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Time-Optimal Quantum Evolution
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We present a general framework for finding the time-optimal evolution and the optimal Hamiltonian for
a quantum system with a given set of initial and final states. Our formulation is based on the variational
principle and is analogous to that for the brachistochrone in classical mechanics. We reduce the problem to
a formal equation for the Hamiltonian which depends on certain constraint functions specifying the range
of available Hamiltonians. For some simple examples of the constraints, we explicitly find the optimal
solutions.
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In quantum mechanics one can change a given state to
another by applying a suitable Hamiltonian on the system.
In many situations, e.g., quantum computation, it is desir-
able to know the pathway in the shortest time.

In this Letter we consider the problem of finding the
time-optimal path for the evolution of a pure quantum state
and the optimal driving Hamiltonian. Recently, a growing
number of works related to this topic have appeared. For
instance, Alvarez and Gómez [1] showed that the quantum
state in Grover’s algorithm [2], known as the optimal
quantum search algorithm [3], actually follows a geodesic
curve derived from the Fubini-Study metric in the projec-
tive space. Khaneja et al. [4] and Zhang et al. [5], using a
Cartan decomposition scheme for unitary operations, dis-
cussed the time-optimal way to realize a two-qubit univer-
sal unitary gate under the condition that one-qubit
operations can be performed in an arbitrarily short time.
On the other hand, Tanimura et al. [6] gave an adiabatic
solution to the optimal control problem in holonomic
quantum computation, in which a desired unitary gate is
generated as the holonomy corresponding to the minimal
length loop in the space of control parameters for the
Hamiltonian. Schulte-Herbrüggen et al. [7] exploited the
differential geometry of the projective unitary group to
give the tightest known upper bounds on the actual time
complexity of some basic modules of quantum algorithms.
More recently, Nielsen [8] introduced a lower bound on the
size of the quantum circuit necessary to realize a given
unitary operator based on the geodesic distance, with a
suitable metric, between the unitary and the identity op-
erators. However, a general method for generating the
time-optimal Hamiltonian evolution of quantum states
was not known until now.

Here we are going to study this problem by exploiting
the analogy with the so-called brachistochrone problem in
classical mechanics and the elementary properties of quan-
tum mechanics. In ordinary quantum mechanics the initial
state and the Hamiltonian of a physical system are given
and one has to find the final state using the Schrödinger
equation. In our work we generalize this framework so as
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to optimize a certain cost functional with respect to the
Hamiltonian as well as the quantum states. The cost func-
tional quantifies the efficiency to get the target state from a
given initial state and depends on the physical situation. In
this Letter we focus our attention on the time optimality but
it is straightforward to generalize our methods to other cost
functions.

In the brachistochrone problem one has to find the shape
of a friction-free tube connecting two points and with a
particle running inside subject only to homogeneous grav-
ity. The solution, a segment of a cycloid, can be found
using the variational principle for the evolution time
T�x�t�� �

R
ds
v , where the parameter s specifies the length

of the tube from the initial to the current position x�t� of the
particle, i.e., ds2 � jdxj2. The magnitude of the particle’s
velocity is v :� ds

dt �
��������������������������������
2�E� V�x��=m

p
, where E is the

conserved energy and V is the gravitational potential.
Let us now move to the time optimization problem in the

quantum case. We want to minimize the total amount of
time necessary for changing a given initial state j ii (be-
longing to an n-dimensional Hilbert space H ) to a given
final state j fi, by suitable choice of a (possibly time-
dependent) Hamiltonian H�t�. In our problem the quantum
state j �t�i and the Hamiltonian H�t� are the dynamical
variables, and the action is defined as

S� ;H;�; �� �
Z
dt

" ������������������������������������
hddt j�1� P�j

d
dt i

q
�E

� �ihddt�j i

� h�jHj i � c:c:� � �
�
Tr ~H2

2
�!2

�#
:

(1)

Here P�t� :� j �t�ih �t�j is the projection to the state
j �t�i, ~H :� H � �TrH�=n is the traceless part of the
Hamiltonian, ��E�2 :� h jH2j i � h jHj i2 is the en-
ergy variance, and ! is a given nonzero constant. To
simplify the notation we write d

dtj i as j ddt i and so forth.
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We have chosen units in which Planck’s constant @ is equal
to one.

The first term in the action (1) gives the time duration for
the evolution of j �t�i, expressed in terms of the Fubini-
Study line element ds2 � hd j�1� P�jd i on the projec-
tive space CPn�1. The second term guarantees, through the
Lagrange multiplier j��t�i 2H , that j �t�i and H�t�
satisfy the Schrödinger equation and that the squared
norm h j i � 1 is conserved. The third term, through
the Lagrange multiplier �, generates a constraint for the
Hamiltonian. Such a constraint is necessary because other-
wise one would be able to find a path with arbitrarily small
time duration just by rescaling the Hamiltonian as H �
�H, with �> 1, to make the energy fluctuations �E large.
This corresponds to the fact that physically only a finite
amount of resources (e.g., a finite magnetic field) is avail-
able. Here we consider a typical example which we call the
isotropic constraint (we will consider more general con-
straints later). The constraint is imposed on ~H rather than
H, since the difference between the highest and the lowest
energy levels in H, and not the value of the energy levels
themselves, is important for the physical system. The
problem should be mathematically formulated on the pro-
jective space CPn�1 rather than on H , because the overall
phase of the state j i is of no significance in quantum
mechanics. In fact, the action (1) is invariant under the
U�1� gauge transformation �j i; H; j�i; ��� �e�i�j i;
H � d�

dt ; e
�i�j�i; ��, where ��t� is a real function. Note

that the HamiltonianH plays the role of the gauge potential
(there is also another symmetry, j�i� j�i � i�j i,
where � is a real constant).

Let us now derive the equations of motion. The variation
of (1) with respect to h�j leads to the Schrödinger equation

i
d
dt
j i � Hj i: (2)

In particular, this implies h ddt j�1� P�j
d
dt i � ��E�

2, or

ds � �Edt; (3)

which was found by Aharonov and Anandan [9] and leads
to a rigorous formulation of the time-energy uncertainty
principle. The variation with respect to � gives the con-
straint Tr ~H2 � 2!2. The variation with respect to h j,
upon using (2), yields

i
�
d
dt

�
H � hHi

2��E�2

��
j i � i

d
dt
j�i �Hj�i � 0: (4)

Finally, the variation with respect to H, after use of (2),
implies

fH;Pg � 2hHiP

2��E�2
� � ~H � �j ih�j � j�ih j� � 0; (5)

where a bracket h�i denotes the expectation value with
respect to j i and fA;Bg � AB� BA. Equation (4) and the
trace of (5) imply that h j�i is a purely imaginary con-
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stant. Then, the expectation value of (5) gives h ~Hi � 0,
which is equivalent to hHi � �TrH�=n, or ~H � H � hHi.
Applying (5) to j i, we have

j�i �
��

1

2��E�2
� �

�
~H � h j�i

�
j i; (6)

and inserting (6) back into (5), we obtain

~H � ~HP� P ~H: (7)

Furthermore, the energy variance is constant; i.e., ��E�2 �
h ~H2i � Tr ~H2=2 � !2. Substituting (6) into (4), we have
d�� ~H�
dt j i � 0 which, after multiplication by h jH, implies

that � is constant. We then obtain

d ~H
dt
j ~ i � 0; (8)

where we have introduced j ~ i :� exp�i
R
t
0hHidt�j i. In

conclusion, the equations to be solved have reduced to
(7) and (8). Equation (7) gives an expression for the
optimal Hamiltonian and (8) gives the optimal time evolu-
tion of the quantum state. In fact, the state j ~ i satisfies the
Schrödinger equation with Hamiltonian ~H, and (7) implies

~H � i�j ddt
~ ih ~ j � j ~ ihddt

~ j�: (9)

The derivative j ddt
~ i is orthogonal to j ~ i because h ~Hi � 0.

Therefore, Eq. (8) reads

�1� ~P�
d2

dt2
j ~ i � 0; (10)

where ~P � j ~ ih ~ j � P. This is the geodesic equation for
the Fubini-Study metric on CPn�1, which is suggested by
the observation that the first term in the action (1) becomesR
ds for constant �E. We also easily see that ddt ~H � 0 from

(9) and (10).
One can solve Eq. (10) using ��E�2 � !2, finding:

j ~ �t�i � cos!tj ~ �0�i �
sin!t
!
j ddt

~ �0�i: (11)

It is then easy to rewrite (11) and ~H in terms of the Gram-
Schmidt orthonormalized initial state j ii and final state
j 0fi as

j ~ �t�i � cos!tj ii � sin!tj 0fi; (12)

~H � i!�j 0fih ij � j iih 
0
fj�: (13)

As a result, the whole Hamiltonian is given by H�t� �
~H� hH�t�i, where hH�t�i is an arbitrary real function
corresponding to the gauge degree of freedom. The optimal
time is T � 1

j!j arccosjh fj iij.
Let us now generalize the quantum brachistochrone

problem to the case of a more general set of m constraints
for the Hamiltonian H�t�. This extension is of relevance,
for example, when some operations are not implementable
3-2
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in practice. Instead of (1) we consider the action

S� ;H;�;���
Z
dt

" ����������������������������������
h ddt j�1�P�j

d
dt i

q
�E

��ih ddt�j i

�h�jHj i�c:c:��
Xm
a�1

�afa�H�

#
;

(14)

where the fa (a � 1; . . .m) are functions mapping a
Hermitian operator into a real number. As we have already
discussed, the most natural case to consider is when the fa
are actually functions of ~H, but the argument below is also
valid for arbitrary fa. Among the equations of motion, the
constraint now generalizes to fa�H� � 0, while (7) and (8)
become

F � FP� PF; (15)

�
dF
dt
� i� ~H;F�

�
j i � 0; (16)

with the operator

F�H� :�
X
a

�a
�
�fa
�H
�

�
�fa
�H

�
P
�
: (17)

In particular, Eq. (15) guarantees that TrF � hFi � 0.
Note that, for m � 1 and f � Tr ~H2=2�!2, Eqs. (15)
and (16) reproduce (7) and (8) of the isotropic case.

We can formally integrate (15) and (16) to obtain

F � UF�0�Uy; (18)

where F�0� is a constant Hermitian operator which satisfies
F�0� � fF�0�; P�0�g and the unitary operator U is given as
a functional of ~H,

U� ~H��t� :� T̂e�i
R
t

0
~Hdt; (19)

with T̂ the time-ordered product. Thus, given the con-
straints fa� ~H� � 0, one can explicitly write the left hand
side of (18) as a function of ~H and solve (18) to obtain the
optimal Hamiltonian ~H. This is our main result.

As an explicit example of this general framework we
may consider the case of a one-qubit subject to the two
constraints

f1�H� :� Tr ~H2=2�!2 � 0; (20)

f2�H� :� Tr� ~H�z� � 0; (21)

where �j (j � x; y; z) are the Pauli matrices. Note that for
the one-qubit system the traceless Hamiltonian can be
written in general as ~H�t� � �� 	B�t�, with B 2 R3.
The constraints (20) and (21) imply that jBj � j!j and
B � �Bx; By; 0�. This corresponds to, e.g., the physical
system of a spin-1=2 particle with unit magnetic moment
in a magnetic field B. The spin is controlled by the mag-
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netic field of magnitude given by the Larmor frequency !
and with x and y components only. By (18) and TrF � 0,
we have

F � �1
~H � �2�z � UF�0�Uy: (22)

Eliminating ~H in (22) via i ddt U � ~HU and solving (22),
we get U � exp�i	�z� exp��iF�0�

R
t
0 dt=�1�, where

	�t� :�
R
t
0��2=�1�dt. From (20)–(22) and the above for-

mula for U, we find that the �j are constants and we can
simplify U and ~H as

U � ei�t�ze�i� ~H�0����z�t; (23)

~H � ei�t�z ~H�0�e�i�t�z ; (24)

where � :� �2=�1.
Let us consider the case in which the initial state is on

the equator of the Bloch sphere CP1, h�zi � 0. Without
loss of generality, we may choose P�0� � �1� �x�=2; i.e.,
the spin initially points towards the positive x direction.
Then the condition F�0� � fF�0�; P�0�g and the constraints
(20) and (21) imply that ~H�0� � �!�y, and from (23) and
(24) we finally obtain

h�i�t� �
cos2�t cos2�0t� �

�0 sin2�t sin2�0t
� sin2�t cos2�0t� �

�0 cos2�t sin2�0t
!
�0 sin2�0t

0
B@

1
CA;
(25)

~H�t� � �� 	 B�t�; B�t� � !
sin2�t
cos2�t

0

0
@

1
A; (26)

where �0 :�
�������������������
!2 ��2
p

. We can interpret B�t� as a mag-
netic field rotating with angular velocity 2�. Equation (25)
is not a geodesic on CP1 unless � � 0, in which case the
orbit is a great circle in the xz plane. The energy fluctuation
(which is also the speed of the state) is now time depen-
dent, �E�t� � j!j�1� ���0 sin2�0t�2�1=2. We notice that
the constraint (21) in general reduces the speed of the state.

If the final state j fi is given, the angular velocity 2�
and the time duration T are also determined. For instance,
let us assume P�T� � �1� �x�=2, which is the antipodal
point of P�0� in CP1. Then we have the conditions
2j�jT � k
 and 2�0T � l
, where k and l are integers
such that l > k 
 0 and k� l is odd. Thus we get

j!jT �


2

���������������
l2 � k2

p
;

���������

!

��������� k���������������
l2 � k2
p : (27)

The concrete solutions for (27), in ascending order of T,
are �j!jT; j�! j� � �



2 ; 0�; �



2

���
3
p
; 1��

3
p �; �
2

���
5
p
; 2��

5
p �; . . . . These

solutions, respectively, have zero, one, two,. . . nodes along
the great circle h�zi � 0. The first one is a geodesic, while
the others are not. On the other hand, if the final state is not
in the xz plane, there is no geodesic solution. At this stage
3-3
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FIG. 1. Locally optimal curves on the Bloch sphere. The solid,
thick dotted, and thin dotted curves correspond, respectively, to
the solutions with j!jT � 


2 , 
2
���
3
p

, and 

2

���
5
p

. They have zero,
one, and two nodes along the great circle on the xy plane,
respectively.
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we have to caution the reader that solutions may be only
locally optimal, and we have to find out the globally
optimal one by comparing time durations T. In the above
case, the first curve without nodes is globally optimal. The
second curve becomes globally optimal if the final state is
its first node. The solutions are depicted in Fig. 1.

In summary, in analogy to the classical brachistochrone
problem we have formulated a variational principle to find
the optimal Hamiltonian and the optimal quantum state
evolution, for given initial and final states and a set of
available Hamiltonians. As a particular application of our
methods, one might want to first evaluate the optimal
Hamiltonian, e.g., by means of a classical computer, and
then perform the fastest possible quantum experiment or
quantum computation. The classical computational com-
plexity of (18) may be also an interesting problem to
pursue. As a future development of the present research
we do not see any obstacle to generalizing our formulation
to mixed states. The relation to gate complexity in the
standard paradigm of quantum computation remains to
be investigated, though our point of view is that the time
06050
complexity (see, e.g., Schulte-Herbrüggen et al. [7] and
references therein) is more physical or even more practical.
For example, Eqs. (12) and (13) essentially solve Grover’s
search problem [1,2]. However, to show the square-root
speed up with respect to the classical case one still has to
identify the computational step corresponding to a single
oracle call. We hope that the present variational approach
to the time optimality problem in quantum mechanics
opens up novel systematic investigations of optimal quan-
tum computation.
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