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Self-consistency in the Hartree–Fock equations results in multiple non-orthogonal solutions that
need not share the symmetries of the true Hamiltonian. Our current understanding into the nature
of these multiple solutions is relatively limited. We propose a non-Hermitian analytic continuation of
real Hartree–Fock as a framework for understanding the topology of multiple Hartree–Fock solutions.
We then apply this framework in the periodic Hubbard chain to reveal complex connections between
symmetry-broken Hartree–Fock states as part of a continuous manifold of solutions. Finally, we
identify and explain the appearance of self-orthogonal solutions in Hartree–Fock.

Hartree–Fock theory performs a pivotal role in quan-
tum chemistry, providing a mean-field description of elec-
tronic structure in terms of a single Slater determinant
upon which electron correlation can be computed.[1] As
a non-linear self-consistent field (SCF) approach, the
Hartree–Fock equations have the potential to produce
a multitude of different solutions. Despite the develop-
ment of effective techniques for locating multiple SCF
solutions — for example SCF Metadynamics,[2] homo-
topy approaches[3] and the Maximum Overlap Method[4]
— our understanding into the general nature of multiple
Hartree–Fock states remains surprisingly limited.

Initially, the importance of multiple SCF solutions
was emphasised by the stability analysis pioneered by
Thouless[5], Č́ıžek and Paldus[6, 7], and Seeger and
Pople[8]. Through stability analysis, along with the
work of Fukutome,[9] Hartree–Fock solutions were clas-
sified in terms of the self-consistent symmetries they
preserve, as reviewed by Stuber and Paldus.[10] The
self-consistency of the Hartree–Fock equations, however,
can also lead to symmetry-broken solutions, resulting in
Löwdin’s “symmetry dilemma”[11]; should one seek the
lowest energy solution whilst sacrificing the good quan-
tum numbers offered by symmetry-pure states? More-
over, the onset of symmetry breaking is accompanied by
the coalescence, or emergence, of solutions at instabil-
ity thresholds,[12, 13] and appears intimately linked with
the degree of strong correlation present. The most no-
torious example remains the Coulson–Fischer point in
the dissociation of H2, where the ground state restricted
Hartree–Fock (RHF) solution splits spontaneously into
two unrestricted Hartree–Fock (UHF) solutions breaking
both point-group and Ŝ2 symmetry.[14]

Elsewhere in quantum physics, non-Hermitian Hamil-
tonians have recently been developed as a frame-
work for understanding the nature of multiple eigen-
solutions. Non-Hermitian approaches, including non-
Hermitian Hartree–Fock[15], have traditionally been lim-
ited to the description of time-dependent phenomena
requiring complex eigenvalues, for example ionisation,
dissociation and metastable resonance states.[16] How-
ever, Bender and Boettcher[17] have introduced non-
Hermitian Hamiltonians as an approach for understand-

ing multiple eigenstates in quantum systems through
the framework of complex analytic continuation. Us-
ing this technique, a real-symmetric Hamiltonian is an-
alytically continued into the complex plane, becoming
non-Hermitian in the process and exposing the funda-
mental topology of the Hamiltonian’s eigenstates. Quan-
tised eigenvalues, for example, emerge directly from the
discrete nature of sheets contained within a Riemann
surface.[18] Moreover, when eigenstates of a linear non-
Hermitian Hamiltonian coincide at a branch point, non-
intuitive self-orthogonal eigenstates that satisfy 〈ψ∗|ψ〉 =
0 can arise.[16] Further exploiting the framework of
branch points and branch cuts also reveals complex con-
nections between eigenstates, creating an elegant arena
in which a deeper understanding of quantum theory can
be developed.[19, 20]

To our knowledge, the topology of multiple Hartree–
Fock solutions remains unexplored in the framework of
analytic continuation. Recently, with the ambition of
utilising multiple Hartree–Fock states as a basis for non-
orthogonal configuration interaction,[21] the holomor-
phic Hartree–Fock approach has been developed as a
method for analytically continuing real Hartree–Fock so-
lutions beyond the instability thresholds at which they
vanish.[22, 23] In holomorphic Hartree–Fock theory, the
complex conjugation of orbital coefficients is removed
from the conventional Hartree–Fock equations, resulting
in a non-Hermitian Hamiltonian with a complex analytic
energy function. Holomorphic Hartree–Fock solutions
are then found to exist across all molecular geometries,
obtaining complex valued orbital coefficients even when
their real counterparts coalesce and disappear.[22–24]

Previously, the holomorphic Hartree–Fock approach
has proved useful for exploring the maximum number
of solutions of closed-shell two-electron systems.[24] In
this work, we demonstrate how the non-Hermiticity of
holomorphic Hartree–Fock theory provides a wider, gen-
eral framework for understanding the topology of multi-
ple Hartree–Fock solutions. We begin by reviewing the
mathematical details of holomorphic Hartree–Fock the-
ory. We then explore the holomorphic Hartree–Fock so-
lutions of the one-dimensional Hubbard chain, drawing
parallels with non-Hermitian physics and exposing previ-
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ously unseen connections between real symmetry-broken
states through the complex plane.

In what follows, we utilise the holomorphic RHF (h-
RHF) approach as an example, although the method can
be extended to all real formalisms of Hartree–Fock. Con-
sider a closed-shell system comprising 2N electrons and
a set of N doubly-occupied orbitals {|φi〉}. Employing
the tensor notation of Head-Gordon et al.[25] each or-
bital can be constructed from a finite linear combination
of n orthonormalised real single-particle basis functions
{|χµ〉} as |φi〉 =

∑n
µ |χµ〉C

µ·
·i . In conventional RHF the-

ory, the energy E for this system is given by

E = hnuc + 2

N∑

i

n∑

µν

(C∗)
·µ
i· hµνC

ν·
·i

+

N∑

ij

n∑

µνστ

(C∗)
·µ
i· (C∗)

·ν
j·

[
2〈µν|στ〉 − 〈µν|τσ〉

]
Cσ·

·i C
τ ·
·j ,

(1)

where hnuc is the nuclear repulsion, and hµν and 〈µν|στ〉
are the one- and two-electron integrals respectively, ex-
pressed in the basis {|χµ〉}. RHF solutions exist as sta-
tionary points of Equation 1 subject to the orthogonality
constraint

n∑

µ

(C∗)
·µ
i· C

µ·
·j = δij . (2)

When the orbital coefficients are considered over
the full complex domain, Equation 1 and Equation 2
become functions of several complex variables {Cµ··i }
and their complex conjugates {(C∗)

µ·
·i }. However,

this dependence on {(C∗)
µ·
·i } violates the Cauchy–

Riemann conditions,[26] resulting in functions that are
not complex analytic and rendering conventional com-
plex Hartree–Fock theory unsuitable as a framework for
exploring the topology of real Hartree–Fock solutions.

In contrast, the h-RHF energy Ẽ is defined[22] as an
analytic function of the complex orbital coefficients by
removing the complex conjugation in Equation 1 to yield

Ẽ = hnuc + 2

N∑

i

n∑

µν

C ·µ
i· hµνC

ν·
·i

+

N∑

ij

n∑

µνστ

C ·µ
i· C

·ν
j·
[
2〈µν|στ〉 − 〈µν|τσ〉

]
Cσ··i C

τ ·
·j . (3)

From this definition, both the holomorphic density ma-
trix P̃µν =

∑N
i C

µ·
·i C

·ν
i· and its corresponding holo-

morphic Fock matrix F̃ form non-Hermitian, complex-
symmetric matrices.[23] Consequently, the eigenvectors

of P̃ and F̃ (representing the holomorphic single-particle
orbitals) form a complex orthogonal set[27] and the or-

thogonality constraint condition becomes

n∑

µ

C ·µ
i· C

µ·
·j = δij . (4)

The stationary points of the h-RHF equations can be
identified using a modified SCF approach,[23] and it has
previously been shown that when real Hartree–Fock solu-
tions disappear, their holomorphic counterparts continue
to exist with complex orbital coefficients.[22–24]

When the orbital coefficients are real, the conven-
tional and holomorphic energy expressions become equiv-
alent, and the two formalisms share the same set of solu-
tions. However, when the orbital coefficients are allowed
to become complex, the two approaches diverge, with
the holomorphic Hartree–Fock method forming the rigor-
ous analytic continuation of the real Hartree–Fock equa-
tions. Consequently, in contrast to conventional complex
Hartree–Fock, the holomorphic formalism provides the
perfect non-Hermitian framework for understanding the
topology of real Hartree–Fock states.
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FIG. 1: Holomorphic energy of the multiple
holomorphic solutions to the periodic two-electron,
two-site Hubbard chain with their degeneracies. At

U/t = 20, the state symmetries in ascending energy are:
symmetry-broken; σ2

g ; σgσu; σ2
u; and symmetry-broken.

The one-dimensional, periodic Hubbard model[28] pro-
vides an ideal system for exploring the topology of
Hartree–Fock solutions. We consider the wavefunction
expanded in a basis set of orthogonal orbitals {|χµ〉},
each localised on a lattice site of an n-site chain. Ex-
pressed within this basis, the one-electron integrals
are parameterised by the hopping term t as hµν =
−t (δµ,ν+1 + δµ,ν−1), where periodic boundary conditions
must be respected, whilst the only non-zero two-electron
integrals are given by the on-site Coulombic repulsion
〈µν|στ〉 = Uδµνδνσδστ . Taking t as the unit of energy
then leaves the ratio U/t as the only system parameter,
representing the electron correlation strength. Allowing



3

U/t to take both negative and positive values leads to the
attractive and repulsive Hubbard models respectively.

For ease of conceptual understanding and visualisa-
tion, we limit our in-depth analysis to two-electron sys-
tems at the h-RHF level of theory. The h-UHF solutions
are included for completeness only. Since we operate
in the space of occupied-virtual orbital rotation angles,
our discussion generalises easily to unrestricted or many-
electron systems.

Take first a two-site, two-electron lattice, represented
at the h-RHF level of theory by the single doubly-
occupied orbital |φ1〉. Satisfaction of the complex-
orthogonality constraint, Equation 4, can be ensured by
parameterising |φ1〉 in terms of the complex angle θ1 as

|φ1〉 = |χ1〉 cos θ1 + |χ2〉 sin θ1. (5)

Since the holomorphic energy and density are both in-
variant to the overall sign symmetry (cos θ1, sin θ1) =
(− cos θ1,− sin θ1), only the domain θ1 ∈ X, where
X = {x ∈ C : −π2 ≤ Re[x] < π

2 }, needs to be consid-

ered. The holomorphic energy Ẽ can then be expressed
using the trigonometric function

Ẽ = −8t cos θ1 sin θ1 + U
(
cos4 θ1 + sin4 θ1

)
. (6)

Optimising Equation 6 produces h-RHF states as the
roots of

dẼ

dθ1
= −2 cos 2θ1 (U sin 2θ1 + 4t) , (7)

which, upon factorisation, yields solutions at

θ1 =
1

2
arccos 0, (8)

θ1 =
1

2
arcsin

(
−4t

U

)
. (9)

To satisfy θ1 ∈ X the range of arccos and arcsin must
be extended over Y = {y ∈ C : −π ≤ Re[y] < π}, and
both Equation 8 and Equation 9 must be considered as
multi-valued functions. Consequently, a total of four h-
RHF solutions can be identified, shown in Figure 1 along-
side a further four h-UHF states. For the case of Equa-
tion 8 these solutions correspond trivially to θ1 = −π/4
and θ1 = π/4, representing the parity-symmetric σ2

u and
σ2
g states respectively[29]. The solutions to Equation 9,

however, are dictated by the strength of the correlation.
In the strong correlation limit, U/t → ±∞, the critical
values are given by θ1 → 0 and θ1 → −π/2, representing
degenerate parity-broken states with the electron pair lo-
calised on site-1 and site-2 respectively. These states, mu-
tually related by symmetry, increasingly delocalise as the
correlation strength is lowered until eventually coalesc-
ing at the Coulson–Fischer points (U/t)CFP = ±4. For
|U/t| < 4, the critical values of θ1 become complex, and
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FIG. 2: Riemann surface representing the parity-broken
solutions of the two-site Hubbard chain as solutions to
Equation 10. Domain colouring indicates arg θ1, and

the first periodic repeat of each state is plotted to
emphasise the overall structure (faded regions). The
branch cuts from z = −1 to z = 0 and z = 0 to z = 1

are shown beneath the Riemann surface.

the holomorphic solutions continue as a parity-broken,
complex-conjugate pair.

Such a description, however, provides only a tantalis-
ing glimpse into the full topology of the multiple parity-
broken Hartree–Fock states. To reveal the complete pic-
ture, U/t itself must be analytically continued into the
complex plane and the solutions to Equation 9 expressed
using the complex logarithm

θ1 = − i

2
ln

(
i +
√
z2 − 1

z

)
, (10)

where z = −U/(4t). From the form of Equation 10,
two branch points can be identified corresponding to the
Coulson–Fischer points at z = ±1, along with a loga-
rithmic branch point at z = 0. As a result, the full set
of parity-broken h-RHF solutions for both the repulsive
and attractive Hubbard model can be represented by an
infinitely-sheeted Riemann surface with branch-cuts ex-
tending from z = −1 to 0 and from z = 0 to +1, as
shown in Figure 2. From this single Riemann surface, an
underlying connection of the real parity-broken h-RHF
solutions elegantly emerges through the complex plane;
as the branch points at z = ±1 are circumscribed across
a branch cut, the two symmetry-related states that co-
alesce at the Coulson–Fischer points are analytically in-
terconverted. Moreover, following a path around the log-
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arithmic branch cut at z = 0 connects the parity-broken
solutions of the attractive and repulsive Hubbard mod-
els, completing a smooth manifold of solutions over the
full parameter space.

Insights such as those presented above are not, how-
ever, restricted to a single occupied-virtual orbital rota-
tion angle. Instead, they demonstrate a general frame-
work for understanding the topology of real Hartree–Fock
states. To emphasise this point, we apply the holomor-
phic Hartree–Fock framework to the two-electron, three-
site periodic Hubbard chain, parameterised by the com-
plex angles θ1 and θ2 using the exponential form of a
complex-orthogonal matrix[30]

[
Cocc,Cvirt

]
= exp




0 θ1 θ2
−θ1 0 0
−θ2 0 0


 . (11)

To cover the full range of U/t values, we employ the pa-
rameterisation (t, U) = (1− |ε|, ε) where ε ∈ [−1, 1], and
identify a total of 13 h-RHF solutions for all U/t values,
as shown in Figure 3(a). An additional 47 h-UHF so-
lutions can also be located, however these are omitted
for clarity. Although obtaining analytic expressions for
the h-RHF solutions is more challenging in this multiple
variable system, the connectivity of Hartree–Fock states
can still be explored by tracing the critical values of θ1
and θ2 for complex U/t values. Considering the repulsive
regime, we observe the coalescence of a pair of solutions
(each 3-fold spatially degenerate) at (U/t)CFP ≈ 13.3.
Following a path around this Coulson–Fischer point in
the complex U/t plane interconverts the two coalescing
states after the first full rotation and returns them to
their original state after the second, as shown in Figure
3(b). In doing so, we reveal a fundamental connection
between two states that are completely unrelated by sym-
metry, and would otherwise only be associated through
their coalescence.

Finally, we address the singularities in the holomorphic
energies of the parity-broken states for both the two- and
three-site systems as U/t → 0. Inspection of the orbital
coefficients reveals these singularities to be a manifesta-
tion of the self-orthogonality phenomenon,[16] where the
wavefunction |ψ〉 satisfies 〈ψ∗|ψ〉 = 0 (or for a holomor-
phic Hartree–Fock orbital

∑n
µ C

·µ
i· C

µ·
·i = 0). Within the

projective space framework laid out in Ref. [24], self-
orthogonal solutions correspond to “points at infinity”.
For linear non-Hermitian Hamiltonian, self-orthogonal
eigenvectors occur when two solutions become equivalent
at a branch point[16]. In contrast, the self-consistency
of the Hartree–Fock equations leads to states that are in
general non-orthogonal, and hence solutions may coincide
without becoming self-orthogonal. However, removing all
electron correlation in the limit U/t→ 0 leaves only the
linear one-electron component in the Hamiltonian, and
thus the states that coalesce at the logarithmic branch

point in Figure 2 must become self-orthogonal. Math-
ematically, the absence of self-consistency requires solu-
tions to share the symmetries of the one-electron Hamil-
tonian, requiring symmetry-broken states to be removed
from the solution set by becoming self-orthogonal.

To summarise, we have demonstrated that holomor-
phic Hartree–Fock theory provides the analytic contin-
uation of the real Hartree–Fock equations required for
exploring the topology of multiple Hartree–Fock states.
Exploiting this non-Hermitian framework in the peri-
odic Hubbard chain exposes connections between real
symmetry-broken states through the complex plane,
along with self-orthogonal solutions in the correlation-
free limit. These connections reveal an underlying con-
tinuous manifold of Hartree–Fock states and suggest al-
ternative routes for identifying novel solutions through
the complex direction. Moreover, whilst non-Hermitian
Hartree–Fock resonance methods analytically continue
electronic or atomic positions, the holomorphic Hartree–
Fock approach explicitly continues only the orbital coef-
ficients. Ultimately, unifying both approaches will reveal
holomorphic solutions on the real axis in non-Hermitian
Hartree–Fock and open new avenues for exploring the
topology of multiple Hartree–Fock states in general.
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FIG. 3: (a) Holomorphic energies of the 13 h-RHF solutions to the periodic three-site Hubbard chain with
two-electrons using the parameterisation (t, U) = (1− |ε|, ε) where ε ∈ [−1, 1]. The state degeneracies in order of

ascending Re[Ẽ/ε] are 1, 3, 3, 3 and 3 in the U/t→∞ limit. (b) Critical θ1 values for the pair of h-RHF states that
coalesce at (U/t)CFP ≈ 13.3 plotted along the path U/t = (U/t)CFP + exp(iφ) around the branch point. A single

rotation interconverts the solutions, whilst a second rotation restores the original solutions.


