Jz + (1− ζ )

N
2
, (35)
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where the control parameter ζ was replaced by 1 − η ∈ [0, 1]. The limits η = 0 and η = 1 are characterized by O(2) and
U(1) dynamical symmetries, respectively, since the corresponding hamiltonians coincide with the Casimir invariants of the
O(2) or U(1) subalgebras of U(2).
The U(1) case (η = 1) represents a system of noninteracting bosons, with the s- and t-boson energies set to εs = 0 and

εt = 1, respectively. The term with (1− η) introduces interactions between bosons of both types. If these interactions are
too weak, the ground state for infinite boson numbers will be a pure s-boson condensate. At a certain critical interaction
strength, however, the ground state wave function flips into a mixed condensate of s and t bosons. The critical strength can
be obtained from the variational analysis with trial states |N, q〉 ∝ (sĎ + qtĎ)N |0〉, as described in Section 2.1, which leads
to the following expression for the classical potential energy:

V (η; q) =
(5η − 4)q2 + ηq4

(1+ q2)2
. (36)

Taking into account the Taylor expansion (1+ q2)−2 = 1− 2q2 + 3q4 − 4q6 + 5q8 − · · ·, we see that the potential (36) has
the general Landau-like form (17) with the cubic term missing. Consequently, the nonanalytic evolution at ηc = 4

5 (where
the quadratic term in the numerator changes its sign) represents a second-order ground state phase transition. For η ≥ ηc,
the potential in Eq. (36) has a minimum at qm = 0, hence the ground state is indeed the pure s condensate, as anticipated.
For η = (ηc − ε) < ηc, there exist two degenerate minima at

qm = ±

√
5ε
8− 5ε

, (37)

describing the mixed condensates. For ε → 0, the minima converge to 0 as qm ≈ ±
√
5
8ε. The critical exponent for the

‘‘order parameter’’ qm is therefore equal to 12 .
The Lipkin hamiltonian can be generalized to get also the first-order phase transitions [44]. The onlyway to do this (while

preserving the two-body character of the model), is to sacrifice the parity conservation. Indeed, as proposed in Ref. [95],
modifying hamiltonian (35) to the form

Hχ (η) = (1− η)
[
−
1
N
(tĎs+ sĎt + χ tĎt)(tĎs+ sĎt + χ tĎt)

]
+ ηnt , (38)

which contains parity-violating terms such as tĎtĎts etc., one obtains the potential

Vχ (η; q) =
(5η − 4)q2 − 4χ(1− η)q3 + (η + ηχ2 − χ2)q4

(1+ q2)2
. (39)

Here, the cubic term is already present for χ 6= 0 and the ground state first-order phase transition takes place. It turns out
that for potential (39) the condition (20) holds exactly regardless of the distance from the second-order critical point. The
first-order phase transition therefore appears at

ηχc =
4+ χ2

5+ χ2
. (40)

In Section 3, we will see that these results are very close to those obtained within the interacting boson model.

2.5. Historical and terminological remarks

As mentioned in Section 1, the term quantum phase transition comes from physics of infinite lattice systems of spin-like
objects interacting via finite-range interactions. The order–disorder phase transitions in such systems at zero temperature
are driven by external control parameters, and can be related to zero point motions, i.e. purely quantum fluctuations, of the
lattice constituents. The advent of this kind of physics was marked by a pioneering work of Hertz [6] in 1976. At present,
the QPT field belongs to one of the most rapidly growing branches of condensed matter physics [11,12].
On the other hand, the use of the QPT term in the context of models presently studied [7–10] might seem slightly

confusing, since – as we saw – the infinite-N limit of such models is just the limit of classical physics. However, some of
the models that belong to the category ‘‘finite’’ are indeed very close to those studied in condensed matter physics. This
is most evident for the Lipkin model [131–133], which can be cast as a hamiltonian describing an infinite chain of spin- 12
particles interacting by infinite-range interactions. A seeminglyminor difference from the other latticemodels – the infinite
range of interactions – creates the necessity to damp the interaction constant with increasing N and therefore leads to all
consequences following from the convergence to the mean-field description with N →∞. Various forms of the interacting
boson model [33], including the one with s and d bosons, is then just a natural extension of the Lipkin model from U(2) to
higher spectrum generating algebras. As will be shown in the forthcoming sections, this extension results in a considerable
enrichment of the phase structure, allowing also the first-order phase transitions to appear [8,9,43,44].
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The history of interaction-driven phase transitions, as onemay alternatively call such phenomena, is howevermuch longer
(some historical remarks can be found in Ref. [83]). To our knowledge the first author who used the term ‘‘phase transition’’
in this context was Thouless in 1961 [25]. It was in connection with what is now known as a ‘‘collapse of the random phase
approximation’’ (RPA) in nuclei: at some critical value of the hamiltonian control parameter the RPA phonon frequency
(determining the elementary vibrational mode of the system) drops to zero and becomes imaginary beyond this point. This
can be considered as a microscopic signature of a sudden structural change of the nuclear ground state.
The Lipkin [131–133] and related pseudospin models created a newwave of interest in similar phenomena, see e.g. [27].

The unified language for their description (based on coherent states and the catastrophe theory) was developed by Gilmore
in the late 1970’s [7,8]. Note that Gilmore proposed the term ‘‘ground-state energy phase transitions’’, or simply ground-
state phase transitions, which we sometimes adopt. The field continued growing in the 1980’s with the discovery of phase
transitions in the sd-IBM by Dieperink, Scholten, and Iachello [9,43,44] and also in herefrom inspired so-called fermion
dynamical symmetry model (FDSM) [139–143]. Since the phases in these models are defined by the equilibrium shape of a
nucleus in its ground state, the related QPT-like phenomena are often called shape–phase transitions.
The recent increase of interest in this field comes back to the 1990’s [22,47,48,144,145]. The topic was reopened by

several authors pursuing different goals, mainly an analysis of nuclear structure evolution [22,48,50,51] and the application
of so-called quasi dynamical symmetries [144,145] and critical point symmetries [146–150]. Symmetry (regardless of its
concrete incarnation) seems to be a unifying theme in a greatmajority of shape–phase transitional studies in nuclear physics.
Whereas in the infinite lattice models the quantum phase transition separates ordered and disordered phases of the lattice,
in nuclear-related models the transition is usually between two specific dynamical symmetries of the system, i.e. between
two different types of order. In this respect, such transitions can be compared to structural phase transitions in solid-state
physics.
In studies of quantum shape–phase transitions in nuclei, the interacting boson model, in its various forms, has attracted

the major attention. Apart from a comparison with actual nuclear data [9,46,48], the IBM soon became an important testing
ground for theoretical investigations of general concepts and methods, see e.g. Refs. [47,52,53]. Both these aspects are
relevant since the IBMwith its rich phase structure offers a basic example of a systemwhose features differ inmany respects
from the traditional QPT systems studied in the context of solid state physics. Therefore, the model may provide essential
hints for deeper understanding of the QPT physics in general.

3. The interacting boson approximation

The Interacting Boson Model (IBM) was proposed in 1975 by Iachello and Arima to describe collective excitations of
heavy or mediummass atomic nuclei [29–31]. This model combined ingredients of the twomost successful paradigms used
in nuclear physics at that time: the shell model and the geometrical (or collective) model [36]. The shell model considers the
nucleus as an ensemble of weakly interacting fermions occupying single-particle orbits in the nuclear mean field. Despite a
considerable truncation of the model Hilbert space achieved by activating only the nucleons on valence shells, calculations
in heavy nuclei away from magic numbers were prohibitively complex. The geometric model attacked the nuclear many-
body problem from the other side: heavy nuclei can, in some situations, be considered as droplets of a quantum liquid, with
elementary excitations identified with highly correlated collective vibrations and rotations. In even–even nuclei, the basic
constituents of the model are quadrupole phonons which can be represented as bosons with spin and parity lπ = 2+. The
collective model has been successful in describing certain classes of nuclei away from closed shells.
The IBM is intermediate between these two complementary approaches, in that it connects the bosonic behavior of the

geometric model to the fermionic nature of the shell model. This is achieved using the pairing property of short-range
residual interactions. Pairwise coupled nucleons (or holes, vacancies left by missing nucleons if the shell is more than half-
filled) behave much like bosons. The energetically most likely combination of two identical nucleons coupled by a short-
range force is the one with zero total angular momentum. This can be approximated by an s boson, while the bifermion
combination with angular momentum 2 maps onto a d boson.
The original version of the interacting boson model, nowadays abbreviated as IBM-1 [33], is applicable to even–even

nuclei. The IBM-1 does not separate bosons connected with proton–proton and neutron–neutron pairs (this is done in an
extended version of the model, the IBM-2 [33], which is suitable for the description of isovector collective excitations) and
does not consider bosons connected with mixed proton–neutron pairs (these bosons, increasingly relevant as approaching
the N ≈ Z nuclei, are introduced in more advanced versions of the model, IBM-3 and IBM-4 [32]). The IBM-1 also
does not consider single-nucleon excitations and their couplings with nucleon pairs (these are treated in the interacting
boson–fermion model, the IBFM [35], which is applicable in odd nuclei). Some modified versions of the IBM also include
bosonswith other spins and parities, such as g (4+), p (1−), and f (3−) bosons [33]. Various IBMextensions and their quantum
phase transitions will be discussed in Section 6, while here and in the following two sections we will focus on properties of
the IBM-1.

3.1. Foundations and the algebraic structure

The interacting boson model, including its simplest version IBM-1, benefits from its transparent algebraic formulation.
As indicated above, the model building blocks are s and d bosons that represent phenomenological images of 0+ and 2+
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pairs of valence nucleons or holes and are also closely related to the basic quanta of nuclear collective excitations. Unitary
transformations among the six states sĎ|0〉 and dĎm|0〉, withm = 0,±1,±2, generate the Lie group U(6), which is identified
with the spectrum generating (dynamical) group of the model. The 36 generators of the associated algebra can be written in
the form bĎlmbl′m′ , where b

Ď
00 ≡ s

Ď and bĎ2m ≡ d
Ď
m.

Although the separate boson numbers ns and nd are apparently not conserved by the dynamical U(6) algebra, the sum
ns + nd = N is. It means that collective states of an even–even nucleus with NF valence nucleons (or valence holes) are
mapped to the IBM-1 Hilbert space of N = 1

2NF bosons. This is in contrast to the quadrupole phonon model, a bosonized
version of the geometricmodel, where bosons directly represent quanta of collective excitations, so that their number varies
within one nucleus [151]. For instance, in the latter model the ground state of a spherical nucleus is treated as the vacuum,
a state with N = 0, while in the IBM the same state coincides with a condensate of s bosons with given N > 0. In spite of
these differences, both models can be connected and rooted in an underlying microscopic treatment [123,152–154].
An sd-boson hamiltonian with one- and two-body interactions that conserves the total boson number and the total

angular momentum has the following general form:

H = E0 + εdnd +
∑
l1 l2 l′1 l

′
2 l

v
(l)
l1 l2 l′1 l

′
2

[
[bĎl1 × b

Ď
l2
]
(l)
× [b̃l′1 × b̃l′2 ]

(l)
](0)
0
. (41)

The first term is a constant, which may be included to quantify the nuclear binding energy of the core. The second term
represents the relevant one-body contributions (the s-boson part can be eliminated using the relation ns = N−nd). The third
part corresponds to two-body interaction, the coefficients v(l)l1 l2 l′1 l′2

being related to the interaction reduced matrix elements

between normalized two-boson states with total angular momentum l. We use the standard notation b̃lm ≡ (−)l−mbl(−m),
it is s̃ = s and d̃m = (−1)md−m, and [A(l1) × B(l2)]

(l)
M ≡

∑
m1m2

(l1m1l2m2|lm)A
(l1)
m1 B

(l2)
m2 , where A

(l1) and B(l2), respectively, are
rank l1 and l2 spherical tensors.
Taking into account the hermicity of the hamiltonian and its required symmetry under the time reversal (reality of

coefficients), one finds out that only six real interaction coefficients determine the properties of the spectrum (up to the
constant shift E0). The hamiltonian can then be rewritten in the following multipole form [33]:

H = E0 + εdnd + c1(L · L)+ c2(Q χ · Q χ )+ c3(T (3) · T (3))+ c4(T (4) · T (4)), (42)

Lm =
√
10[dĎ × d̃](1)m , (43)

Q χm = s
Ďd̃m + dĎms+ χ [d

Ď
× d̃](2)m , (44)

T (k)m = [d
Ď
× d̃](k)m , (45)

where we introduced the scalar product (A(l) · B(l)) ≡
√
2l+ 1[A(l) × B(l)](0)0 . The free parameters now read as

{E0, εd, χ, c1, . . . , c4}. Three operators Lm (m = 0,±1) in Eq. (43) define spherical components of the angular momentum
and generate the physical rotational group O(3) of the model (the hamiltonian is a scalar with respect to this group).2
Similarly, Q χm (m = 0,±1,±2) in Eq. (44) represent spherical components of the quadrupole operator, determining, e.g. the
E2 transition rates. Parameter χ , which can be chosen within the interval |χ | ∈ [0,

√
7
2 ], is assumed to have the same value

in the hamiltonian and in the E2 transition operator (so called consistent-Q formalism [155]).
Numerical procedures exist to obtain the eigenvalues and eigenvectors of the IBMhamiltonian in the general case, but the

problem can be solved analytically for some particular choices of parameters. These special cases correspond to dynamical
symmetries associated with the algebraic reductions

U(6) ⊃

{U(5) ⊃ O(5)
SU(3)

O(6) ⊃ O(5)

}
⊃ O(3). (46)

The dynamical symmetries associated with the three chains are named vibrational, U(5), rotational, SU(3), and γ -unstable,
O(6). Each of them provides a complete basis for the numerical solution. The algebras appearing in Eq. (46) are subalgebras
of U(6) generated by operators of the type bĎlmb̃l′m′ and their linear combinations; explicit forms are listed e.g. in Ref. [33].
With the subalgebrasU(5), O(5), O(3), SU(3), andO(6) there are associated one linear and five quadratic Casimir operators.

Denoting by Cn[G] the nth-order Casimir operator of the group G, the general IBM hamiltonian with up to two-body
interactions can be written in the following way,

H = E0 + aC1[U(5)] + bC2[U(5)] + cC2[O(5)] + dC2[O(3)] + eC2[SU(3)] + fC2[O(6)], (47)

2 In this paper, we denote the angular momentum operators and the quantum number associated with the squared angular momentum by the same
symbol. The rotational algebra and the other orthogonal algebras are referred to as O(n), irrespective of whether the determinant is constrained to+1 or
not.
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where we introduced yet another parametrization with {E0, a, . . . , f }. Explicit expressions for Casimir operators as well as
for the mapping between the alternative parameter sets are given e.g. in Ref. [33]. We point at different conventions used
in the literature; below we will implicitly employ the definitions listed in Ref. [49].
If some of the coefficients in Eq. (47) vanish, such that the hamiltonian contains only Casimir operators of the subalgebras

associated with a single reduction in Eq. (46), the system possesses the corresponding dynamical symmetry and the
energy eigenvalue problem can be solved analytically. The hamiltonian eigenfunctions are determined by the hierarchy
characterizing the embedding of irreducible representations of groups in chains (46). The eigenfunctions are determined
by the corresponding irrep labels (these represent conserved quantum numbers) and read as |[N], nd, τ , ν∆, L〉 for the U(5)
dynamical symmetry, |[N], λ, µ, KL, L〉 for the SU(3), and |[N], σ , τ , ν∆, L〉 for the O(6). Reduction rules specifying which
labels are contained in the given irrep can be found in Ref. [33]. Since the eigenvectors are independent of the actual values of
hamiltonianparameters, theymake available clearcut predictions for observables like transition rates or transfer amplitudes,
which can be used to experimentally verify whether a particular dynamical symmetry is present. Analytic expressions for
energies are as follows:

H|[N], nd, τ , ν∆, L〉 = and + bnd(nd + 5)+ cτ(τ + 3)+ dL(L+ 1) U(5),

H|[N], λ, µ, KL, L〉 = e [λ2 + µ2 + λµ+ 3(λ+ µ)] + dL(L+ 1) SU(3),
H|[N], σ , τ , ν∆, L〉 = f σ(σ + 4)+ cτ(τ + 3)+ dL(L+ 1) O(6).

(48)

Note that the energies do not depend on the so-called missing labels ν∆ and KL, respectively, that characterize a nonunique
embedding of O(3) irreps in O(5) and SU(3) ones.
Besides the dynamical symmetries defined above, there exist two additional ones differing from their respective

counterparts in Eq. (46) by the choice of the relative phase between s and d bosons [156–160]. These additional symmetries
can be represented by the following chains

U(6) ⊃
{

SU(3)
O(6) ⊃ O(5)

}
⊃ O(3), (49)

where SU(3) and O(6) can be obtained from ‘‘standard’’ SU(3) and O(6) via the gauge transformation sĎ 7→ eiφsĎ with φ = π
and±π

2 , respectively [other phases are avoided on the basis of the required reality of the interaction coefficients in Eq. (41),
i.e. the time-reversal invariance]. Note that since the U(5) chain a priori separates s and d bosons, it has no counterpart in Eq.
(49). Although the additional dynamical symmetries are closely related to the original ones (for instance, they yield identical
spectra), the corresponding hamiltonians written in terms of the original Casimir operators look like if having no dynamical
symmetry. The ratios of coefficients in expansion (47) needed to fabricate dynamical symmetries (49) are as follows:

a : b : c : e : f = 2 : 2 : −6 : −1 : 4 SU(3),

a : b : e : f = 4N + 8 : −4 : 0 : −1 O(6). (50)

The existence of additional (‘‘hidden’’[157]) dynamical symmetries (49) results from a more general property of the IBM-
1 hamiltonians, namely the existence of discrete transformations in the model parameter space that leave the spectrum
unchanged (so called parameter symmetries [159]).
To conclude the basic overview of the IBM-1 properties, we note that all hamiltonians (47) with e = 0, which are

transitional betweenU(5) and O(6) dynamical symmetries, conserve the O(5) quantumnumber τ , called seniority (a bosonic
analog of the fermionic seniority [36]). As a consequence, these hamiltonians are still integrable—although the U(5) and O(6)
invariants are nomore integrals ofmotions in the transitional regime, their role can be taken by the hamiltonian itself. There
is no general analytical energy formula valid along the [U(5)–O(6)] ⊃ O(5) path but for these hamiltonians the original
diagonalization problem has been translated to an equivalent problem of solving a certain set of algebraic equations (a
semi-analytic result) [161–163]. The structure of the spectrum and the form of the wave functions exhibit some special
features along this transition. In particular, subsets of levels with different seniority quantum numbers do not interact with
each other and therefore cross with no repulsion as the model control parameters vary.

3.2. Geometrical analysis and the shape–phase structure

A generalmethod for the determination of the classical limit for hamiltonians of the type (1) was described in Section 2.1.
This method can be adapted in the IBM case, yielding a coordinate representation of the bosonic many-body hamiltonians
(41), and simultaneously a geometrical interpretation of the equivalent algebraic hamiltonians (47). The classical limit can
be obtained from condensate states of the type (7),

|N,α〉 =

N!(1+∑
m

|αm|
2

)N− 12 [sĎ +∑
m

αmdĎm

]N
|0〉 (51)
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(here with the normalization coefficients included), equivalent to the algebraic coherent state (11), or from the
corresponding Glauber coherent states (9). The classical hamiltonian is constructed in analogy to Eq. (8).
Coefficients αm in Eq. (51) with m = 0,±1,±2 transform as l = 2 spherical tensors and are, in general, complex. To

extract coordinates qm and the associated momenta pm, the following prescriptions can be used [124]:

αm =
1
√
2

[
q∗m + ipm

]
, α∗m =

1
√
2

[
qm − ip∗m

]
, (52)

qm =
1
√
2

[
(−)mα−m + α

∗

m

]
, pm =

i
√
2

[
(−)mα∗

−m − αm
]
. (53)

Both qm and pm are again the l = 2 spherical tensors, still complex, but since they satisfy q∗m = (−)
mq−m and p∗m = (−)

mp−m,
there are only 5 independent real values for each of them. These define 5 degrees of freedom associated with the model.
By definition, the classical hamiltonian can only contain scalar combinations of coordinates andmomenta. There are only

two independent scalar combinations of the q’s, namely [164]

[q× q](0) =
1
√
5
β2,

[
[q× q](2) × q

](0)
= −

√
2
35
β3 cos 3γ , (54)

where we included the parametrization through the well known Bohr quadrupole shape variables β and γ [165]. As seen,
β represents a radius in the 5-dimensional configuration space, while γ can be associated with one of the hyperspherical
angles. The remaining 3 angles are related to Euler angles describing a rotation to the frame where both tensors qm and pm
become diagonal (the principal axis system). The momenta associated with Euler angles appear in the kinetic energy, but
the potential energy depends only on β and γ . It has the following general form [9,43,44,119,120]

V (β, γ ) =
Aβ2 + Bβ3 cos 3γ + Cβ4

(1+ β2)2
, (55)

where the denominator follows from elimination of the degrees of freedom connected with the s boson (see Section 2.1).
Coefficients A, B, and C are determined from the general IBM hamiltonian parameters, e.g. from a, b, . . . , f in Eq. (47). Such
expressions can be found in the literature [33] and we do not list them here.
Potential (55) has the general Landau-like form (17) except it has two variables, β and γ . However, we see that since

γ enters the potential (55) only through the cos 3γ dependence in the cubic term, the minimization in this variable can
be performed separately. The global minimum is either at γm = 0 (equivalently at 2π3 or

4π
3 ) for B < 0, or at γm =

π
3

(equivalently at π or 5π3 ) for B > 0. The second possibility can be expressed via changing the sign of the corresponding βm
and simultaneously setting γm = 0. Therefore, the global minimum of the potential (55) can be found, using a simplified
form with γ = 0 and β ∈ (−∞,+∞), which is nothing but the minimization of the Landau potential (17) with
ξ ≡ β sign(cos 3γ ). We shall stress, however, that this equivalence is justified only if searching for the global minimum
of V (β, γ ); any dynamical conclusions based on the above procedure (e.g. identification of secondary minima with β < 0
etc.) would be strongly misleading, since the dependence on γ is in general relevant.
To separate the ‘‘phases’’ determined by the potential (55), the conditions derived in Section 2.2.2 can be applied [60].

Let us stress that in the present case the phase separatrices given by Eqs. (20) and (21) are valid exactly. The IBM phases can
be described as follows [54]:

I. Phase with βm = 0 is the ‘‘more symmetric’’ phase. It appears for A > B2
4|C | . This phase is interpreted as spherical, since

βm = 0 implies that the ground state is formed by a condensate of only the s bosons, |ψ0〉 ∝ (sĎ)N |0〉 (up to the leading
order terms inN), thus 1N 〈ψ0|nd|ψ0〉 = 0. Hamiltonianswith dynamical symmetry U(5) belong to this phase (we assume
εs < εd).

II. Phasewith βm > 0, γm = 0 is ‘‘less symmetric’’ and appears for A < B2
4|C | , B < 0. It is deformed since the ground state is a

condensate |ψ0〉 ∝ (sĎ+ βmd
Ď
0)
N
|0〉, hence 1N 〈ψ0|nd|ψ0〉 > 0. Prominent representatives of this phase are hamiltonians

with the SU(3) dynamical symmetry. The deformation in this phase is conventionally considered prolate.
III. Phase with βm > 0, γm = π

3 , that applies for A <
B2
4|C | and B > 0, is also deformed, but interpreted as oblate, with

|ψ0〉 ∝ (sĎ−βmd
Ď
0)
N
|0〉 and 1N 〈ψ0|nd|ψ0〉 > 0. This phase, which is just amirror conjugate of phase II, can be represented

by hamiltonians with dynamical symmetry SU(3).

Note that the dynamical symmetries O(6) and O(6) do not represent separate phases, but lie on prolate–oblate and
oblate–prolate phase separatrices between phases II and III. The IBM-1 parameter space and its phase structure are
schematically depicted in Fig. 2.
A brief comment is needed here on the transition between phases II and III. According to the Ehrenfest classification, this

is the first-order phase transition (the first derivative of the ground-state energy jumps) [54]. Nevertheless, it is not of the
generic type, since it does not generate the zone of coexisting prolate and oblate phases. This difference from the original
Landau situation (Section 2.2.2) is obviously connectedwith the γ degree of freedom, whose role in the Landau analysis was
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Fig. 2. (a) A symbolic representation of the parameter space of the interacting boson model with its dynamical symmetries. The rear side of the pyramid
is equivalent to the front side, and any triangle is related to all the others by a similarity transformation. (b) The extended Casten triangle of hamiltonian
(56) with phases I (spherical), II (prolate), and III (oblate). The extended triangle maps the front side of the pyramid in panel (a). The I–II and I–III first-
order phase transitions are connected with narrow coexistence regions while the ‘‘triple point’’ at the I–II–III intersection represents a second-order phase
transition.

explained above. Indeed, as approaching the B = 0 line from either side, the secondary ‘‘minimum’’ of the potential (55) at
γ = 0 with signβ = −signβm is only a saddle point. At the critical point, the potential becomes totally flat in γ . Another
peculiarity is that hamiltonians in parts II and III of the IBM phase diagram can be connected by a similarity transformation,
which preserves the energy spectrum [159,160]. This means that, in a certain sense, the phases II and III are just mirror
images of each other.

3.3. Simplified hamiltonian

In the previous subsection we saw that the geometrical configuration of the ground state is fully determined by 2
effective parameters—the ratios of coefficients in Eq. (55). However, the most general hamiltonians (42) or (47) have 7
free parameters. It is therefore clear that the phase structure of the IBM-1 can be studied – without the loss of generality
– using a restricted, suitably chosen two-parameter hamiltonian. In the following, we will work with hamiltonians of the
type H = εd nd − κ(Q χ · Q χ ), see Ref. [155]. The above form still contains 3 independent parameters (εd, κ , and χ ), but
can be easily reduced to a two-parameter form, by choosing a specific energy scale (e.g. in units of εd). While εd represents
a single-particle energy of d bosons (with respect to the single-particle energy of s bosons, which is set to 0), the value of κ
measures the overall strength of interactions involved in the scalar product (Q χ · Q χ ) with given value of χ , see Eq. (44).
Taking into account the discussions in Section 2, we rescale the above hamiltonian as follows

Hχ (η) = (1− η)
1
N
(−Q χ · Q χ )+ ηnd. (56)

For a fixed χ this is the form (24) with η ∈ [0, 1] and

H0 = −
1
N
(Q χ · Q χ ), V = nd +

1
N
(Q χ · Q χ ). (57)

Let us note that Hamiltonian (56) is analogous to the Lipkin model Hamiltonian (38) considered above. It will turn out that
also the phase analysis is essentially the same.
The case η = 1 of Hamiltonian (56) clearly corresponds to the U(5) dynamical symmetry, a non-interacting ensemble of

s and d bosons. An alternative parametrization is therefore the one with ζ = 1− η. At ζ = 0, the ground state is obviously
formed by a condensate of s bosons (the spherical phase), but as ζ increases the rising interaction strength with d bosons
tends to change the nature of the ground state into amore complicatedmixture of s and d boson states (the deformed phase).
This mechanism is rather similar to that already discussed for the Lipkin model (Section 2.4). However, the present system
yields a richer structure, since the nature of transitions between the noninteracting and interacting phases can be further
tuned by changing the quadrupole operator parameter χ .
Comparing the simplified hamiltonian with the one in Eq. (42) we see that only two terms of the general form are

preserved. However, if rewriting Eq. (56) in the form (47), we get

Hχ (η) =

[
η +

2
7N
(1− η)χ

(
χ +

√
7
2

)]
C1[U(5)] +

2
7N
(1− η)χ

(
χ +

√
7
2

)
C2[U(5)]

+
1
N
(η − 1)

(
1+

3
√
7
χ +

2
7
χ2
)
C2[O(5)] +

1
14N

(1− η)χ(χ + 2
√
7)C2[O(3)]

+
1

N
√
7
(η − 1)χC2[SU(3)] +

1
N
(1− η)

(
1+

2
√
7
χ

)
C2[O(6)] (58)
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(this expansion is valid for definitions of the Casimir invariants given in Ref. [49]), which contains all relevant Casimir
operators. As we already know, the case η = 1 (χ arbitrary) corresponds to the U(5) dynamical symmetry. Expansion
(58) can help us to classify the other dynamical symmetries of hamiltonian (56). These are located on the η = 0 side of
the parameter range: the SU(3) dynamical symmetry at (η, χ) = (0,−

√
7
2 ), the O(6) at (η, χ) = (0, 0), and the SU(3) at

(η, χ) = (0,+
√
7
2 ) (cf. Eq. (50)).

With the restrictions η ∈ [0, 1] and χ ∈ [−
√
7
2 ,+

√
7
2 ], the parameter range of hamiltonian (56) can be imaged as

a rectangle. However, since on the η = 1 side χ does not appear in the hamiltonian, it is more natural to visualize the
parameter range as a triangle, see Fig. 2(b). This is an extended Casten triangle [54], which in addition to the standard
dynamical symmetries U(5), SU(3), and O(6) contains also the SU(3). The O(6) symmetry is, however, not present.
Three comments on the extended triangle are in order: (a) Although the influence of the parameter χ on the dynamics

fades away with η→ 1 (which justifies the use of triangle instead of a rectangle), the E2 transition rates are determined by
the quadrupole operator Q χ , and therefore still depend on χ even for η = 1 [166]. (b) It can be shown that mirror conjugate
hamiltonians with χ = −|χ | and χ = +|χ | are always connected by a unitary transformation, following from the discrete
parameter symmetry of the IBM-1 [159,160]. Therefore, the χ < 0 and χ > 0 halves of the extended Casten triangle
are dynamically equivalent, although, as shown below, describing rotors with different types of deformation (prolate and
oblate). (c) We notice in Eq. (58) that on the η = 0 side of the triangle the hamiltonians with χ 6= ±

√
7
2 still contain a

contribution proportional to the sum C1[U(5)] + C2[U(5)]. That is somewhat confusing, since this case should correspond
to the SU(3)–O(6)–SU(3) transitional regime. Nevertheless, taking into account the identity

C1[U(5)] + C2[U(5)] =
1
2
C2[SU(3)] − 2C2[O(6)] + 3C2[O(5)] +

1
2
C2[SU(3)] − C2[O(3)], (59)

one can always eliminate the contribution of U(5) invariants on the η = 0 side by including the SU(3) Casimir operator into
the expansion (58).
The geometrical analysis (Section 3.2) of hamiltonian (56) yields the following results [52]: The coefficients in the

potential energy formula (55) read as

A(η) = 5η − 4, Bχ (η) = 4

√
2
7
χ(1− η), Cχ (η) = η −

2
7
χ2(1− η). (60)

Notice that the latter two coefficients depend on both η and χ . The spinodal point for the deformed-to-spherical evolution
appears at η = ηs ≡ 4

5 . At this point, A changes from negative to positive values and the potential (55) develops a local (for
χ 6= 0) minimum at β = 0. The critical point is located at η = ηc,

ηχc ≡
4+ 2

7χ
2

5+ 2
7χ
2
. (61)

Here the depths of the β = 0 and β 6= 0minima become equal. This condition is fully equivalent to Eq. (40), already derived
for the analogous Lipkin hamiltonian. The antispinodal point, where the β 6= 0 minimum disappears, follows shortly after
the critical point, ηa(χ) ≥ η

χ
c , the exact location being determined by a cubic equation not given here. For χ 6= 0, the

interval from ηs to ηa demarcates the phase-coexistence region for a first-order phase transition between phases I and II
(χ < 0) or I and III (χ > 0).
For χ = 0 (that is B = 0) all the three points – spinodal, critical, and antispinodal – merge at ηc(0) = 4

5 and the QPT
between spherical and deformed phases is of the second order. The critical exponent for the order parameter β is 12 . When
crossing the line χ = 0 in a transverse direction within the interval η ∈ [0, 45 ], the potential becomes γ -flat and the sign of
B changes. It means that the (β, γ ) = (βm, 0) global minimum (valid at χ < 0)moves to (β, γ ) = (βm, π3 ) (valid at χ > 0).
Consequently, the line segment χ = 0, η ∈ [0, 45 ] represents a transition from prolate (χ < 0) to oblate (χ > 0) shapes
(phases II and III, respectively). As discussed in Section 3.2, this is a first-order phase transition, butwith no separate spinodal
and antispinodal points. The point (η, χ) = ( 45 , 0) can be interpreted as a ‘‘triple point’’ of nuclear deformations [60] since
three phases – spherical, prolate, and oblate – join there, see Fig. 2. Such a simple phase structure is in agreement with the
Landau theory (see Section 2.2.2).
Let us finally focus on an alternative parametrization of the O(6)–U(5) trajectory with χ = 0, which is often used in the

literature, see e.g. [70,71]. It reads as

H ′(η′) = η′nd + (1− η′)
1
N
PĎP, (62)

where PĎ = 1
2 (d

Ď
· dĎ − sĎsĎ) is a boson pair operator. In this case, the critical point appears at η′ = η′c ≡

1
2 . Hamiltonian

(62) is closely related to the form (56) with χ = 0 as one can write

H0(η) = ηnd + (1− η)
4
N
PĎP︸ ︷︷ ︸

(4−3η)H ′
(

η
4−3η

)
+(1− η)

1
N
C2[O(5)] + (1− η)(N + 4). (63)
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Fig. 3. The dimension of the subspace of IBM states with L = 0 as a function of the boson number. The dots correspond to actual dimensions calculated
for N = 10, 20, . . . , 300, the line represents an approximate formula n ≈ 1

12N(N + 1).

Since the Casimir invariant C2[O(5)] = nd(nd+3)−(dĎ ·dĎ)(d̃ · d̃) is conserved along theχ = 0 path, it takes values τ(τ+3),
where τ is the seniority quantumnumber. Thismeans that the hamiltoniansH ′0(η

′) andH0(η) yield identical eigenfunctions
and spectra connected just by simple transformations following from Eq. (63).

3.4. Computational aspects

In numerical investigations of the IBM phase transitions, it is essential to calculate various spectroscopic signatures up
to very large boson numbers. This may present a computational problem, since the dimension of the relevant Hilbert space
increases. An explicit formula for the total number of states with all angular momenta L = 0, 2, 3, 4, . . . , 2N reads as
follows,

ntot =
(N + 5)!
5!N!

∼
N5

120
, (64)

where the approximation on the right-hand side holds for very large N . Dimensions of individual L subspaces can also
be determined. This can be done exactly by employing the well known reduction rules for the embeddings of various
irreps corresponding to algebras in any of the IBM dynamical symmetry chains, all ending at the O(3) invariant symmetry
subalgebra. The result for L = 0 is shown in Fig. 3, together with an explicit asymptotic formula n ∼ 1

12N
2. In order to

determine the ground-state energy and wave function for a finite N , a numerical diagonalization of the IBM hamiltonian
has to be carried out within this subspace. We see that although its dimension grows only quadratically with N , the boson
numbers N ∼ 100 may already cause some troubles.
In fact, themost difficult part of the computation is not the diagonalization procedure itself. Very efficient diagonalization

algorithms are commonly available, especially for sparse matrices (thus applicable in the IBM case), which make it possible
to go up to very high dimensions. The part that presently seems to set the limits, is the initial calculation of the hamiltonian
matrix to be diagonalized. In a majority of codes, the evaluation of matrix elements relies on the U(5) dynamical symmetry
basis, and makes use of the coefficients of fractional parentage [36]. These are computed in a recurrent way, the complexity
growing very quickly with increasing dimension. An alternative scheme using the O(6) basis has been developed [172], but
it does not solve the problem of large boson numbers.
Numerical difficulties can be overcome in the case of the transition between U(5) and O(6) dynamical symmetries along

the path conserving the underlying O(5) dynamical symmetry. As mentioned above, transitional hamiltonians of this type
are fully integrable. The Casimir invariant of the O(5) subalgebra represents an additional integral of motions, yielding the
conserved seniority quantum number τ . The dimension of the L = τ = 0 subspace of states (including the ground state)
grows as n ∼ 1

2N , which is amuch slower increase than that in Fig. 3. An additional advantage, is that the hamiltonianmatrix
in this subspace can be calculated directly, using explicit expressions for matrix elements of the O(6) Casimir invariant in
the U(5) basis given by Arima and Iachello [31]. This makes it possible to increase the upper bound for boson numbers by
several orders of magnitude (cf. Ref. [108]).
Some alternative, more sophisticated methods of solutions of the eigenvalue problem along the [U(5)–O(6)] ⊃ O(5)

transition have been developed. One of these methods is based on an infinite dimensional algebraic technique. In the IBM
context, themethodwas introduced by Pan and Draayer [161] and by Dukelsky and Pittel [162]. The general solution resorts
to an exact treatment of the pairing model invented by Richardson [167,168] in the 1960’s—see Ref. [163] for an overview
and more references. If the U(5)–O(6) transitional IBM hamiltonian is written in the pairing form (62), the diagonalization
problem for seniority τ is transformed to the problem of solving a coupled set of n = 1

2 (N−τ) nonlinear algebraic equations
(Richardson equations). For large boson numbers N and small values of τ , it is still difficult to obtain all solutions, but to
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determine the lowest eigenvalues is feasible. The method was applied in a QPT analysis by Arias, Dukelsky, and García-
Ramos [66].
Another approach to the [U(5)–O(6)] ⊃ O(5) transition makes use of the so called continuous unitary transformation

technique, introduced in the 1990’s by Głazek and Wilson [169,170] and independently by Wegner [171]—for a compact
overview see Ref. [90]. The unitary transformation U that diagonalizes the given hamiltonian H is found as a limit U =
limλ→∞ U(λ), where the dependence U(λ) can be viewed as a continuous flow in the operator space from an arbitrary
initial point U(0). Equations governing this flow in such a way that it converges to the solution of the eigenvalue problem
have been derived, and they can be iterated numerically. In the IBM, themethodwas, for the first time, employed by Dusuel,
Vidal, Arias, Dukelsky, and García-Ramos [90].
A promising tool for calculations with very large boson numbers was recently presented by Ho, Rosensteel, and

Rowe [105]. It is based on a generalized equation-of-motion approach put into the algebraic framework; for an explanation
and original references see Refs. [105,173]. The method completely avoids the diagonalization step of the computation,
and proceeds directly to the construction of a matrix representation of the dynamical algebra of the problem. This makes
it possible to efficiently approximate the relevant observables – energies and matrix elements involving low-lying states
– using matrices whose dimensions are vastly reduced compared to the full Hilbert space dimension. This technique has
been so far applied in the second-order (γ -soft) shape phase transition within the geometric model [105] and in the Lipkin
model [173], both cases being analogous to the U(5)–O(6) transition in the IBM.

4. Quantum phase transitions in IBM-1: Theoretical results

Basic results of the mean-field analysis of ground-state shape–phase transitions in the interacting boson model-1 were
already discussed in the preceding sections. The use of coherent states for the study of IBM-1 ground-state transitions (a
technique introduced by Gilmore [7,8]) was, for the first time, reported by Dieperink, Scholten, and Iachello in 1980 [9].
Interpretation of these results in terms of the catastrophe theory was given by Feng, Gilmore, and Deans in 1981 [44] and
later, in 1996, by López-Moreno and Castaños in a detailed analysis [47].
The latter work also noticed the phase transition between prolate and oblate shapes (the transition achieved by changing

the relative phase between s and d bosons). This was then independently discussed in Ref. [54], where the extended Casten
triangle of Fig. 2(b) was introduced. The IBM-1 shape–phase structure with shape types I (spherical), II (prolate) and III
(oblate) was put into the context of Landau theory by Jolie, Cejnar et al. in 2002 [60,67]. This kind of phase diagram, with a
‘‘triple point’’ in the middle, represents the simplest possibility allowed by the Landau theory with a single order parameter
β (for the discussion of differences from the original Landau context see Section 3.2). Atomic nuclei seem to belong to its
few realizations in nature [174].
From the theoretical point of view, an attractive property of the IBM is the simultaneous presence of both first- and

second-order phase transitions. This naturally allows for comparative analyses probing the general features of QPTs. As
foreseen in Ref. [44], and newly proposed by Vidal et al. [95], the same structure can also be reproduced with an extended
Lipkin hamiltonian containing parity violating terms (Section 2.4). However, if one sticks tomodelswith two types of bosons
– one scalar and one non-scalar – under the strict assumption of angular momentum or parity conservation, the IBM with s
and d bosons is the simplest case with QPTs of both kinds [103].

4.1. Calculations beyond the mean field

So far, the phase transitional properties of the interacting boson model were discussed within the mean field (or
Hartree–Bose) approximation, i.e. the approach based on the coherent state formalism sketched in Section 2.1. This approach
yields correct results in the infinite-size limit, N → ∞, but to predict finite-size corrections, one needs to employ
more sophisticated techniques. From the theoretical viewpoint, this is an extremely important task, since the scaling of
spectroscopic observableswithN plays a key role in describing the precursors of quantumphase transitions in finite systems.
Indeed, in the quantum critical points the scaling becomes singular (different from other points of the model parameter
space), which may be considered as a defining feature of QPTs in finite systems.
To calculate the finite-N corrections, diverse strategies are followed. A direct possibility is to perform numerical

diagonalization of the IBM hamiltonian for very large boson numbers, and to analyze the convergence of the relevant
quantities of interest to their asymptotic values. In practice, this route is viable only for the transition between U(5) and
O(6) dynamical symmetries that conserve (all the way) the underlying O(5) dynamical symmetry, i.e. for the second-order
phase transitional path. Indeed, as explained in Section 3.1, the model is integrable along this path, which makes it possible
to obtain results up to very large boson numbers, using various more or less sophisticated techniques (Section 3.4), ranging
from the Richardson equations [66] to just a ‘‘brute force’’ diagonalization [103]. Depending on the actual set of states
included in such U(5)–O(6) calculations (i.e., in relation to the specific analysis), the upper values of the boson number
can be N = 104 [85] or even N = 105 [103]. On the other hand, purely numerical calculations along the IBM first-order
phase transitional paths can be currently performed with boson numbers not exceeding N ∼ 102 [78,83].
Another route to large size calculations leads through expansion techniques for various observables in powers of N . The

advantage of such methods lies in their enhanced potential to determine the asymptotic scaling laws for both first- and
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second-order phase transitions. An interesting approach [89,90,95,104] is based on the Holstein–Primakoff type of mapping
of s and d bosons onto boson b,

dĎµdν 7→ bĎµbν, sĎs 7→ N − nb, dĎµs = (s
Ďdµ)Ď 7→ bĎµ

√
N − nb, (65)

where nb =
∑

µ b
Ď
µbµ. The following step is a shift transformation c

Ď
µ = b

Ď
µ −
√
Nλ∗µ with a complex vector λµ satisfying∑

µ |λµ|
2
≡ ‖λ‖2 ∈ [0, 1]. This implies 〈nc〉 = 〈nb〉 − ‖λ‖2N for states with a fixed total boson number, and therefore

allows for macroscopic average occupation numbers 〈nb〉 while at the same time 〈nc〉 � N . The resulting hamiltonian is
written in terms of 5 pairs of operators cĎµ, cµ and the number N , which enables one to naturally separate terms of different
orders in N .
The mean-field approximation represents the highest order term ∝ N1. Note that here we consider an extensive IBM

hamiltonian, such as the one in Eq. (56). For hamiltonians in the intensive, i.e. energy-per-boson form, Eq. (2), the orders
must be of course reduced by 1. To proceed beyond the mean field, one needs to diagonalize – order by order – the
respective higher hamiltonian terms. Calculations of this type have been performed by Arias, Dukelsky, Dusuel, García-
Ramos, and Vidal for the second-order transition [89,90,95,104] as well as for the first-order transition [95,104]. The first
nonvanishing quantum correction is of order N0 and can be treated with the aid of the Bogoliubov transformation. It is
relatively straightforward in the spherical phase, while in the deformed phase one needs to proceed separately for angular
momentum projections µ = 0,±1, and ±2 (corresponding to the β , Goldstone, and γ excitations, respectively) [104].
Corrections to the resulting expressions are of order O(N−1). Explicit calculations of terms∝ N−k with k = 1, 2 have been
performed within the continuous unitary transformation formalism (briefly mentioned in Section 3.4) for the second-order
transition [89,90].
Without going to technical details, we will report here results of these calculations for the gap ∆ between the ground

state and the first excited state. The convergence∆(ηc)→ 0 with increasing N at the quantum critical point ηc represents
an essential QPT precursor. Note that for an IBM extensive hamiltonian far away from ηc the average gap is expected to be
independent of N , but in the critical region the low levels systematically reduce their spacing. Calculations [89,90,95,104]
are consistent with the scaling laws

∆(ηc) ∝ N−
1
3 (second order transition), ∆(ηc) ∝ e−aN (first order transition), (66)

where the value of a depends on the place where we cross the first-order transition, e.g. on the value of χ in the
parametrization (56). A simple reasoning for the scaling law in the second-order transition was given by Rowe [70]. It is
based on the fact that in the second-order critical point the mean field potential is the pure quartic oscillator V ∝ Nβ4
(factor N , which was not present in the notation of Section 2, is due to conversion to the extensive form). At the same
time, kinetic terms T ∝ −N h̄2 ∂2

∂β2
are of order N−1 (since h̄ ∝ N−1, see Section 2.1). Therefore, after the transformation

β 7→ β̃ ∝ N1/3β the hamiltonian produces an overall scaling factor N−1/3, in agreement with Eq. (66).
The behavior of the gap in both first- and second-order QPTs of the Lipkin model is illustrated in Fig. 4, adapted from

Ref. [95]. It was obtained for hamiltonian (38) which yields an equivalent phase diagram as the sd-IBM and the same scaling
properties, but at the same time enables one to perform numerical calculations up to higher boson numbers (N = 5000 in
our case). In the second-order transition (χ = 0), the ground state and first excited state form a nearly degenerate parity
doublet for η < ηc, therefore the figure shows two lowest excited states. Scaling properties of various observables in awider
class of two-level boson models, including the sd-IBM, can be found in Refs. [89,90,104].

4.2. Thermodynamical analogies

Structural changes of the ground state in the quantum critical region were investigated by Cejnar, Jolie, Zelevinsky and
Sokolov [49,52,53] by adopting concepts from statistical physics. These analyses define suitable entropic quantities, the
wave-function and von Neumann entropies, that make it possible to follow a parallel with thermodynamics. The wave-
function entropy [158] is just the Shannon (information) entropy that measures the spread of an arbitrary wave function
|ψ〉 =

∑
j α

B
j |j

B
〉 in basisB ≡ {|jB〉}j=1,2,... of the Hilbert space. For the ith eigenstate of the hamiltonian H(η) this yields:

WB
i (η) = −

∑
j

|αB
ij (η)|

2 ln |αB
ij (η)|

2. (67)

Since a phase transition, being essentially a sudden restructuralization of the ground state and near excited states, can be
seen as a transition between two types of basis vectors (those relevant at each side of the transition), the wave-function
entropy is well suited to demonstrate basic QPT effects [52,67].
On the other hand, von Neumann entropy is constructed to be independent of the basis. It can be obtained by adding

a small noisy component δη to the model control parameter η, which results in turning all the hamiltonian eigenstates
|ψi(η)〉 to density operators ρi(η), expressing statistical character of the place in the parameter space where the eigenstates
are evaluated [175]. The ith state von Neumann entropy then reads as

Si(η) = Tr [−ρi(η) ln ρi(η)] , (68)
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Fig. 4. The gap ∆ as a function of η around the first-order (left) and second-order (right) phase transition for the Lipkin hamiltonian (38). The spherical
phase is at η > ηc , with ηc = 9

11 for χ =
1
√
2
and ηc = 4

5 for χ = 0. Lines and the full dot are analytic results, open dots correspond to a numerical
diagonalization. For χ = 0 both first and second excited states are included. The inset shows the scaling of∆ at the critical point with N for various values
of χ . Adapted from Vidal et al. [95].

where η represents the average of η+δη under the assumption 〈δη〉 = 0. The density operator and its entropymust depend
on the size and type of the noise. If 〈δη2〉 � 〈η〉2 the essential effects aremostly due tomutualmixing between a few closest
eigenstates whose strength for a given eigenstate i strongly depends on η. The places of abrupt structural changes (quantum
phase transitions) can be easily identified as pronounced maxima of von Neumann entropy [53].
The noise-induced density operator ρi(η) can also be associated with an equivalent thermally populated system

(canonical density operator), which makes it possible to introduce an analog of specific heat Ci = Tr[ρi ln2 ρi] − S2i defined
for each state i at given η [53]. For a linear hamiltonian (23) and small-amplitude noise one obtains an approximation

Ci(η) ≈ 〈δη
2
〉 ln2〈δη2〉

∑
j(6=i)

|〈ψi(η)|V |ψj(η)〉|2

[Ei(η)− Ej(η)]2
, (69)

which, as seen from Eq. (28), represents a direct measure of the parameter-induced variation of wave functions. Indeed,
for the IBM ground state, the ‘‘specific heat’’ introduced in this way yields very similar values as the ‘‘specific heat’’ defined
through the first derivative of the wave-function entropyWU(5)0 (η) in the U(5) basis [62].
As follows e.g. fromEqs. (28) and (69), the effects ofmixing for a given state i are strongly enhanced in a vicinity of avoided

crossings of level iwith neighboring levels. In these cases, the energy denominator that appears in the perturbative expansion
of the hamiltonian eigenstates makes the perturbation V extremely efficient. Recall that hamiltonian (23) can be written in
the obvious self-similar form H(η+ δη) = H(η)+ δηV for an arbitrary point η. The crossings are avoided for levels with the
same symmetry quantum numbers, because such states generally yield nonzero matrix elements 〈ψi|V |ψj〉. This prevents a
statistically meaningful occurrence of exact degeneracies in spectra (corresponding to fixed symmetry quantum numbers)
driven by a single (real) parameter η, although actual crossings may occur as exceptions with a vanishing statistical weight
(or more frequently in integrable systems with hidden quantum numbers). In any case, avoided or unavoided crossings of
low-energy levels including the ground state seem to hold the key to understanding of both first-order and continuous QPT
phenomena [52,75].
To describe the influence of level crossings near quantum critical points in systems with increasing size, it turned out

useful to extend the domain of the control parameter η in Eq. (23) from real to complex values [82,108,134,137]. The reason
for this is the fact that – unlike the real-η case – the hamiltonian eigenvalues do cross in the complex-η plane. If the complex
crossing occurs close to the real axis, one observes a sharp avoided crossing in the real-η level dynamics. Convergence of
the complex crossing to real η with an increasing size of the system implies that at the corresponding place the evolution
of energies and wave functions becomes nonanalytic.
Since the complex-extended hamiltonian H(η) is no more hermitian (its eigenvalues are complex), the points ηk

satisfying Ei(ηk) = Ej(ηk) may be called nonhermitian degeneracies. An n-dimensional hamiltonian of the type (23) has
in total 12n(n− 1) complex conjugate pairs of such points. They are either diabolic points (a nongeneric type of crossing in
complex η) [176] or branch, so called exceptional points (the generic type of degeneracy) [134,177,178]. In a diabolic point,
the two eigenvalue sheets just touch each other with a conical topology. The branch point, on the other hand, connects the
two Riemann sheets in a more tricky way, forming a singularity which can be locally described as the complex square root.
The system of n Riemann sheets associated with solutions of the eigenvalue equation becomes entangled. Only the branch
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Fig. 5. The evolution of the peak of the ground-state ‘‘specific heat’’ fromEq. (70) at the IBM second-order QPTwith increasing boson numberN . The log–log
plots show the peak height (left), the peak inverse width at half maximum (middle), and the product of the peak height andwidth (right). The vertical scale
in all panels is irrelevant. The linear dependence in the rightmost panel represents a power-law decrease of the peak area, indicating a vanishing value of
the ‘‘latent heat’’ Q . Adapted from Ref. [108].

points located on the Riemann sheet that for real η corresponds to the lowest energy eigenvalue can influence the ground-
state phase transitional behavior. This, however, represents a severe problem, because to numerically assign individual
branch points to their respective Riemann sheets, is a very difficult task even for moderate dimensions.
A method to bypass this problem has been developed and tested in the IBM phase transitions by Cejnar, Heinze, and

Dobeš [82,108]. Its basic idea is that branch points located on the selected Riemann sheet near the real parameter axis can
be detected indirectly, using only the real energy eigenvalues Ei(η) for Imη = 0. To this end, we introduce a quantity

Ci(η) = −
1
n− 1

d2

dη2
∑
j(6=i)

ln
∣∣Ej(η)− Ei(η)∣∣ , (70)

where n is the dimension of the relevant subspace, counting only the states with the same symmetry quantum numbers (for
the ground-state considerations, the relevant subspace typically consists of states with zero angular momentum, but there
may be also other conserved quantum numbers to be taken into account, e.g. seniority). As shown in Ref. [108], the quantity
Ci(η)measures the proximity of branch points located on the Riemann sheet of the ith state to the real parameter axis at η.
In fact, it can be derived from a two-dimensional electrostatic analogy, associating the ith sheet branch points with charges
in the complex plane. Ci(η) then represents the first derivative of the repulsive Coulomb force acting at the place η of the
real axis: C ∝ d

dη F . If the ith sheet branch points get close to the real axis, the change of force at the corresponding place is
large and Ci(η)will show a peak. This peak becomes singular in the QPT critical points, where the distance of branch points
from the real axis asymptotically vanishes.
At the same time, the quantity (70) can be shown to play a similar role in quantum phase transitions as the specific heat

in thermal phase transitions [82,108]. In the first-order transition, the QPT peak of Ci(η) converges to a δ-function located
at the critical point ηc. For a continuous transition, the limiting behavior of Ci(η), although still singular, yields a vanishing
integral over an infinitesimal vicinity of the critical point: Q = limε→0

∫ ηc+ε
ηc−ε

Cdη = 0. This is illustrated in Fig. 5, which
shows the boson number dependence of the peak height (panel a) and the inverse width at half maximum (panel b) of the
‘‘specific heat’’ C0(η) for the IBM ground state at the critical point of the second-order QPT between O(6) and U(5) limits.
One observes that the peak width decreases faster than the height increases [cf. panel (c)], which leads to the estimate of
Q = 0 in the N → ∞ limit. This is in agreement with the continuous character of the transition studied. Note that for
thermal phase transitions, Q would be nothing but the latent heat of the transition.
In thermodynamics, the role of branch points is played by zeros of the partition function in complex extended

temperature. As discussed by Yang and Lee in their 1952 seminal papers [179,180], complex zeros of the partition function
are crucial for fundamental understanding of the thermal phase transitions. The criteria derived for thermal phase transitions
of various orders in terms of complex zeros [181] are essentially the same as those for QPTs and branch points in the complex
parameter plane. Therefore, the above outlined considerations represent a powerful analogy between thermal and quantum
phase transitions.

4.3. Signatures involving excited states

Although the definition of quantum phase transitions is related to the ground state, it is clear that there must also
exist some QPT induced effects in the behavior of energies and transition amplitudes for low-lying excited states. In IBM,
such spectroscopic observables can be approached via so called quadrupole shape invariants [57,166], which represent
expressions based on nth-order moments (n ≥ 2) of the quadrupole operator Qχ ≡ Q in the ground state:

q2 = 〈0+1 |(Q · Q )|0
+

1 〉, q3 = 〈0+1 |[QQQ ]
(0)
|0+1 〉, q3 = 〈0+1 |(Q · Q )(Q · Q )|0

+

1 〉, . . . . (71)

The mean field expectation values for these invariants can be written in terms of quadrupole shape variables β and
γ , but at the same time, equivalent expressions can be derived with the aid of sums over products of reduced matrix
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elements 〈0+i ‖Q‖2
+

j 〉 for E2 transitions between individual 0
+ and 2+ states [166]. Since only the states with small phonon

numbers contribute significantly to these sums, the shape invariants represent an important tool for identifying suitable
QPT signatures in the spectra of low lying levels.
Among the other spectroscopic signatures of the IBM shape transition across the extended Casten triangle we name

the following: (a) The ratio R4/2 = E(4+1 )/E(2
+

1 ) between excitation energies of the first 4
+ and 2+ states. It takes the

harmonic vibrator value R4/2 ∼ 2 near the U(5) limit, the rotor value∼ 3.33 near the SU(3) and SU(3) limits, and the value
∼2.5 near the O(6) limit. (b) The quadrupole moment Q (2+1 ) ∝ 〈2

+

1 ‖Q‖2
+

1 〉 of the first 2
+ state, which in the mean field

approximation is proportional to the ground-state equilibrium value of β . This measure is related to the expectation value
〈0+1 |nd|0

+

1 〉 ≡ 〈nd〉0 ∝ β2 of the d boson number operator in the ground state [proportional to B(E2, 2+1 → 0+1 )], which
is however insensitive to the sign of β , and therefore not suited for the description of prolate–oblate transitions. (c) The
strength B(E2, 2+2 → 2+1 ) for the transition from the second to the first 2

+ state, which is close to zero near the SU(3) and
SU(3) limits and nonzero in the spherical and γ -unstable phases. (d) The strength ρ2(E0, 0+2 → 0+1 ) of the E0 transition
between the first excited 0+ and the ground state, which is also related to the d-boson content of the ground state [75].
(e) The ratio B4/2 = B(E2, 4+1 → 2+1 )/B(E2, 2

+

1 → 0+1 ) of transition strengths between the lowest L = 0, 2, 4 states,
which exhibits a peak close to the critical point [78]. (f) Two-particle transfer intensities for the ground-state to ground-
state transition and transitions from the ground state to excited 0+ states, which show characteristic patterns in the critical
region [109].
An effort has been spent to identify observables suitable for a direct distinction between first- and second-order QPTs in

finite-N numerical data. Such observables would turn out important in numerical studies of systemswith a phase transition
of unknown nature. In the IBM framework, the quantity

ν2 =
1
N

[
〈0+2 |nd|0

+

2 〉 − 〈0
+

1 |nd|0
+

1 〉
]

(72)

was proposed as such a measure by Iachello and Zamfir [69]. Indeed, while the above discussed ground state average
1
N 〈nd〉 ≡ ν1 rises from ν1 ∼ 0 (spherical phase) to ν1 > 0 (deformed phase) with no particular difference between
the first- and second-order transition, ν2 is much more sensitive to the transition type. For the first-order transition it
exhibits an abrupt, sign changing crossover from ν2 > 0 (spherical phase) to ν2 ∼ 0 (deformed phase), whereas for the
second-order transition the change is smoother. The key for understanding these observations is the fact that the first-order
quantum phase transition can be locally interpreted as a sharp anticrossing of the two lowest energy eigenstates with the
same symmetry quantum numbers [58]. Indeed, this is how the wiggling behavior of ν2 in the first-order transition comes
about. The quantities ν1 and ν2 can be related to the expectation values 〈r2〉ψ of the squared radius (real space) in the states
involved [33], particularly ν2 ∝ 〈r2〉0+2 − 〈r

2
〉0+1
measures the isomer shift between the first two 0+ states. In some cases,

ν2 has to be replaced by ν ′2 =
1
N

[
〈2+1 |nd|2

+

1 〉 − 〈0
+

1 |nd|0
+

1 〉
]
, which is proportional to the experimentally available isomer

shift δ〈r2〉 = 〈r2〉2+1 − 〈r
2
〉0+1
. Note that the isomer shifts are closely related to the expectation values of the effective E0

transition operator in the states involved, so that there is a link to the E0 strengths discussed above.
In a very recent work by Bonatsos, McCutchan, Casten, and Casperson, a new quantity was proposed to distinguish the

first- and second-order QPT in the IBM framework. It is the energy ratio E(6+1 )/(0
+

2 ) between the first 6
+ and second 0+

states, which takes value 1.5 in the U(5) limit, ∼ 0 in the SU(3) limit, and 1 in the O(6) limit. A comparison of some other
spectroscopic observables for first- and second-order transitions has been presented by Pan, Draayer, Luo, and Zhang [64,
87] and by Zhang, Hou, and Liu [112].

4.4. Symmetry related approaches

Essential contributions to the interpretation of low energy spectroscopic data at and around the quantum critical points
in nuclei have been brought by novel generalizations of the dynamical symmetry concept. One of these approaches attempts
to ascribe specific dynamical symmetries to the first- and second-order critical points. This might seem surprising as the
critical point itself is just in between two competing symmetries, so one would expect rather disorder than a symmetry at
this place. Nevertheless, it turned out that these so called critical point symmetries are very successful in the description of
spectroscopic data. The first specimen of this type was discovered within the fermion dynamical symmetry model [141].
The SO(7) dynamical symmetry of that model is located at the phase transition between different ground state shapes,
similarly as in the IBM the O(6) dynamical symmetry constitutes the critical point between prolate and oblate shapes when
proceeding along the SU(3)–SU(3) transition [54].
A systematic, though approximate, approach to the construction of the critical point symmetries was presented by

Iachello in the framework of the geometric model [146–150]. Hereby, use was made of a strongly simplified Bohr
hamiltonianwhich for the spherical–prolate transition led to an approximate critical point symmetry denoted as X(5) [147],
and for the spherical to γ -unstable transition to the symmetry called E(5) [146]. Both these symmetries focused on the β
degree of freedom, for which an infinite square well potential was imposed, and were based on an approximate separation
of β and γ dynamical modes. As a result of these simplifications, virtually parameter free solutions were obtained, which
prompted an extensive search for experimental examples.
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Since the critical point descriptions are embedded in the framework of the geometric model, they do not reflect the finite
number of nucleons in real nuclei. Finite size effects have been treated in the IBM framework by Leviatan and Ginocchio
for the E(5) case (second-order transition) [61] and by Leviatan for the X(5) case (first-order transition) [84]. In both
cases, the method employed was based on the IBM intrinsic states projected onto the appropriate symmetry quantum
numbers and on the variation of the corresponding energy functional after the projection. In the X(5) case, an additional
two level mixing calculation had to be carried out as a consequence of the phase coexistence in the first-order transition.
An effective deformation that results from these calculations constitutes the structure of the excited bands at the critical
points. However, as explicitly demonstrated by Arias and García-Ramos et al. [63,85] for the second-order transition, the
critical point symmetries based on the original approximation of the square well potential in β have only a limited validity
in the IBM framework, even for an infinite number of bosons. This is so because the second-order critical point potential
in IBM is essentially a pure quartic oscillator, V ∝ β4. We will therefore not review the X(5) and E(5) symmetries in detail
here. The interested reader can consult recent overviews by Caprio and Iachello [150], and by Casten and McCutchan [23].
Another symmetry related approach to quantum phase transition is based on so called partial dynamical symmetries.

These symmetries express situations,when only a certain subset of properties corresponding to the full dynamical symmetry
is retained by the system,whereas the remaining properties are not. In particular, all or a part of states, may be characterized
by a subset of symmetry quantum numbers, or a part of states by all quantum numbers [182–186]. Situations like this are
particularly relevant in systems with coexisting regular and chaotic features, but they may also capture essential features
of the phase coexistence in first-order QPTs.
The application of this concept to the first-order critical point in the IBM relies on the possibility to increase the size of

potential barrier between the coexisting minima within the phase transitional region. The two minima, whose existence is
inherent to the first-order transition, had beenpointed out as a potential source of nuclear isomerism [44] and later discussed
in a similar context of coexisting spectral structures [48,51]. However, for a typical IBM hamiltonian these minima are too
shallow [51,78]. A method for constructing an IBM hamiltonian with a decent barrier separating the coexisting phases has
been proposed by Leviatan [94] and recently used by the same author to demonstrate the relevance of partial dynamical
symmetries at the critical point [106]. Themethodmakes use of the decomposition of the IBM hamiltonian into the intrinsic
and collective parts [187].While the intrinsic part generates an energy surfacewith twominima and can be tuned to achieve
an arbitrary barrier, the collective part is composed of kinetic terms which do not affect the shape of the energy surface. The
dynamics at the critical point can be again described by an effective deformation determined by variation, after projection
and a two-level mixing calculation.
The application of this method to the IBM first-order transition led to the identification of a specific partial dynamical

symmetry at the critical point [106]. Distinct subsets of solvable states, characterized by different types of good dynamical
symmetries, were shown to coexist in the system governed by the critical hamiltonian. The two subsets of states can be
constructed from the U(5) and SU(3) dynamical symmetry chains, respectively, in agreement with the limiting dynamical
symmetries of the transition, and with the intuition that the first-order spherical–deformed transition generates coexisting
vibrational and rotational spectral structures. In fact, also the second-order phase transition in the IBM is characterized by a
partial dynamical symmetry, although of a different type than the first-order transition [all states retain a part of quantum
numbers due to the underlying O(5) symmetry, as discussed above]. While the latter feature is most probably specific to
the model, the applicability of the partial dynamical symmetry with two coexisting subsets of solvable states to generic
first-order QPTs constitutes an interesting subject for further research.
The last symmetry-related conceptwewant to discuss in this subsection is based on so called quasi dynamical symmetries.

This term should not be confused with partial dynamical symmetries discussed above. In a partial dynamical symmetry, a
fixed realization of a given algebra is partly imprinted in the spectrum (in one of the above senses). In a quasi dynamical
symmetry, in turn, the symmetry is completely broken for all states, but for a part of the spectrum, this happens in a highly
organized manner, which creates an illusion that the symmetry is preserved. Rowe, who coined this term, describes it
as follows [71]: ‘‘Quasidynamical symmetry is an expression of the possibility that a subset of physical data may exhibit
all the properties that would result if the system had a symmetry which, in fact, it does not have.’’ The mathematical
formulation of this concept relies on so called embedded representations [188], which can be associated with particular
(coherent) linear combinations of equivalent irreducible representations of a certain Lie algebra that give rise to a new
irreducible representation. For systems with quantum phase transitions it often appears that two incompatible quasi
dynamical symmetries can be associated with the two competing phases. The quasi dynamical symmetry of type I starts
breaking only if the systementers the phase transitional region, fromwhere itmay emergewith a quasi dynamical symmetry
of type II.
A good example is the SU(3) quasi dynamical symmetry of the shell and related models [189,190]. The exact Elliot

SU(3) dynamical symmetry is badly broken by spin–orbit and major shell mixing interactions, which leads to a complete
fragmentation of actual hamiltonian eigenstates among individual SU(3) irreps. Nevertheless, the mixing amplitudes
preserve a very high degree of coherence, so that observable quantities (transition strengths) retain the basic signatures
of the unbroken SU(3).
A similar effect was shown by Rowe, Turner and Rosensteel [78,83] also for the first-order transitional path between

the U(5) and SU(3) limits of the IBM. An example of the decomposition of eigenstates in the SU(3) basis is shown in Fig. 6.
The three lowest yrast states shown in the figure at a value of the control parameter just before the phase transition to the
spherical phase have essentially the same amplitudes in the SU(3) basis. In the SU(3) limit, the yrast states are all classified
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Fig. 6. Amplitudes for an expansion of the lowest eigenstates with L = 0, 2, 4 (N = 100) in the SU(3) basis just before the phase transition to the spherical
phase (only a part of amplitudes is shown). A highly coherent pattern of mixing illustrates the SU(3) quasi dynamical symmetry. Adapted from Rosensteel
and Rowe [83].

by the same SU(3) quantum numbers (λ, µ) = (2N, 0). Although the SU(3) dynamical symmetry is apparently broken
(the states are widely spread in the symmetry basis), the mixing has a highly coherent form. In fact, the yrast states on
the deformed side of the phase diagram can be derived from an intrinsic state of the same form as in the SU(3) limit. The
amplitudes evaluated at only a slightly different value of the control parameter – just after the phase transition – exhibit
a dramatically different pattern, with the SU(3) coherence lost. The quasi dynamical symmetry on the U(5) side of the
transition can be described in terms of the random phase approximation.
Amore comprehensive analysis guided by the idea of quasi dynamical symmetrywas presented for the IBM second-order

transition between U(5) and O(6) limits [70,71], which has a direct counterpart in the geometric model [81]. We will return
to these results briefly in Section 7.4.

5. Comparison with experimental data

If the theoretical signatures of quantum phase transitions are to be compared with experimental observables in real
nuclei, there appears an essential difficulty: The parameters that induce realistic nuclear shape transitions, i.e. proton and
neutron numbersZ andN , do not vary in a continuousway. One has to reconcilewith the fact that phase transitional regions
cannot be studied in arbitrary detail by fine tuning of the control parameters. Whether one observes an ideal transitional
specimennucleus between twodistinct shapes, depends on the particular discretization of the relevant section of the nuclear
chart.
Essentially, shapes of atomic nuclei are determined by the changing shell structures of protons and neutrons. The

presence of a shell closure drives the nucleus towards a dominance of the spherical shape. Although the detailed shell
configuration represents the microscopic origin of the shape, often a simplification can be done when one deals with nuclei
far away from (sub)shell closures. The quantities that thenmostly determine the equilibrium shape of a given nucleus are the
numbers Np and Nn of valence protons and neutrons, or the corresponding holes if the nucleus is located above the midshell.
A good empirical criterion for the onset of deformation was proposed by Casten et al. [191,192]. It reads as

P ≡
NpNn
Np + Nn

≈ 5, (73)

where P (derived from ‘‘promiscuity’’) expresses an average number of interactions of each valence nucleon (or hole) with
nucleons (holes) of the other type. For P > 5 the nucleus can be expected to be deformed in its ground state, while for P < 5
it is more likely spherical. The approximate condition (73) demarcates expected regions of shape–phase transitions across
the nuclear chart, as shown in the left panel of Fig. 7 [192]. One notices that the regions with P ≈ 5 close to stability are
rather scarce. Notably, themost important transitional region is centered aroundN = 90 and at theOs andWnuclei. It turns
out that the condition (73) is valid close to the U(5)–SU(3) transition, but it is not sufficient when a nucleus is close to the
U(5)–O(6) transition: For example, 184W has P = 5.1 but the fit of spectroscopic observables places it near the O(6)–SU(3)
leg of the symmetry triangle.
Since the focus of this review is centered more on the theory side, we present below only an outline of relevant

experimental issues. The reader interested in more detailed information can consult recent reviews [23,24].

5.1. Nuclear masses

Already in their pioneering work on shape–phase transitions in atomic nuclei, Dieperink, Scholten, and Iachello pointed
out the importance of nuclear mass measurements for the study of shape transitions [9]. As the masses depend on binding
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Fig. 7. Left (adopted fromMcCutchan et al. [192]): a part of the nuclear chart with values of R4/2 = E(4+1 )/E(2
+

1 ) and the P = 5 contour, see Eq. (73). The
stable nuclei are shown in gray. Right (adapted from García-Ramos et al. [65]): the two-neutron separation energies of Nd, Sm, Gd and Dy isotopic chains.
Experimental values (full symbols) are shown together with the IBM fit (open symbols).

energies, changes in the absolute energy of the ground state lead to kinks in an otherwise smooth behavior. For even–even
nuclei these effects together with abrupt changes in nuclear radii are the only direct observables since the ground state
alone has no electromagnetic moments or transitions.
A good quantity to track changes in nuclearmasses is provided by the extraction of two-nucleon separation energies, which

are extracted as mass differences

S2n(Z,N ) = M(Z,N − 2)+ 2mnc2 −M(Z,N ), S2p(Z,N ) = M(Z− 2,N )+ 2mpc2 −M(Z,N ), (74)

withM(Z,N ) the mass of a nucleus withZ protons andN neutrons, andmp,mn the masses of nucleons. Theoretically, the
separation energies can be predicted from the IBM ground-state energies E0 for boson numbersN+1 andN at values η+δη
and η of the control parameter associated with the given pair of nuclei. Specifically,

S2• = E0(N + 1, η + δη)− E0(N, η) ≈
∂

∂N
E0(N, η)+ δη

∂

∂η
E0(N, η), (75)

where • stands for n or p. Since E0 depends on N quadratically (due to one- and two-body interactions), the first term on
the right-hand side yields a linear dependence on N , and hence a smooth contribution to the separation energy. An irregular
contribution is created by the second term: the first-order transition, with a discontinuous ∂

∂η
E0, leads to a discontinuity

of the separation energy. The second-order transition, with a discontinuous ∂2

∂η2
E0, induces only a change of slope of the

separation energy curve at the critical point.
As an example, the right-hand panel of Fig. 7 compares the experimental values of the two-neutron separation energies

in the Nd, Sm, Gd and Dy isotopes to the results of IBM calculations performed in Ref. [65]. One clearly observes a
‘‘discontinuity’’ (smoothened by finite-size effects) indicating that at N = 90 a first-order spherical-to-deformed phase
transition is occurring in each of the isotopic chains.
A systematic study of phase transitions, and their effect on separation energies and masses was performed by García-

Ramos, De Coster, Fossion, andHeyde in Ref. [55]. These authors find a very high sensitivity to the IBMparameters around the
second-order phase transition, which may indicate that the description of energies and electromagnetic transition rates is
not a sufficient criterion in this region. Compared to the first-order transition, the effect of a second-order phase transition
on separation energies is by about an order of magnitude smaller (a change in the slope instead of a discontinuity). It is
therefore very important that nowadays very accurate mass measurements with∆M/M ∼ 10−7 become possible on stable
as well as exotic nuclei [193]. The access to exotic nuclei is essential to verify phase transitional predictions in the P ≈ 5
regions far from the valley of stability.

5.2. Low-energy collective states

The shape of the ground state is strongly present in the properties of the low-lying excited states. In order to
unambiguously determine the shape types from the data, Casten et al. [22,50,191,194] used some universal correlations
obtained from spectroscopic observables for a large number of isotopes. The best known example is shown in Fig. 8, where
the excitation energy of the first 4+ state is plotted against the one of the first 2+ state. All data together clearly yield
a universal curve, which shows two different slopes. At low excitation energies the slope is approximately 3.33, which
indicates rotational motion, while at high energies the slope becomes approximately 2, indicating a spherical vibrator. The
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Fig. 8. The excitation energy of the 4+1 state against one of the 2
+

1 state for the nuclei with E(2
+

1 ) < 600 keV. The spherical–deformed transition is observed
as the change of the slope between the indicated vibrational and rotational values at E(2+1 ) ≈ 150 keV.

first-order shape–phase transition occurs where both slopes cross. One can thus deduce a typical excitation energy for the
first excited state as a signature for the spherical–deformed phase transition.
Among the other indicators of shape–phase transitions, are the electromagnetic properties, especially the quadrupole

moment of the 2+1 state and strengths of E2 transitions between excited states (cf. Section 4.3). For the prolate–oblate
transition, the change of the sign of β must induce the change of the sign of the 2+1 quadrupole moment. A more difficult
task, is to observe and distinguish in data the second-order phase transition, as this relies on the determination of the
critical exponent from rather scarce data points. In the following we focus on systematic studies of chains of nuclei along
the U(5)–SU(3), U(5)–O(6), and SU(3)–SU(3) transitional paths.

5.2.1. Spherical to prolate transition
Early work on a systematic comparison with experimental data for the transitional region between U(5) and SU(3) was

done by Scholten, Iachello and Arima [195]. They studied, in particular, the Sm isotopes where the spherical–deformed
transition is very well pronounced. These isotopes and in particular 152Sm, which is an almost ideal first-order transitional
nucleus, formed the basis of the renewed interest in shape–phase transitions. This was triggeredwhen a new study of 152Sm
showed that the transition strength ratio B(E2; 2+γ → 0+2 )/B(E2; 2

+
γ → 0+1 ) is extremely small, but could be reproduced

by a simple IBM calculation [196]. It was then shown that the sharp minimum in B(E2; 2+γ → 0+2 ) is located at the first-
order phase transition, in the region where spherical and deformed phases coexist [48]. This interpretation launched the
revival of interest in shape–phase transitions, especially after the introduction of the X(5) critical point symmetry [147] and
the subsequent interpretation of 152Sm as an example of a X(5) nucleus [197]. The interpretation of shape–phase transition
caused an intense debate which is still ongoing (for a review see Ref. [23]). As an example, the moments of inertia in the
bands corresponding to both phases are almost the same, contrary to the model prediction [51].
Further nuclei located at or very close to the first-order transition were studied experimentally. They are the N = 90

isotones 150Nd [198] and 154Gd [199]. They also follow the X(5) pattern in energies and electromagnetic transition rates
for the ground state band. The next candidate, 156Dy, follows still the X(5) energy trend but in its electromagnetic decay it
already behaves as a rotor [199]. Besides theN = 90 nuclei, which are situated directly in the regionwith P = 5 (see Fig. 7),
the neutron deficient Os nuclei were recently proposed as other candidates. Lifetime measurements indicate that indeed
176,178Os exhibit the X(5) symmetry and are well described in the IBM as nuclei at the first-order critical point [200,201].
A systematic comparison of rare earth nuclei was done by García-Ramos, Arias, Barea, and Frank [65]. Chains of Nd, Sm,

Gd and Dy isotopes were fitted, using the simple consistent-Q hamiltonian as well as a complete IBM-1 hamiltonian. Good
descriptions for the excitation energies and B(E2) valueswere obtained, togetherwith a good description of the two-neutron
separation energies (see Fig. 7). Based on the fitted parameters, the isotope chains could be placed in the separatrix plane
studied before within the framework of the catastrophe theory [47]. The results showed that none of the Dy isotopes is close
to the critical point. The closest ones are 148Nd, 150Sm and less clearly 152Gd, followed by 150Nd and 152Sm. The finding that
the latter two isotopes are not so close as 148Nd and 150Sm is a little surprising, in view of the low P-factor for 148Nd, see
Table 1. From the values shown in the table one may deduce that the first-order phase transition occurs when P is about 4.5
rather than 5.
Using the simple IBM hamiltonian of the type (56), McCutchan et al. [192] performed systematic fits of Gd, Dy, Er, Yb and

Hf isotopes, which allowed the location of these isotopes in the triangle. It was found that the phase transition is crossed
inside the triangle for 154Dy and 156Er, while 152Gd lies on the U(5)–SU(3) leg before the phase transition and 154Gd lies close
to it, but after the transition. The Yb and Hf isotopes do not cross the phase transition on the U(5)–SU(3) side.
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Table 1
P factors from Eq. (73) for the isotopes situated close to the first-order transition

Nucleus 148Nd 150Nd 150Sm 152Sm 154Gd 156Dy 176Os 178Os

P 3.75 4.4 4.4 4.8 5.1 5.3 4.5 4.6

Fig. 9. The number of 0+ states observed below 2.5 MeV as a function of η (see text). The corresponding nuclei are from left to right: 162Dy, 168Er, 158Gd,
176Hf, 154Gd and 152Gd.

Another experimental observablewas proposedby vonBrentano et al. [75],whoobserved that at the first-order transition
from spherical to deformed shapes a rapid increase of the E0 strength for the 0+2 → 0+1 transition takes places. A recent
measurement in 154Sm confirmed this behavior nicely [202]: ρ2(E0; 0+2 → 0+1 ) = 0.020(2) for

150Sm, 0.051(5) for 152Sm,
and 0.096(42) 154Sm.
Finally, as shown e.g. in Ref. [52], at the first-order phase transition the spectrum of excited states is maximally

compressed. Using the (p, t) reaction at the highly sensitive Q3D spectrometer in Garching, an extended search for 0+ states
in several even–even nuclei in the rare earth region was performed [102]. It was possible to identify the 0+ states up to very
high energies. Fig. 9 shows the numbers of observed 0+ states below 2.5 MeV for the nuclei studied in Ref. [102] against the
fitted value [203] of η in the hamiltonian parametrization (56). One clearly observes an increase of the 0+ state density at
the critical value η = 0.8 (corresponding in the fit to 154Gd). Note that here no corrections were applied for the changing
boson number and the fitted χ parameter.

5.2.2. Spherical to γ -unstable and prolate to oblate transitions
While there is ample evidence for atomic nuclei situated at the first-order phase transition between spherical and

prolate deformed shapes, the situation is less clear for the second-order phase transition. Despite the fact that the U(5)–O(6)
transition in the IBM has been studied throughout from the theoretical side, only a few examples of nuclei located along
this leg of the symmetry triangle are known. Early work [206] indicated that the neutron-rich Ru and Pd isotopes are well
described by this transitional class. More recently, the Ru isotopes were reanalysed by Frank, Alonso, and Arias [56] to
locate the second-order critical point. Using two neutron separation energies, level energy systematics, and B(E2) values
these authors concluded that the chain of Ru isotopes in between 98Ru and 110Ru can be described as a U(5)–O(6) transition
with the critical point situated at 104Ru.
After the introduction of the E(5) critical point symmetry [146], the nucleus 134Ba was proposed as a candidate for the

second-order critical point nucleus by Casten and Zamfir [204]. In this work, a comparison of B(E2) and energy ratios
with an IBM calculation at the second-order phase transition was made, yielding a very good agreement. A subsequent
systematic search in the nuclear database indicated that 128Xemight be another good candidate for the second-order critical
nucleus [205]. Very recently, the Zn isotopes were studied and 64Zn was proposed to be located close to the second-order
transition [207].
For the SU(3)–SU(3) first-order transition, the critical point takes place at the O(6) dynamical symmetry. Although oblate

nuclei, or transitions from γ -soft to oblate shapes, are relatively rare in the known part of the nuclear chart, they do occur
in the Pt and Hg isotopes close to the O(6) nucleus 196Pt. In Ref. [60], three different signatures were investigated: the 4+1
to 2+1 energy ratio R4/2, the 2

+

1 quadrupole moment Q (2
+

1 ), and the transition strength B(E2; 2
+

2 → 2+1 ). In an attempt to
span a larger part of the extended Casten triangle, these quantities are plotted in Fig. 10 for nuclei ranging from the well
deformed prolate rotor nucleus 180Hf up to 200Hg. For each nucleus the χ value from the quadrupole operator Qχ was fitted
using the hamiltonian (56) with η = 0 and the respective value of N . Clearly all experimental observables indicating the
prolate–oblate phase transition are observed [68]. The very rapid change of the quadrupole moment might explain why
196Pt has a nonvanishing quadrupole moment while still being a good O(6) nucleus. Surprisingly, the Hg isotopes do not
resemble vibrational or shell model like structures whom have the R4/2 ratio around or below 2.
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Fig. 10. Experimental observablesQ (2+1 ), B(E2; 2
+

2 → 2+1 ), and R4/2 , for
180Hf, 182,184,186W, 188,190,192Os, 194,196Pt, and 198,200Hg. The dashed lines represent

theoretical values calculated for the appropriate N . Adapted from [68].

6. Quantum phase transitions in IBM extensions

As mentioned in Section 3, the interacting boson model with just two types of bosons represents the simplest member
of the IBM family. Extensions are possible in several directions: the distinction of proton–proton and neutron–neutron
pairs leads to the two-component IBM-2, while mixed proton–neutron pairs are included in more sophisticated versions
of the model (IBM-3 and -4). The description of odd nuclei can be achieved when valence states of a single fermion are
added into the Hilbert space within the IBFM. To describe other types of excitations, one may consider non-scalar bosons of
different angular momenta (p, f , g, . . .) together with (or instead of) the d boson; this is also relevant if the IBM approach
is applied in molecular or other types of physics. The inclusion of higher order boson interactions, external rotation, or
different particle–hole configurations represent some other possibilities to refine the model. Each of these possibilities
implies particular modifications of the model phase structure. Some of these modifications will be outlined in this section,
although the research in this field is still in progress. The study of phase transitions in the IBM extensions is interesting not
only from the viewpoint of concrete applications, but also because these models provide case examples of the influence of
additional degrees of freedom on the QPT phenomena.

6.1. Proton–neutron degrees of freedom (IBM-2)

In the version of the interacting boson model discussed up to now (IBM-1), no distinction was made between
proton–proton and neutron–neutron pairs. In order to make the model more realistic, it is essential to introduce bosons
of the proton and neutron type. It is done in the two-component version of themodel, the IBM-2 [33]. Hereby, it is implicitly
assumed that the shell model orbits which the protons and neutrons occupy are different, as is the case for medium mass
and heavy nuclei. The IBM-2 gives a successful phenomenological description of low-energy collective properties of virtually
all such (even–even) nuclei. The IBM-3 and 4, which are applicable in lighter nuclei, are not discussed here.
In the IBM-2, the total number of bosons N is the sum of the neutron and proton boson numbers, Nν and Nπ , which are

both conserved separately. The spectrum generating algebra of the IBM-2 is a product Uν(6)⊗Uπ (6), consisting of neutron
and proton generators bĎνlmbνl′m′ and b

Ď
π lmbπ l′m′ , respectively. The model space is the product [Nν] × [Nπ ] of symmetric

representations of Uν(6) and Uπ (6). The most general (Nν,Nπ ) conserving rotationally invariant IBM-2 hamiltonian will
not be presented here, as it has 21 parameters. Instead, a strongly simplified hamiltonian is used. A comprehensive review
of the model and its implications for nuclear structure can be found e.g. in Ref. [208]. Here we highlight three main features.
The first is that the existence of two kinds of bosons offers the possibility to introduce a so called F-spin quantum

number [209], which is rather similar to isospin. Since F = 1
2 , the bosons can be in two possible charge states: MF = −

1
2

for the neutron type boson andMF = + 12 for the proton type. The F spin is formally defined by the algebraic reduction

U(12) ⊃ Uνπ (6) ⊗ U(2)
↓ ↓ ↓

[N] [N − f , f ] [N − f , f ],
(76)

with 2F = N − 2f the difference between the Young tableau labels that characterize both Uνπ (6) and U(2). The algebra
U(12) consists of the generators bĎρlmbρ′ l′m′ , with ρ, ρ

′
= ν or π , which also includes operators that change a neutron boson

into a proton boson or vice versa. Under the U(12) algebra, all bosons behave symmetrically, hence the representations of
Uνπ (6) and U(2) are identical.
The SU(2) algebra associated with the F-spin, which is a subalgebra of U(2) in (76), consists of the diagonal operator

Fz = 1
2 (Nπ −Nν) and the raising and lowering operators F± that connect neutron and proton bosons. It is clear that all IBM-

2 hamiltonians must commute with Fz . The hamiltonians which also commute with F 2 have the F-spin as a good quantum
number. The classification and analysis of the F-spin conserving dynamical symmetries of the IBM-2 show that the three
symmetry cases of the IBM-1 are recovered. These are the Uνπ (5), Oνπ (6) and SUνπ (3) limits of the IBM-2 [210].
The second important aspect of the model is that it predicts states which are additional to those found in IBM-1. Their

structure can be understood in terms of the F-spin classification (76) for F-symmetric hamiltonians. The states with the
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maximal F-spin value, F = 1
2N , are symmetric in Uνπ (6) and represent exact analogues of the IBM-1 states. The next class

of states has F = 1
2N − 1, and these are no longer symmetric in Uνπ (6) but belong to its representation [N − 1, 1]. Such

mixed-symmetry stateswere studied theoretically in 1984 by Iachello [211] and since then they have been observed inmany
nuclei (see e.g. Ref. [212]). Of particular relevance are the 1+ states, since these are allowed in IBM-2 but not in IBM-1. From
the geometrical analysis performed in the limit of large boson numbers [213] it emerges that the mixed-symmetry states
correspond to linear or angular displacement oscillations, in which the neutrons and protons are out of phase, in contrast
to the symmetric IBM-2 states for which such oscillations are in phase. The occurrence of mixed-symmetry states was first
predicted in the context of geometric two-fluidmodels in vibrational [214] and deformed [215] nuclei, in which they appear
as neutron-proton counter oscillations, pictorially referred to as scissors modes.
The third important feature offered by the IBM-2, is the possibility to get triaxial shapes besides the axially symmetric

ones. This happenswhen proton and neutron fluids exhibit different types of deformation—prolate and oblate. Hereby a new
dynamical symmetry can be constructed, denoted by SU∗νπ (3), for which the respective χ parameters are in absolute value
equal to

√
7
2 but have opposite signs [216,217]. This possibility gives rise to the Dieperink tetrahedron, which has an extra

dimension compared to the Casten triangle, and to a new, triaxial shape phase of the model. Note that if all neutron-proton
deformation combinations are taken into account, there are in fact four and not just two SU(3) limits: prolate–prolate, SU(3),
oblate–oblate, SU(3), prolate–oblate, SU(3)∗, and oblate–prolate, SU(3)

∗

.
The analysis of shape–phase transitions in the IBM-2 is much more complex than the one in IBM-1. It was done

independently, and at the same time by Arias, García-Ramos, and Dukelsky [72], and by Caprio and Iachello [73,92]. The
classical limit of the IBM-2 can be obtained using a two-component coherent state,

|Nπ , α(2)π ,Nν, α
(2)
ν 〉 ∝

[
sĎπ +

∑
m

α(2)πmd
Ď
πm

]Nπ [
sĎν +

∑
m

α(2)νmd
Ď
νm

]Nν
|0〉, (77)

which is used to construct the energy surface for a given hamiltonian as a function of parameters α(2)πm and α
(2)
νm . Those can

then be interpreted as 4 deformation parameters βπ , γπ , βν, γν , and 2× 3 Euler angles. In contrast to the IBM-1, the Euler
angles do partly affect the energy surface through the relative orientation (θ1, θ2, θ3) of the proton and neutron ellipsoids.
Therefore, the IBM-2 energy functional needs to be minimized in 7 parameters.
As mentioned before, a tractable study of phase transitions using the complete IBM-2 hamiltonian (with 21 parameters)

is hardly feasible. Hence only some simplified hamiltonians, resembling those used in the IBM-1,were studied. The following
hamiltonian was used in both Refs. [72,73]

Hχπ ,χν (ζ ) = (1− ζ )
1
N
(ndπ + ndν)+ ζ

1
N2
[
−(Q χππ + Q

χν
ν ) · (Q

χπ
π + Q

χν
ν )
]
, (78)

with N the total boson number. The form (78) is a direct generalization of the IBM-1 hamiltonian (56). It contains (apart
from an overall scaling factor that we do not account for) 3 control parameters ζ , χπ , and χν . The hamiltonian belongs to the
type for which it was shown [213] that the global minimum only occurs for aligned or perpendicular proton and neutron
deformations, reducing the number of order parameters from 7 to 4, i.e. the β and γ shape variables of both fluids.
The phase structure of hamiltonian (78) can be studied analytically for ζ = 1, where the Oνπ (6), SUνπ (3), SU∗νπ (3),

and the remaining two SU(3) dynamical symmetries are located. The ground state at Oνπ (6) represents a γ -unstable
deformed configuration, at SUνπ (3) a γ -rigid deformed configuration, prolate or oblate for both fluids, whereas at SU∗νπ (3)
the ground state is triaxial since both fluids have opposite types of deformation (with the symmetry axes orthogonal to
each other) [213]. A second-order phase transition between axially symmetric and triaxial deformed shapes occurs at the
boundary determined by the following equations [73],

9NπNν βπ (β
2
π − 1)+ βν(2β

2
π − 1)(β

2
π + 1)

2βπ (β2π − 2)2
·
9 NνNπ βν(β

2
ν − 1)+ βπ (2β

2
ν − 1)(β

2
ν + 1)

2βν(β2ν − 2)2
= 1, (79)

βρ =

√
1
14
χ2ρ + 1−

1
√
14
χρ,

withβρ expressing the deformation parameter of the neutron (ρ = ν) and proton (ρ = π ) ellipsoids. The location is strongly
dependent on the ratio Nπ/Nν except at the Oνπ (6) limit which is always located at the second-order transition between
γ -soft and triaxial deformation.
A numerical analysis of the full parameter space showed that the above phase separatrix extends from ζ = 1 to

ζ < 1, where it forms a surface of second-order phase transitions between axially symmetric and triaxial deformed
phases. This plane is terminated at the spherical–deformed phase transition, which also forms a surface close to the Uνπ (5)
dynamical symmetry. The spherical–deformed phase transition is of the first order, except at the intersection with the
axisymmetric–triaxial phase transition, which happens at χν = χπ = 0. The whole phase diagram in the symmetry
tetrahedron is depicted in Fig. 11. A very detailed account, including an analysis of more complex hamiltonians can be
found in Ref. [92].
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Fig. 11. The phase structure of the IBM-2 hamiltonian (78) in the space of parameters ζ , χS = 1
2 (χπ + χν), and χV =

1
2 (χπ − χν). The surfaces

represent first- and second-order phase transitions between spherical and deformed, and axially symmetric and triaxial shapes. Adapted from Caprio and
Iachello [92].

A closely related problem was recently analyzed by Iachello and Pérez-Bernal [116] in the context of molecular physics,
within the so called vibron model for coupled benders [218]. The model represents a generalization of the 2D vibron model,
which is a lower-dimensional analog of the sd-IBM with the d boson replaced by a two-component boson τ [219]. The
spectrum generating algebra of the 2D vibron model coincides with U(3), while the extension investigated in Ref. [116]
concerns coupled systems (such as molecules of the ABBA type) with the spectrum generating algebra U(3) ⊗ U(3). A
simple ground-state phase diagram of three basic molecular configurations was drawn in the plane of the hamiltonian
control parameters.

6.2. Systems with bosons and fermions (IBFM)

One particularly important extension of the simple interacting boson model concerns odd–mass nuclei. It is achieved by
considering, in addition to the s and d bosons, a fermion coupled to the core with an appropriate boson–fermion interaction.
The resulting interacting boson–fermion model (IBFM) [35], is thus a specific version of the particle–core coupling model,
which has been widely used in nuclear physics to describe odd–mass nuclei [165]. The characteristic feature of the IBFM
is that it lends itself very well to a study based on symmetry considerations, whereby certain classes of boson–fermion
hamiltonians can be solved analytically. The basic building blocks of the IBFM areN bosons, in terms of which the even–even
core states are modeled, and fermions occupying a set of single-particle orbits with various angular momenta j. Low-lying
collective states of an odd–mass nucleus with 2N + 1 valence nucleons are approximated as a single fermion coupled to
N-boson states. A particularly attractive feature is the similarity in the description of even–even and odd–mass nuclei. This
has given rise to the development of a supersymmetric model [220].
The IBFM hamiltonian contains bosonic and fermionic parts and a boson–fermion interaction: HBF = HB + HF + VBF. The

bosonic hamiltonian can be taken directly from the IBM. Because only one fermion is coupled to the boson core, the fermion
hamiltonian can be written as HF =

∑
j εjnj, where nj is the number of fermions in orbit j and εj its single-particle energy.

The boson–fermion interaction is assumed to have a two-body character:

VBF =
∑
ljl′j′J

v
(J)
ljl′j′

[
(bĎl × a

Ď
j )
(J)
× (b̃l′ × ãj′)(J)

](0)
0
. (80)

This form, however, is too general for phenomenological applications. A simplification [221] is given by:

V (m)BF =
∑
j

κj

[
(dĎ × d̃)(0) × (aĎj × ãj)

(0)
](0)
0
, V (q)BF =

∑
jj′
κjj′
[
QB × (a

Ď
j × ãj′)

(2)
](0)
0
,

V (e)BF =
∑
jj′j′′

κ
j′′

jj′ :

[
(dĎ × ãj)(j

′′)
× (d̃× aĎj′)

(j′′)
](0)
0
: . (81)

Here : • : indicates normal ordering and QB denotes the boson quadrupole operator, Eq. (44). The exchange interaction
V (e)BF takes account of the fact that the IBM bosons have an internal structure, and this leads to the exchange effects. The
coefficients κ can be related to the occupation probabilities and quasi particle energies derived from a BCS calculation
(see [35]).
The spectrumgenerating Lie algebra associatedwith the IBFM is [UB(6)⊗UF(Ω)]. The usual boson algebraUB(6)describes

the collective core excitations, while UF(Ω), with Ω =
∑
j(2j + 1) denoting the size of the fermionic single-particle
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space, corresponds to the fermion degrees of freedom. The algebra contains two sets of generators: in terms of bosons
bĎlmb̃l′m′ , and in terms of fermions a

Ď
jmãj′m′ (both types written most favorably in the angular momentum coupled form). The

existence of analytically solvable IBFM hamiltonians relies on isomorphisms between some boson and fermion algebras. A
simple example is provided by the angular momentum algebras defined separately for bosons and for fermions. The former
consists of the angular momentum operators LB, which generate the boson algebra OB(3) and occurs in the lattice (46).
The fermion angular momentum operators JF are generators of an equivalent Lie algebra denoted as SUF(2). An essential
difference between these algebras, is that while the bosons couple only to integer angular momenta, the fermions can form
also states with half-integer momenta. The summed operators JBF = LB + JF generate the boson–fermion algebra SUBF(2) of
the total angular momentum, which can be integer or half-integer depending on whether the number of fermions is even
or odd. Since OB(3) has to be a subalgebra of UB(6) and SUF(2) one of UF(Ω), it follows that SUBF(2) is a subalgebra of the
IBFM spectrum generating algebra. The required form of all IBFM dynamical symmetries is the following:

[UB(6)⊗ UF(Ω)] ⊃ · · · ⊃ SUBF(2). (82)

The subscript BF is usually omitted and the total angular momentum algebra is denoted as Spin(3). A comprehensive review
of various dynamical symmetries of the IBFM can be found in Ref. [35]. Numerous experimental examples are given in
Ref. [222].
It is clear that in absence of fermions the IBFM reduces to the standard IBM of even–even nuclei. This naturally leads

to a supersymmetric extension of the IBFM that allows a simultaneous description of even–even and odd–mass nuclei. Let
us stress that a necessary condition for such an approach to be phenomenologically successful is that the energy scales for
bosonic and fermionic excitations are comparable. Nuclear supersymmetry treats spectral properties of different nuclei as
arising from a single boson–fermion hamiltonian and a single set of transition operators. This unification is achieved by
embedding the IBFM spectrum generating algebra into a superalgebra U(6/Ω):

U(6/Ω) ⊃ [UB(6) ⊗ UF(Ω)]
↓ ↓ ↓

[N } [N] [1M ].
(83)

Here, the supersymmetric representation [N } of U(6/Ω) imposes symmetry in the bosons and anti-symmetry in the
fermions, and contains the [UB(6)⊗ UF(Ω)] representations [N] × [1M ] with N = N + M . Thus, a single supersymmetric
representation contains states in even–even (M = 0) as well as odd–mass (M = 1) nuclei. Nuclear supersymmetry was
originally postulated by Iachello [220] as a symmetry among pairs of nuclei. Subsequently, it was extended to quartets of
nuclei, where the neighboring odd–odd nuclei are also incorporated [223].
To probe the ground-state phase transitions in the IBFM, we consider below a fermion in orbits with angular momenta

j = 1
2 ,
3
2 , and

5
2 . The relevant dynamical algebra is [UB(6)⊗ UF(12)], and an isomorphism between the boson and fermion

algebras is established by introducing pseudo-spin and the pseudo-orbital angular momenta for the fermion: SF = 1
2 and

LF = 0, 2, respectively. This leads to a reduction of the spectrum generating algebra to [UB(6)⊗UF(6)⊗UF(2)], which allows
to combine both U(6) algebras and to construct the three dynamical symmetries of the standard IBM [224]. The embedding
(83) results in the U(6/12) supersymmetric scheme. While this is sufficient for a theoretical study, the practical application
is limited to those nuclei where the above fermionic shells are important, e.g. theA = 70–80, the Rh–Ag and the Pt–Os–Hg
mass regions.
The first study of quantum phase transitions in odd-A nuclei was due to Jolie, Heinze, Van Isacker, and Casten [77]. It

relied on a supersymmetric extension of the results obtained for even–even nuclei. The simplified hamiltonian (56) was
generalized to

HχBF(η) ∝ (1− η)
1
N

(
−Q χBF · Q

χ

BF

)
+ ηC1[UBF(5)] (84)

with C1[UBF(5)] the first-order Casimir operator of UBF(5) and Q
χ

BF the quadrupole operator of the form (44) but using
generators of UBF(6). The use of U(6/12) supersymmetric scheme allowed to extend the Casten triangle to odd–mass nuclei.
In Ref. [77], the application of Eq. (84) was discussed to the prolate–oblate phase transition on the SUBF(3)–OBF(6)–SUBF(3)
line (η = 0).
Fig. 12 compares the absolute energies of the 0+ states of the N = 10,M = 0 system to the ones of JBF = 1

2 states
in the N = 10,M = 1 system. In the even–even system (M = 0), the prolate–oblate phase transition is associated with
the kink of the lowest energy at O(6) and the sequence of energies is symmetric around O(6), although the wave functions
are different [54]. A similar behavior is found for the odd-A case (M = 1). Nevertheless, a closer inspection reveals some
interesting differences. In the even–even case, except at the dynamical symmetries with χ = 0 or±

√
7
2 , all states undergo

avoided level crossings indicating the absence of conserved quantum numbers (besides the total angular momentum). This
is not so in the odd-A calculation where one observes real crossings of several states. The origin of these crossings follows
from the conservation of the angular momentum LBF = LB + LF by hamiltonian (84) which results from the coupling of the
total boson angular momentum to the pseudo-orbital angular momentum of the fermion. LBF is conserved in classifications
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Fig. 12. Absolute energies of the 0+ states in even–even nuclei (a) and of the corresponding 12 states in odd-A nuclei (b) along the prolate–oblate shape
transition. The calculation was done using the hamiltonian (84) with N = 10, η = 0, and χ variable. Adapted from [77].

Fig. 13. Comparison between experimental and theoretical negative-parity states of odd-neutron isotopes between 191Os and 199Hg. Adopted from [77].

contained in the lattices starting and ending with

U(6/12) ⊃ [UB(6) ⊗ UF(12)] ⊃ [UB(6) ⊗ UF(6) ⊗ UF(2)] ⊃ · · ·

↓ ↓ ↓ ↓ ↓ ↓

[N } [N] [1M ] [N] [1M ] [1m]
· · · ⊃ [OBF(3) ⊗ SUF(2)] ⊃ Spin(3).

↓ ↓ ↓

LBF SF JBF

(85)

Whatever embeddings are taken in the dotted part of (85), LBF remains a good quantum number and the same holds also for
the pseudo-spin SF. A detailed analysis shows that the essential ingredient is the proper choice of the single-particle energies
of the pseudo-spin doublet j = 3

2 and
5
2 [77].

In Ref. [77], the hamiltonian (84) was applied to odd-A nuclei between 191Os and 199Hg as a logical extension of the fit
done for the even–even cores (see Fig. 10) [68]. It was shown that the hamiltonian needs to be extended with C2[UBF(6)]
and C2[Spin(3)], which do not affect the phase transitional behavior but allow a fine tuning of energies. The result is shown
in Fig. 13. Although the hamiltonian is very simple, and although the parameters were kept constant across the region (after
having adopted the values for η and χ from the fit to the even–even partner), the overall structural changes, in particular
the decreasing trend and compression of the low-lying levels with decreasing mass, were reproduced rather well.
Critical behaviors of odd-A nuclei have been recently studied for the UBF(5)–OBF(6) second-order transition by Alonso,

Arias, Vitturi, and Fortunato [86,101,107,110]. These analysesweremotivated by the fermion critical point symmetry E(5/4)
introduced by Iachello [149] as an extension to odd masses of the E(5) critical point symmetry [146]. The E(5/4) symmetry
is obtained in the geometric model when coupling a j = 3

2 fermion to the E(5) core, but a similar system can be obtained also
in the IBFM [86]. While the applicability of critical point symmetries is restricted only to critical points of phase transitions,
the IBFMmakes it possible to describe thewhole transition from vibrational to γ -unstable nuclei. In Ref. [86], a specific form
of the interaction (80) was used with only the quadrupole term in the boson–fermion interaction (81). Imposing χ = 0 for
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the boson quadrupole operator in both the boson hamiltonian and the boson–fermion interaction, the total hamiltonian
conserves in addition to the O(5) quantum number also the Spin(5) quantum number along the whole transitional region.
From the comparison between the E(5/4) and IBFM approaches at the critical point a moderate agreement was obtained.
In a subsequent work [101], the boson–fermion interaction was extended with more terms conserving the Spin(5)

symmetry. In addition to the electromagnetic transitions also single-particle transfer intensities were calculated. However,
even the extended hamiltonian did not remove the discrepancies between both approaches. The differences can be traced
back to the square well form of the potential of the geometric model assumed in critical point symmetries, in contrast to
the β4 dependence of the critical IBM potential [85].
Because the fermion space with only a j = 3

2 orbit is rather restricted, Alonso, Arias, and Vitturi have extended recently
both models to allow the fermion to occupy also orbits with j = 1

2 ,
3
2 , and

5
2 [107,110]. For the critical point symmetry, this

leads to the E(5/12) structure and for the IBFM it allows to use the U(6/12) supersymmetric approach as discussed before.
The hamiltonian (84) was used to study the second-order phase transition in odd-A nuclei, posing now as a constraint
χ = 0. The variable parameter η controls the transition from UBF(5), at η = 1, to OBF(6), at η = 0. The energy spectrum
and electromagnetic transition rates were compared with the critical point symmetry E(5/12) [110]. In this case, a better
agreement between both approaches is obtained and signatures of the critical behavior are found in energies and B(E2)
ratios of low-lying states. However, no comparison with experimental data is made in this work.
An extension of the coherent state formalism to odd–mass systemswith a single fermion orbit was recently presented by

Liu [111]. Under the neglect of the γ degree of freedom, the energy functionalwas derived and studied for a hamiltonianwith
only a quadrupole term in the boson–fermion interaction. In this case, a somewhat surprising dependence of the positions
of critical points ηc and χc on the interaction strengths κ from Eq. (81) was obtained. Further studies including a proper
treatment of the γ degree of freedom are needed to verify these results.
The study of shape–phase transitions in odd-A nuclei ismore complicated than the one in even–even nuclei, also because

the level densities are much higher in the former case. To investigate mixed systems of bosons and fermions is nevertheless
of great interest, as an increasing number of Bose–Fermi mesoscopic systems becomes available for experimental studies.

6.3. Other extensions

6.3.1. Configuration mixing (IBM-CM)
Besides the shape–phase transitions, atomic nuclei may also exhibit shape coexistence. This phenomenon, invoking

multiple shapes present in the low-energy spectrum, was predicted and observed in many spherical nuclei near magic
shells. Particular configurations observed in these nuclei can be linked to the occupation of specific up- and/or down-sloping
orbitals, coined ‘‘intruder orbitals’’, which allowed for a simple understanding of the shape coexistence in the works of
Heyde, Wood et al. [225,226]. The method put forward by these authors has been used to predict shape coexistence e.g. in
the Sn nuclei around mass numberA = 116, and in the light Pb nuclei belowA = 196.
The difference between shape coexistence and shape–phase transitions is not always very clear, especially from an

experimental point of view [74]. In a shape–phase transition, the number of basis states is preserved through the transition as
progressing from one limiting case into the other. The eigenstates of one limit are spread out among the actual, intermediate
eigenstates, which finally become the eigenstates of the other limit. At any instant, the eigenstates form a complete basis
of the same Hilbert space. On the other hand, typical situations implying shape coexistence appear when a set of extra
states (outside of the model space that is regularly considered for low-lying configurations) drops in excitation energy, and
produces new (intruder) low-lying states. The Hilbert space is extended as H ≡ Hnor ⊕ Hint, where the two subspaces
correspond to normal and intruder states. Any hamiltonian acting in this space decomposes into three parts: the one of
normal states, the one of intruder states, and the one describing their interaction. In practical IBM applications, this division
is implemented by coupling the sd boson subspaces with total numbers of bosons N and N + 2. These are used to describe
shape coexistence between normal (valence) excitations and intruder excitations that include 2p–2h configurations. Both
sets of states can interact with each other via a mixing hamiltonian that does not conserve the boson number.
Both these seemingly different pictures were connected in the approach recently proposed by Frank, Van Isacker, and

Iachello [96]. These authors have introduced amethod for studying phase transitions in systems with mixed configurations,
which they call type-II phase transitions. As explained above, a configuration mixing (CM) hamiltonian consists of parts
corresponding to normal and intruder states (these form diagonal blocks of the hamiltonian) and their interaction (which
appears off the diagonal). To cope this structure with the QPT paradigm expressed by the hamiltonian in Eq. (24), a general
phase transitional CM hamiltonian was considered in the form:

H(η, ω,∆) =
[
(1− η)H1 ωW
ωW ηH2 +∆

]
. (86)

Here, H1 and H2 are operators acting in the space of normal and intruder states, respectively, while W represents the
interaction hamiltonian scaled by the mixing strength ω. The normal and intruder parts of the hamiltonian are driven by an
external parameter η between the η = 0 and η = 1 limits, in which only one of the parts is active. An offset∆ energetically
separates intruder and normal configurations.
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To determine the phase structure of the CM system, the concept of an eigenpotential [227] has been employed.
Hamiltonian (86) is evaluated in the appropriate group coherent states of the respective subspaces. These, in the IBM case,
may be associatedwith condensate states ofN andN+2 bosons (forH1 andH2, respectively). The interactionW couples both
types of coherent states, so one obtains a 2×2 hamiltonianmatrix expressed in terms of the coherent state parameters that
capture the geometry of the problem. The lower eigenvalue of thismatrix (the lower eigenpotential) represents the coherent
state expectation of the ground state energy. The minimization of this eigenvalue in the coherent state parameters yields
the ground state energy as a function of the hamiltonian control parameters, which can be subject to the phase transitional
analysis.
In Ref. [96], an example has been analyzed when the normal and intruder configurations are described by the U(5)

and O(6) dynamical symmetries [228]. The coherent state averages of the hamiltonian blocks in Eq. (86) took forms
〈H1〉 = β2/(1 + β2), 〈H2〉 = 1

4 [(1 − β
2)/(1 + β2)]2, and 〈W 〉 = ω (since W = sĎsĎ + dĎ · dĎ + h.c.). If ω = ∆ = 0,

the hamiltonian (86) describes two noninteracting configurations with a pair of degenerate β = 0 and β > 0 minima, and
the entire line η ∈ [0, 1] is critical. For ω > 0, the phase structure becomes more complicated and strongly dependent
on the offset ∆. If ∆ is small, the first-order critical curve in the plane η × ω is surrounded by spinodal and antispinodal
lines that converge to a single curve with increasingω. Forω→∞, the transition becomes of the second order; this limit is
equivalent to the normal U(5)–O(6) case. For larger values of∆, however, a regionwith a single sphericalminimumdevelops
near η = 1 which keeps growing until it eventually extinguishes the phase coexistence regions. For∆ > 3

4 the ground state
eigenpotential has only one minimum, either spherical or deformed.
It should be stressed that these structures are essentially different from those obtained within the Landau approach to

phase transitions. This is because the above procedure, involving the diagonalization of the potentialmatrix, does not lead to
the ground state energy in the formof a polynomial in the order parameter. General consequences and other examples of this
generalization are still to be investigated. A characteristic signature of the type-II first-order phase transition seems to be a
large phase coexistence region. In the original paper [96], the Sr and Zr nuclei atN = 58were proposed as candidates for this
type of transition. The above approach was recently applied by Hellemans, Van Isacker, De Baerdemacker, and Heyde [113]
to the case of so called U(5)−Q χ · Q χ mixing in nuclei, which includes both U(5)–O(6) and U(5)–SU(3) types of phase
coexistence. Let us note that similar models can be applied also in molecular physics.

6.3.2. External rotation (IBM cranked)
Interesting results have been obtained by analyzing the phase transitional properties of the system of IBM bosons in

a rotating frame. The so called cranking approach, which imposes an external rotation onto an ensemble of interacting
particles, is a standard tool to describe moments of inertia and other collective aspects of rotational motions. The cranking
analysis of nuclear quadrupole shapes performed on the fermionic level by Alhassid et al. [229,21,230] in the framework of
the Landau theory led to the determination of a shape–phase diagram for hot rotating nuclei. The cranking approach within
the IBM was pioneered by Schaaser and Brink [231,232] and by Dukelsky et al. [233,234]. The mean field phase transitional
analysis of the cranked IBM was performed by Cejnar [59,62].
The procedure is similar to that discussed in Sections 2.1 and 3.2. It consist of evaluating the expectation value of the

cranked hamiltonian H ′ = H − Eω · EL (where Eω is a vector of the cranking angular frequency and EL the angular momentum
operator) in a condensate state (51). An important difference, however, concerns the form of the condensate: its coefficients
cannot satisfy the usual condition α+m = (−)mα∗−m, resulting from the hermicity of the Cartesian matrix αij, since in such a
case the contribution of the cranking term Eω · EL vanishes. Instead, one has to assume some modified conditions [232] that
for a concrete choice of rotation along the x axis can be represented by the following parametrization [62]:

α0 = β cos γ , α±1 =
1
√
2
β sin γ sin δ, α±2 =

1
√
2
β sin γ cos δ. (87)

The generalized condensate states for ω 6= 0 then carry angular momentum, while the standard results for ω = 0 are
recovered by setting δ = 0. One has to be careful since β and γ do not any more carry the standard shape interpretation.
The geometry involved in the generalized coherent state must be read out from the expectation value of the quadrupole
operator in these states. Minimization of the cranked energy functional with respect to β , γ , and δ for the simple IBM
hamiltonian (56) leads to the phase diagram depicted in Fig. 14. Note that the finiteness of angular momentum within the
IBM (L ≤ 2N) puts an upper bound on the physical domain of the cranking frequency ω. In the U(5) limit, e.g., the limiting
frequency coincides with the boundary of the spherical phase, see Ref. [62].
The effect of external rotation may be related to the effect of an external magnetic field. Indeed, Fig. 14 resembles a

magnetic phase diagram of a superconductor. The same type of phase diagram is expected to hold for superfluid and normal
phases in nuclei [18,19], but in the context of quadrupole shape phases, it represents amodification of the earlier shellmodel
based result of Ref. [21]. In particular, the present approach predicts a certain critical rotational frequency that induces a
transition from the spherical to deformed phase (similarly as there exists a critical magnetic field for a transition from the
superconducting to normal phase), which is in contrast to the previous result. This becomes interesting in connection with
the recent proposal of Regan et al. [235] to interpret experimental data on the yrast backbending effect in spherical nuclei
as signatures of a rotation induced spherical-to-deformed shape phase transition. A discussion of experimental yrast band
data in 108−114Cd, 104−108Pd, 100,102Ru, and 100Mo within the cranked IBM framework can be found in Ref. [76].
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Fig. 14. The phase diagram of the cranked hamiltonian (56) in the plane η × ω. Cranking frequency ω is expressed relative toΩ from the energy scaling
factor a = h̄Ω . The upper frequency limit is indicated by the dashed line. Adapted from [59].

6.3.3. Other types of bosons and higher-order interactions
Other IBM extensions, whose phase structure has so far been explicitly analyzed only to a limited extent, include in

particular (a) the incorporation of bosons of other types (these can either replace, or supplement the existing d boson)
and/or (b) the addition of higher-order interactions (to supplement the present one- and two-body interactions).
The case (a) with the d boson replaced by another type of boson, let us denote it as b, is well studied for lower dimensions.

In fact, the Lipkin model corresponds to b ≡ t (a scalar or pseudoscalar boson). Such modifications of the standard IBM-1
are experimentally relevant in molecular physics, where b ≡ p (a boson with spin l = 1, hence with 3 angular momentum
projections) corresponds to the 3D vibronmodel [37,38], while b ≡ τ (a two-component bosonwith no angularmomentum
content) to the 2D vibronmodel [218,219]. Related approaches have been also applied in condensate state physics [42,236].
The phase structure of suchmodels in general has been considered by Cejnar and Iachello [103]. It turns out that all two-level
bosonmodels of this type, with U(n) as a spectrum generating algebra, exhibit a second-order QPT between ‘‘spherical’’ and
‘‘deformed’’ phases, characterized by dynamical symmetries U(n− 1) and O(n) (the spherical phase can be unambiguously
characterized by the ground state having the form of s-boson condensate). The first-order transitions, however, are a much
scarcer spice. If the angular momentum conservation is required [for models with b corresponding to a boson with an even
number of components we consider rotations generated by the group O(2) instead of O(3)], the occurrence of a first-order
transition of the above type is limited to spectrum generating group dimensions n = 2, 6, 10, . . . (corresponding to cases
when boson b has even angular momenta).
Phase transitions in the 2Dvibronmodel (n = 3)were discussedby Pan et al. [88]. A detailed studywas recently presented

by Pérez-Bernal and Iachello [115]. As alreadymentioned in Section 6.1, the latter calculationswere even extended to a two-
component version of the model (analogous to the IBM-2) [116]. Phase transitions in the 3D vibron model (n = 4) were
investigated by Van Roosmalen [45] and by Arias, Dukelsky, Dusuel, García-Ramos, and Vidal [89,104], using techniques
beyond the mean field (cf. Section 4.1). The case n = 5 was briefly discussed in Ref. [103], but so far this model has no
application. From the QPT viewpoint, all these results are essentially equivalent to those of the standard IBM (n = 6),
between U(5) and O(6) dynamical symmetries (except that the IBM yields a richer system of excited states).
The problem becomes increasingly difficult, starting from the cases b ≡ f and especially b ≡ g , i.e. bosons with angular

momenta l = 3 and 4. For l = 4, both first- and second-order transitions between spherical and deformed phases are
supposed to take place. To determine the phase structure seems to be already complicated on the mean field level, since
the energy functional depends in general on 2l+ 1 variables (radius β plus 2l hyperspherical angles) while the elimination
of Euler angles (which is essential in the l = 2 case) is not feasible for l > 2. Moreover, in nuclear physics, the bosons
with higher angular momenta are useful mostly as supplements of the dominant quadrupole degrees of freedom, which are
carried by the system of s and d boson. One should therefore deal with situations in which p, f , g, . . . bosons are considered
together with s and d. The phase structure then depends on a very large number of parameters and severe simplifications
are necessary. Although analytical and phenomenological studies of additional non-quadrupole degrees of freedom within
the IBM exist (see e.g. the coherent state analysis in Ref. [237] and the spdf calculations in Ref. [238]), no comprehensive
QPT analysis is available for such systems so far.
The situation is similar also for the case (b) of the above classification: the higher-order interactions. Inclusion of such

interactions within otherwise standard sd-IBM-1 may lead to non-trivial effects (cf. Ref. [185]). The most general energy
functional can be fabricated just from various powers of expressions β2 and β3 cos 3γ [since for l = 2 there exist only two
independent scalar couplings of shape coordinates, see Eq. (54)]. For instance, the energy functional up to three-body terms
looks as follows

V (β, γ ) =
Aβ2 + Bβ3 cos 3γ + Cβ4 + Dβ5 cos 3γ + Eβ6 cos2 3γ + Fβ6

(1+ β2)3
, (88)

where the coefficients A, . . . , F depend on the concrete hamiltonian.
The form (88) generates a new type of phase transition, namely the one connected with the angle variable γ , as recently

discussed by Iachello [148]. Tomake it clear, let us rewrite the energy functional in the form V (β, γ ) = f (β)−g(β) cos 3γ+
h(β) cos2 3γ , where the functions f and g can be easily read off from Eq. (88), and denote the point of global minimum as
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(βm, γm). For h(βm) = 0 the minimum in angle variable is apparently at γm = 0 [for g(βm) > 0] or at γm = 2
3π [for

g(βm) < 0], both cases corresponding to axially symmetric (deformed) shapes. An increase of h(βm) above the critical value
=
1
2g(βm) eventually turns γ = 0 (or

2
3π ) into a saddle point, creating a newminimum0 < γm <

2
3π . This corresponds to a

second-order phase transition from axially-symmetric to triaxial shapes [148]. Such a situation was discussed for a concrete
choice of three-body IBM-1 hamiltonian by Jolos [79,80].
A special type of a three-body hamiltonian was considered by Thiamová and Cejnar [97]. It was chosen to preserve the

O(6) dynamical symmetry in the whole parameter space, although the underlying O(5) symmetry could be broken [185].
The three-body interaction generated by the term [Q0Q0Q0](0), where Q0 represents the O(6) quadrupole operator, induces
the occurrence of the β3 cos 3γ term in the energy functional, and hence a crossover from γ -soft to γ -rigid shapes. There
is no shape–phase transition in angle variable in this model (since the term ∝ cos2 3γ is absent), but the phase structure
is very much reminiscent of the extended Casten triangle of hamiltonian (56), with its three phases and a triple point in
between.
Let us conclude this section by noting that the general phase structure of k-body IBM hamiltonians was not yet

determined, and this not even for k = 3.

7. Excited-state quantum phase transitions

So far we have been probing the system of interacting bosons at about zero temperature. However, phase transitions
driven by interaction parameters can also appear at finite temperatures. In the last part of this review, we turn our attention
to possible extensions of the QPT description to states with an arbitrarily high degree of excitation. In contrast to the
traditional thermodynamical treatment, we will mostly deal with individual states instead of ensembles. We will show
that in the infinite size limit, excited states throughout the whole spectrum may exhibit nonanalytic evolutions with the
control parameter at a certain sequence of ‘‘critical’’ points. For this phenomenon we use the name ‘‘excited state quantum
phase transition’’ (ESQPT) [100,117]. Concrete investigations in this part are mostly restricted to the IBM between U(5) and
O(6) dynamical symmetry limits, but we believe that continuation of work in the directions outlined here may bring new
results also in more general situations.

7.1. Finite temperatures

Westartwith some remarks on the thermodynamical extension of the ground-state QPT. A system interactingwith a heat
bath at fixed temperature T is naturally described [1] by the Helmholtz free energy F = 〈E〉−TS, where 〈E〉 = Tr(H%) is the
energy average and S = Tr(−% ln %) the entropy associated with the quantum density operator % (we set the Boltzmann
constant to unity, so the temperature is measured in units of energy and the entropy is dimensionless). Maximizing the
entropywhile keeping the energy average fixed leads to the familiar thermal population of states pi(T ) = 1

Z(T ) exp(−T
−1Ei),

hence % = %0(T ) = 1
Z(T ) exp(−T

−1H), with Z(T ) =
∑
i exp(−T

−1Ei) = Tr exp(−T−1H) being the canonical partition
function. The equilibrium value of the free energy is obtained by substituting % = %0(T ) in the above formula, which yields

F0(T ) = 〈E〉T − TS0(T ) = −T ln Z(T ). (89)

The following well-known relations can be derived for the derivatives of the equilibrium free energy with respect to
temperature,

∂

∂T
F0(T ) = −S0(T ),

∂2

∂T 2
F0(T ) = −

1
T 3
[
〈E2〉T − 〈E〉2T

]︸ ︷︷ ︸
T2C(T )

, (90)

where C(T ) is the specific heat. Since the energy dispersion in the second equation is never negative, the equilibrium
entropy S0(T ) is a nondecreasing function of temperature. The thermodynamical phase transition of nth order (n = 1, 2, . . .)
corresponds to a situations when the value S0(T ) itself (for n = 1) or its (n − 1)th derivative (for n > 1) jumps
discontinuously (in the thermodynamical limit) at a certain transitional temperature Tc. If the (n− 1)th derivative (n > 1)
gets infinite at Tc, the phase transition is called just continuous (with no order in the Ehrenfest sense).
At zero temperature, the equilibrium free energy coincideswith the ground-state energy: F0(0) = 〈E〉0 = E0. The ground-

state QPT, expressed through the dependence of E0 on control parameters, may therefore be a special case of a more general
phenomenon that resides in the space of themodel control parameters and temperature. In infinite latticemodelswith finite
range of interactions, the extension of QPTs observed at T = 0 to T > 0 is of general interest and numerous results can be
found in the literature [11,12]. In finite many-body models, results on T > 0 phase transitions are not abundant. This is in
spite of the fact that an analytic approach to describe thermodynamical phase transitions in pseudospin models as well as
in some non-spin algebraic models, was formulated by Gilmore [7,8].
Basic steps of Gilmore procedure can be briefly outlined, using the hamiltonian based on the U(2) spectrum generating

algebra, i.e. the Lipkin model of Section 2.4. We may use the representation in terms of a spin- 12 array (counting N
constituents) with infinite-range interactions. First, one makes clear that in the mean field approximation (which for the
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present class of models becomes exact in the N → ∞ limit) the thermal N-body density operator can be expressed
as a product of 1-body density operators, i.e. in the form %(N) = %1 ⊗ %2 ⊗ · · · %N ≡ (%)⊗N , where %k = % are
identical operators acting in the 2-dimensional Hilbert space of kth particle. Each %k can be written in the usual form
% = 1

21+Ea· Eσ , with 1 standing for the unitymatrix and (σx, σy, σz) for Paulimatrices. Polar coordinates in the decomposition
(ax, ay, az) ≡ (r sin θ sinφ, r sin θ cosφ, r cos θ) represent a convenient set of parameters to determine the state %(N).
The minimization of the free energy F (N) = Tr[H%(N)] − TTr[−%(N) ln %(N)] with respect to these parameters yields the
equilibrium value F (N)0 for each set of external parameters and temperature. The free energy for large values of N can be
written as F (N) = Nf (r, θ, φ). For T = 0, the minimization gives r = 1

2 ; then %
(N) represents a pure state and the method

reduces to the condensate state procedure used for the ground state. For T > 0, however, one gets r < 1
2 . Phase transitions

(if any) can be detected as nonanalytic evolutions of F (N)0 = Nf0 with the model control parameters. In this way, a finite-T
counterpart of the ground-state phase transition in the Lipkin model was detected [7,10].
With a hamiltonian satisfying the linear ansatz (23), the equilibrium free energy F0 depends just on twoparameters: T and

η. As may be anticipated from the Gilmore method, for finite models the description of phase transitions in the η× T plane
will not be essentially different from the Landau theory of thermodynamical phase transitions in the p × T plane, where p
stands for another intensive thermodynamical variable like pressure. One therefore expects that phase transitions will form
some curves (or parts of curves) in η× T . Consider a point P on such a curve, and at this point mark the normal and tangent
directions n and t , respectively. For the classification of the phase transition at P , discontinuous partial derivatives of F0
along the normal direction n are substantial (partial derivatives along t are continuous). However, since partial derivatives
along an arbitrary direction can be expressed through partial derivatives of the respective order along n and t , the same
classification is likely to be found if probing the transition along any of the two parameters η and T .
Let us explicitly evaluate the first two partial derivatives of F0 with respect to η and T . The derivatives ∂

∂T F0 and
∂2

∂T2
F0 at

constant η obviously yield Eq. (90). For the derivatives containing η one obtains,

∂

∂η
F0(η, T ) = 〈V 〉T ,

∂2

∂η2
F0(η, T ) = −

1
T

〈
[V − 〈V 〉T ]2

〉
T +

〈
d2

dη2
Ei

〉
T
, (91)

where 〈X〉T =
∑
i pi(T )Xi with Xi = 〈Ψi|X |Ψi〉 represents the thermal average of a quantity X . An analogous expression

can be derived for ∂2

∂T∂η F0(η, T ). Note that the T = 0 limit of these equations coincides with Eq. (29), discussed above in
connection with the ground state.
The first equations of both pairs (90) and (91) show that a jump of entropy (in the vertical, i.e. temperature direction) is

likely to be connected with a jump of the interaction average 〈V 〉T (in the horizontal, i.e. interaction parameter direction).
These are equivalent expressions of a generic first-order phase transition at such places in η×T , where the phase separating
curve is not parallel with one of the axes. Similarly, as seen from the second equations in both pairs (90) and (91), a
nonanalyticity of the specific heat is expected to have an equivalent counterpart in the expression of the thermal dispersion
of V and/or the thermal average of the level curvatures d

2

dη2
Ei.

In view of the above discussion, one may tend to anticipate that any QPT at η = ηc and T = 0 smoothly continues to the
T > 0 domain, where it can be detected as a thermodynamical phase transition at T = Tc(η). Such a statement is the content
of a so called crossover theorem, formulated by Gilmore for the specific systems he analyzed [7,10]. It should be stressed,
however, that this rule cannot be applied in general. The simplest counterexample arises if symmetry constrains disable
repulsion of some levels and the ground state undergoes an unavoided crossing. Then a T = 0 phase transition (typically a
first-order one) takes place at the crossing point, with no continuation to T > 0.
To illustrate this mechanism on a trivial example, let us take a specific IBM hamiltonian with the U(5) dynamical

symmetry:

H(η) = (1− η)nd + ηns = ηN + (1− 2η)nd ⇒ V (η;β) = η + (1− 2η)
β2

1+ β2
. (92)

Here,ns andnd stand for the numbers of s and dbosons, andV represents the classical potential derived from thehamiltonian.
The eigenstates of (92) for any value of the control parameter η can be classified by the U(5) quantum numbers and the
spectrum becomes fully degenerate at η = ηc =

1
2 . For η < ηc the energy of the ground state, which is an s-boson

condensate, linearly increases with η. At η = ηc the ground state flips ito the d-boson condensate and its energy starts
to linearly decrease. From the viewpoint of the above nomenclature, such a situation would be classified as the first-order
ground-state quantum phase transition; this being so for an arbitrary (even finite) number of bosons N . However, since all
levels vary with the control parameter in an analytic (linear) way, the introduction of a nonzero temperature makes the free
energy an analytic function of both η and T . The phase-transitional behavior detected at T = 0 disappears for an arbitrarily
small temperature T > 0. Other examples of finite-N ground-state crossings on the O(6)–U(5) side of the Casten triangle
can be found in Refs. [66,98].
In spite of its success in pseudospin models, the approach based on canonical thermodynamics has some drawbacks in

general finite systems. In particular, we know that quantal spectra of such systems (for finite numbers of particles) have
finite numbers of states, so the level density in the upper part of the spectrum is a decreasing function of energy. Under
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such circumstances, the introduction of temperature can work as in usual thermodynamical systems only at some low
temperatures. For higher temperatures, the thermal averaging makes all properties over the whole spectrum smooth and
disables a direct access to states with higher energies. (The only way to bypass this problem would be to consider negative
absolute temperatures as in [52].) For this reason, it is usually more convenient to use directly the excitation energy, instead
of temperature. Quantum phase transitions for excited states then show up as singularities of the level density and also as
nonanalyticities in the evolution of individual level energies and wave functions. Since the logarithm of the level density
is proportional to the microcanonical entropy, the present approach is related to the microcanonical thermodynamics, see
e.g. Ref. [5]. As canonical and microcanonical results should converge in the proper thermodynamical limit, the present
approach does not imply any loss of thermodynamical information.

7.2. Excited level dynamics

It is clear that evolution of the spectrum of the general linear hamiltonian (23) with parameter η is fully determined by
a ‘‘snapshot’’ containing all energies Ei ≡ Ei(η) (with i = 0, . . . , n − 1) and all matrix elements Vij ≡ 〈ψi(η)|V |ψj(η)〉 at
an arbitrary single value of η. This viewpoint was elaborated by Pechukas and Yukawa [129,130], who considered the level
dynamics induced by hamiltonian (23) with variable η as a classical problem of determination one-dimensional motions of
n interacting particles. In this approach, parameter η plays the role of time, while Ei are positions and d

dηEi ≡ Ėi velocities
of individual particles. The dynamical equations

d
dη
Ei = Vii,

d2

dη2
Ei = 2

∑
j(6=i)

|Vij|2

Ei − Ej
,

d
dη
Vij =

∑
k(6=i)

VikVkj
Ei − Ek

+

∑
k(6=j)

VikVkj
Ej − Ek

(93)

(which immediately result from ordinary perturbation theory) are analogous to those describing dynamics of a gas of
particles interacting through two-dimensional Coulomb force Fij ∝ qiqj/(xi − xj). The essential difference, however, is the
fact that the product of charges qiqj is replaced by |Vij|2, which cannot be factorized and is also subject to variation due to
the third equation. The knowledge of Ei, Ėi and Vij at some η = ηini allows the determination of level dynamics for any η.
From the computational viewpoint, there is certainly no advantage in using the system of coupled differential equation

(93) instead of diagonalizing the hamiltonian (23) for each particular value of η. However, Pechukas–Yukawa theory is
fruitful in gaining deeper insight into the mechanisms leading to QPT behaviors. It shows that whether a given model will
exhibit a QPT or not is entirely determined by the ‘‘initial conditions’’, i.e. by values of Ei, Ėi and Vij at an arbitrary ηini. In case
when the two phases of the model coincide with some dynamical symmetries, the initial point is naturally put to one of
these symmetries, which is therefore made responsible for the phase-transitional behavior at some ηc 6= ηini. Moreover, the
evolution of quantum energies and interaction matrix elements with η is pictured as an intuitively imaginable process à la
classical mechanics. This makes it easier to guess which types of initial conditions are ‘‘QPT friendly’’ and which are not. In
particular, a plausible condition for a QPT to occur is a fast initial compression of the whole spectrum, which leads to quickly
increasing level repulsion, and may eventually produce a sharp scattering of levels. In the following, we show that this type
of mechanism indeed applies in the IBM case.
Let us have a closer look on the initial conditions for the IBM simplified hamiltonian (56). A natural initial point is ηini = 0,

which coincideswith the O(6) dynamical symmetry forχ = 0, with the SU(3) or SU(3) dynamical symmetries forχ = ±
√
7
2 ,

or is intermediate between these cases for other values of χ ∈ [−
√
7
2 ,+

√
7
2 ]. As noticed in Ref. [98], a large fraction of the

spectrum with L = 0 in the O(6) and SU(3), or SU(3), limits exhibits a fast initial compression, having almost a sharp point
of focus on the U(5) side of the transition. This is true on the whole η = 0 side of the extended Casten triangle.
From the first equation in (93) we can easily derive the condition for a subset S of eigenstates of hamiltonian (23) at

η = ηini pointing to a single focus (ηfoc, Efoc); it reads as

〈ψi(ηini)|H(ηfoc)|ψi(ηini)〉 = Efoc for i ∈ S. (94)

In our case, with ηini = 0 and the focal point at (ηfoc, Efoc) = (1, f ), the condition (94) can be written as 〈ψi(0)|nd|ψi(0)〉 =
f N . The value of 〈nd〉i is easy to calculate for the ground state with large N , using the coherent state relation 〈nd〉0 =
β2m/(1 + β

2
m). In the O(6) limit we have 〈nd〉0 =

1
2N , while in the SU(3) and SU(3) limits 〈nd〉0 =

2
3N . In the O(6) limit, the

condition 〈nd〉i ≈ 1
2N is valid for a great majority of excited states with τ = 0 and L = 0, but it is increasingly violated

for growing values of seniority and angular momentum, see Fig. 15(a). In the SU(3) and SU(3) limits, on the other hand,
the condition 〈nd〉i ≈ 2

3N holds for a large portion of the whole L = 0 spectrum, see Fig. 15(b). This means that the initial
compression in the latter case is faster and involves more states, which is consistent with the fact that the subsequent QPT
is of the first order, i.e. sharper that the one observed in the O(6)–U(5) transition.
An interesting type of solution of the system in Eq. (93) which may apply under certain initial conditions, is a formation

of a wave propagating through the spectrum. A spectacular example of such a phenomenon is shown in panel (a) of Fig. 16.
It displays the spectrum of the IBM states with zero spin and seniority between the O(6) and U(5) dynamical symmetries
[hamiltonian (56) with χ = 0]. The ‘‘shock wave’’, which is initiated in the uppermost part of the spectrum at the O(6) side
of the transition, keeps moving due to the initial compression of the spectrum and eventually reaches the ground state at
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Fig. 15. The grid of IBM-1 states with L = 0 in the plane of the average number of d-bosons versus energy per boson for N = 40. Panels (a) and (b)
correspond to O(6) and SU(3) limits, respectively.

Fig. 16. Panel (a) shows a ‘‘shock wave’’ formed in the N = 100 spectrum of IBM states with L = τ = 0 along the transition from O(6) to U(5), described
in the parametrization (56). The energy is expressed per boson. Panel (b) shows the ‘‘specific heat’’ from Eq. (70) evaluated across the spectrum, with x
denoting the relative excitation ratio (x = 0 for the ground state and 1 for the highest state).

the QPT critical point ηc = 4
5 . This effect was for the first time investigated by Heinze, Cejnar, Jolie, and Macek in Ref. [98].

Examples from a broader class of models of the same type have been subsequently analyzed in detail by Caprio, Cejnar, and
Iachello [117].
As discussed in Section 7.4, the curvatures of individual level trajectories as they pass through the wave in Fig. 16(a),

i.e. the deceleration and acceleration due to the repulsive force in (93), becomes infinite in the asymptotic size regime.
Therefore, the wave can be viewed as a manifestation of quantum phase transitions for individual excited states (ESQPT) at
a running value of the control parameter. This interpretation is supported by the analysis of the behavior of branch points
in complex extended control parameter (cf. Section 4.2). Indeed, the branch points corresponding to individual avoided
crossings of levels along the wave propagation get closer to the real η axis as the number of bosons increases. Panel (b) of
Fig. 16 shows the ‘‘specific heat’’ from Eq. (70), which measures the proximity of branch points on the ith level Riemann
sheet to the real axis for a given N . The moving peak coincides with the trajectory of the wave in panel (a). The analysis by
Cejnar, Heinze, andMacek [108] showed that the behavior of the peak for very largeN is consistent with the assumption of a
continuous ESQPT (the ‘‘latent heat’’ Q is zero). This conclusion is confirmed by semiclassical arguments [100,117] that will
be outlined in Section 7.4. Thermodynamical consequences may be anticipated from Eq. (91) and are probably in agreement
with the early analysis by Gilmore [7] (cf. Section 7.1).
The transition fromSU(3) or SU(3) toU(5) does not seem to showanyESQPT effect, at least not at suchdegree of coherence

as in the previous case. The exceptional behavior of the [O(6)–U(5)] ⊃ O(5) transition is probably connected with the
fact that the corresponding hamiltonian is integrable but, at the same, creates repulsion of levels with the same quantum
numbers L and τ . Note that the level repulsion is not a generic feature of integrable systems since the underlying integrals of
motions [unlike the O(5) Casimir invariant in the present case] usually depend on the control parameter [239]. The ‘‘laminar
flow’’ of levels (due to integrability) and the level repulsion [due to persistent O(5) symmetry] constitute ideal conditions



250 P. Cejnar, J. Jolie / Progress in Particle and Nuclear Physics 62 (2009) 210–256

Fig. 17. Panel (a): a schematic view of the pinched torus in the phase space x× y× pr of the sombrero potential. Panel (b): the lattice of quantum states in
the sombrero potential (adapted from Child [242]). Full (broken) lines join points with the same radial (principal) quantum numbers; the circle indicates a
crystal defect associated with monodromy. Panels (c)–(e): quantum lattices of IBM states with L = 0 for the transition between the O(6) (η = 0) and U(5)
(η = 1) limits for N = 40 (adapted from Ref. [99]).

for the formation of a coherent wave. In nonintegrable transitional regimes, the chaotic (‘‘turbulent’’) flow of levels (with
numerous collisions of neighboring levels) obscures the observation of any collective aspect in level dynamics. So far, the
existence ESQPTs was not systematically investigated in these regimes.

7.3. Monodromy

It turns out that the sequence of excited state quantum phase transitions along the O(6)–U(5) path is closely related to
so called monodromy. In classical mechanics, monodromy is a topological property of some integrable systems that usually
indicates the presence of an anomalous (pinched) torus of trajectories in the phase space [240]. This anomaly prevents a full
analytic description of the system (in spite of its integrability) and creates a dichotomic distinction for the types of classical
orbits. The pinched torus shows up as a point defect in the lattice of quantum states, in which the states are organized with
respect to their quantum numbers. If a closed loop around the defect is followed, the form of an elementary cell in the lattice
varies such that after the return to the initial point the transformed cell does not fit with the one taken at start. Hence the
term monodromy, i.e. ‘‘once around’’.
The simplest systems that exhibit monodromy are (a) the spherical pendulum [240,241] and (b) a particle moving in the

sombrero potential [242]. In both these cases, the pinched torus – see Fig. 17(a) – is formed by orbits passing the points
of unstable equilibrium (at the north pole of the pendulum sphere or at the top of the sombrero potential) with just the
critical energy Ec at which to reach that point takes infinite time. Since this happens at zero angular momentum Jz , the
correspondingmotions can be reduced to an effectively two-dimensional phase space, whose intersection with the pinched
torus defines a classical separatrix. The dynamics on both sides of the separatrix shows qualitatively different features: while
orbits below the critical energy (inner side of the separatrix) are essentially vibrations around the stable equilibrium, those
above the critical energy (outer side of the separatrix) extend over a larger part of the phase space. In the quantum case, if
all angular momenta Jz = mh̄ are considered, the states below and above the critical energy form different types of patterns
in the plane E × Jz , as can be seen – for the sombrero potential – in Fig. 17(b).
Monodromy in the two-dimensional pendulum and sombrero systems affects bending vibrations of some triatomic

molecules, such as H2O [242], where the concept was also confirmed on the experimental level [243]. The algebraic
description of these molecules is possible within the 2D vibron model, which is a two-level bosonic model with a scalar
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boson and a two-component boson [115,218,219], cf. Section 6.3.3. A detailed study (including the analysis of excited state
quantum phase transitions, monodromy, scaling laws and thermodynamical quantities) was recently presented by Perez-
Bernal and Iachello [115]. The phase transitional properties of the 2D vibron and relatedmodels are very close to those of the
sd-IBM along its O(6)–U(5) transition. It turns out that in absence of O(3) rotations (L = 0) the seniority quantum number τ
can be regarded as an analog of the O(2) angular momentum quantum numberm considered in the above 2D examples.
Recall that if the IBM hamiltonian (47) contains no admixture of the SU(3) invariant, the cubic term in the classical

potential (55) is missing: B = 0. In this case, the critical point at A = 0 separates the sombrero and oscillator types of
potential (located on the deformed and spherical sides, respectively). The full classical hamiltonian in the parametrization
(56) with χ = 0 is given by

Hcl(η) = Trot +
[
η

4
+

(
1−

3
4
η

)
β2
][
(1+ β2)2p2β +

(
pγ
β

)2]
︸ ︷︷ ︸

Tvib

+
(5η − 4)β2 + ηβ4

(1+ β2)2︸ ︷︷ ︸
V

, (95)

where Trot and Tvib stand for the rotational and vibrational kinetic energies; pβ ∈ [0,∞] and pγ ∈ [0, 1] are momenta
associated with the shape coordinates β and γ , respectively. The radius β ∈ [0,∞] can be compressed to β̃ ∈ [0,

√
2]

through the relation β = β̃/
√
2− β̃2 [121], while the radial momentum is transformed accordingly: pβ 7→ p̃β ∈ [0,

√
2].

Eq. (95) then takes the form

H̃cl(η) = T̃rot +
[η
2
+ (1− η)β̃2

] [
p̃2β +

(
pγ
β̃

)2]
+

(
5
2
η − 2

)
β̃2 + (1− η)β̃4, (96)

which is more convenient in the present case, since the transformed potential is no longer distorted by the β-dependent
denominator. If considering motions with L = 0, the classical phase space is generated solely by the vibrational degrees
of freedom, described either by polar coordinates β̃ and γ , or by the corresponding Cartesian coordinates x = β̃ cos γ and
y = β̃ sin γ . The angular momentum pγ = xpy − ypx is then related to the classical limit of the O(5) Casimir invariant for
L = 0 through 1

N2
C2[O(5)]cl = p2γ .

As shown by Cejnar, Macek, Jolie, Heinze, and Dobeš [99,100], the sombrero potential from Eq. (96) for η < ηc =
4
5

generates both classical and quantum signatures of monodromy. It was recognized that the energy Ec = 0 corresponding
to the pinched torus separates two different dynamical regimes that can be linked, on both quantum and classical levels,
to the respective limiting dynamical symmetries O(6) and U(5). In particular, the following observations were made: (a)
Arrangements of states in the E×τ quantum lattice belowand above Ec resemble those associatedwith dynamical symmetry
limits O(6) andU(5), respectively [99]. In the O(6) type of lattice states formwell distinguished chainswith an approximately
quadratic dependence on τ , while in the U(5) type of lattice the dependence on τ is essentially linear, seen Fig. 17(c)–(e). (b)
The formofwave functions changes fromO(6)-like toU(5)-like at Ec [117]. The crossover ismost clearly seen for τ = 0 states.
Below Ec the average 〈nd〉i gradually decreases with energy and the spread of the nd distribution increases, while above Ec
these trends are reverted. (c) Classical trajectories change their typical forms at Ec [99]. This can shown by expressing the
ratio Rγ /β = Tγ /Tβ of periods associatedwith γ and β degrees of freedom. Trajectories below Ec exhibit a broad distribution
of Rγ /β with the lower bound at ≈ 3 and a strong preference for large values. This corresponds to flower-like orbits in
the sombrero potential. The trajectories above Ec show a narrow distribution concentrated at values < 3, which with an
increasing energy converges to the lower limit Rγ /β = 2. This corresponds to the bouncing-ball orbits traversing across the
central maximum.

7.4. Semiclassical considerations

The relation ofmonodromy to nonanalytic evolution of individual τ = 0 excited stateswith the control parameterwas for
the first time noticed [100] in application of the ‘‘displaced oscillator’’ approximation of Rowe [70,71] to hamiltonian (56).
The approximation is valid on the O(6) side of the transitional path for asymptotic boson numbers, when x = 2 ndN − 1
can be treated as a continuous variable. Eigenstates of the hamiltonian are expressed as conventional wave functions
ψi(x) = 〈nd|ψi〉 and the hamiltonian itself turns into a differential operator. This is due to the fact that two-body interactions
conserving the O(5) invariant connect states only with∆nd = 0,±2, which is an infinitesimal change of x. For the simplified
hamiltonian (56) with χ = 0 this procedure yields the following result:

Hosc(η) = −
4
N2
(1− η)

d
dx
(1− x2)

d
dx
+ (1− η)︸ ︷︷ ︸

A(η)

x− η

4(η − 1)︸ ︷︷ ︸
x0(η)


2

+
(5η − 4)2

16(η − 1)︸ ︷︷ ︸
E0(η)

. (97)
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Fig. 18. The oscillator potential from Eq. (97) scaled by (1− η)−1 . The physical domain is limited by the upper energy Ec = 0 where the potential reaches
x = −1.

The above hamiltonian is hermitian and can be regarded as a possible quantization of a shifted oscillator with a specific
x-dependent mass parameter.
The oscillator potential from Eq. (97) is shown in Fig. 18. The energy E0 and position x0 of the oscillator minimum depend

smoothly on the control parameter, as well as the width A−1/2. The departure from the O(6) limit (η = 0) is therefore
expressed just as a smooth shift and rescaling of wave functions and a gradual change of the corresponding energies.
However, the solutions lose sense if the energy exceeds a certain limit Ec, where the semiclassical wave function overflows
the physical domain x ∈ [−1,+1]. Fig. 18 shows that Ec = 0 (independent of η), hence it coincides with the top of the
central maximum of the sombrero potential in the present parametrization. At this point, the solution becomes singular,
since the mass diverges and the analytic continuation from the O(6) limit cannot be maintained any more. Therefore, the
energy Ec = 0 is the upper limit where for each given level with τ = 0 the concept of quasi-O(6) dynamical symmetry
can be applied. Above this energy, the level converts to the judicature of another type of analytic continuation that can be
named quasi-U(5) (cf. Section 4.4). As seen in Fig. 18, the quasi-O(6) energy region (below Ec) shrinks with increasing η and
disappears at ηc, where the ground state reaches the critical energy.
In fact, the same conclusions can be obtained also directly from the classical hamiltonian (96). For T̃rot = 0 and the

relative seniority τ
N → 0 (hence pγ = 0), the sombrero potential creates a phase space separatrix at total absolute energy

Ec = 0. The action along a periodic orbit at energy E can be expressed as

S(η, E) = 2
∫ β1(η,E)

β0(η,E)

√
2M(η;β)[E − Ṽ (η;β)]dβ, (98)

where M(η;β) is a position-dependent ‘‘mass’’ that can be extracted from Eq. (96), while β0 and β1 represent classical
turning points of the radial motion. It can be shown that the action as a function of energy has a singular tangent at E = Ec,
when the separatrix is crossed. At this critical energy, the inner turning point β0(η, E), which for E < Ec is a decreasing
function of energy, reaches the value β0(η, E) = 0 and gets fixed [100].
As discussed by Caprio, Cejnar, and Iachello [117], the singularity at E = 0 has two crucial consequences: (a) it implies

an infinite local growth of the τ
N = 0 level density, and (b) creates a singularity in the dependence of individual quantum

energies on η. Both these conclusions can be obtained from the Bohr-Sommerfeld quantization condition

S(η, Ei) = 2π h̄
(
i+
1
2

)
= const, (99)

where h̄ ∝ N−1. The gap between adjacent levels is given by∆ ∝ 1
N (

∂
∂E S)

−1, with ∂
∂E S equal to the classical orbit period tp.

For E → Ec the period grows asymptotically (it takes an infinite time to get over the central maximumof the potential), thus
the level density has an anomaly. The variation of the ith level energy with η can be associated with a contour curve of the
function S(η, E) satisfying Eq. (99). Exploiting the condition dS = ∂S

∂η
dη+ ∂S

∂E dE = 0 and evaluating both partial derivatives
of the action in Eq. (98), one obtains

d
dη
Ei = −

∂
∂η
S(η, E)

∂
∂E S(η, E)

∣∣∣∣∣
E=Ei(η)

=

〈
∂

∂η
H̃cl(η)

〉
=

〈(
1
2
− β̃2

)[
p̃2β +

(
pγ
β̃

)2]
+
5
2
β̃2 − β̃4

〉
, (100)

where 〈f 〉 = 1
tp

∫ tp
0 f (p, q)dt stands for the time average over the specific periodic orbit. Note that Eq. (100) is a semiclassical

analog of the first Eq. (93). As the level energy crosses the separatrix value Ec = 0 at some value of the control parameter,
η = η

(i)
c , the average on the right hand side of Eq. (100) drops to zero, since the motion gets temporarily frozen at the top of

the sombrero potential. A more detailed analysis [117] shows that this is a logarithmic type of singularity, with the second
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derivative d2

dη2
Ei approaching to ∓∞ as η converges to η

(i)
c from the left and right, respectively. We therefore encounter a

continuous quantum phase transition (with no Ehrenfest classification) of excited level i.
It should be stressed that anomalous properties of wave functions at the classical phase space separatrix for a double

well potential were already studied in 1987 by Cary, Rusu, and Skodje [245–247]. The relation of quantum phase transitions
to classical instability points was anticipated by Heiss and Müller [244] and a singular evolution of the quantum spectrum
in the above sense has been first investigated within the Lipkin model by Leyvraz, Heiss, Scholtz, and Geyer [137,138]. The
classical limit of the Lipkin model represents a 1D projection of the IBM classical hamiltonian for L = 0 and τ

N = 0. If the
above analysis within the IBM is extended to states with τ

N 6= 0 (hence pγ 6= 0), one finds out that the centrifugal barrier in
Eq. (96) removes the phase space separatrix and the nonanalytic behavior of Ei is washed out. Therefore, the ESQPT behavior
in the N →∞ limit applies only to states with τ

N = 0 [100].

8. Concluding remarks

In this review, we attempted to summarize the present state of knowledge on quantum phase transitions in the
interacting boson model. This subject is important from both experimental and theoretical viewpoints. It has direct
applications in nuclear structure physics, where shape phases and critical regions in the chart of nuclides have been subject
to intense research in the last decade. Closely related models, with analogous types of quantum phase transitions, are used
also in molecular physics.
With respect to recent reviews [23,24] of the experimental aspects of the structural evolution in nuclei, here a stronger

accentwas put to theoretical problems. Our aimwas to present the family of interacting bosonmodels as a useful framework
for probing the origins and fundamental properties of quantum phase transitions in many-body systems, which at the same
time holds a close relation to experimental data. Rather than going into deep details within a restricted area, we decided to
show a vast variety of diverse approaches and related problems. The reader interested in a specific issue is encouraged to
follow the relevant references.
Basic properties of the interacting boson model connected with phase transitions are contained in its simplest version,

the IBM-1, which has been mostly discussed in the QPT context so far. One of the main advantages of this model, is a
simultaneous occurrence of first- and second-order quantum phase transitions. We showed the roots of the ground-state
critical behavior in the mean-field dynamics and outlined the related approaches going beyond the mean field, and to
the direction of statistical physics. These concepts are essential for the description and fundamental understanding of the
ground-state evolution.
Various generalizations of symmetry were presented as important guides for the QPT physics of many-body systems.

The symmetries emerge (somewhat surprisingly) in transitions between different dynamical regimes of the system, giving
rise to specific signatures of quantum critical behaviors in the spectra of low-lying states. The symmetry related aspects of
QPT’s in many-body systems constitute an important subject of ongoing research.
Extensions of the IBM-1 to various sides, also reported in this review, provide enriched phase structures and modified

realizations of the QPT phenomena. Phase transitions in these generalized models represent an interesting subject on its
own, but they can also be seen as concrete cases of a general branch of problems concerning the QPTs influenced by a
coupling of the system to additional degrees of freedom. In the IBM extensions, the main effort has been spent so far to
identify the basic form of the relevant phase diagrams, while various sophisticated approaches developed in the simpler
cases still wait for application.
The last part of the reviewwas devoted to excited-state quantumphase transitions, which represent a promising topic for

future analyses. In these transitions, global features of the whole quantum spectrum are subject to nonanalytic changes of
the phase transitional type. New hints for traditional physics of phase transitions may follow from the study of these issues.
An open problem remains the extension of the concept of excited-state QPTs to first-order transitions. The interacting boson
model, which itself seems to be at the first-order phase transition between simplicity and complexity (with both aspects
coexisting within one framework), may serve as a firm ground for such studies.
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