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ABSTRACT: We explore the existence and behavior of
holomorphic restricted Hartree−Fock (h-RHF) solutions for
two-electron problems. Through algebraic geometry, the exact
number of solutions with n basis functions is rigorously identified
as 1/2(3

n − 1), proving that states must exist for all molecular
geometries. A detailed study on the h-RHF states of HZ (STO-
3G) then demonstrates both the conservation of holomorphic
solutions as geometry or atomic charges are varied and the
emergence of complex h-RHF solutions at coalescence points.
Using catastrophe theory, the nature of these coalescence points is
described, highlighting the influence of molecular symmetry. The
h-RHF states of HHeH2+ and HHeH (STO-3G) are then
compared, illustrating the isomorphism between systems with two electrons and two electron holes. Finally, we explore the
h-RHF states of ethene (STO-3G) by considering the π electrons as a two-electron problem and employ NOCI to identify a
crossing of the lowest energy singlet and triplet states at the perpendicular geometry.

1. INTRODUCTION

Hartree−Fock theory is ubiquitous in quantum chemistry.
Representing the many-electron wave function as a single Slater
determinant, the Hartree−Fock approximation provides a
mean-field description of molecular electronic structure.1

Through the long established self-consistent field method
(SCF), the Hartree−Fock energy is minimized with respect to
variations of a set of orbitals expressed in a given finite basis set.
This optimal set of orbitals therefore exists as a stationary point
of the energy.2,3 However, it is less widely appreciated that the
nonlinear form of the SCF equations can lead to convergence
onto a range of different solutions.4,5 These solutions represent
additional local minima, maxima, or saddle points of the energy.
Through methods including SCF metadynamics5 and the

maximum overlap method (MOM),6 locating higher energy
stationary points has become relatively routine, and several
authors have sought to interpret these as physical excited
states.6−10 However, for many systems there exist multiple low
energy solutions that may cross as the geometry changes,
presenting a dilemma when correlation techniques require a
single reference determinant to be chosen.11 Recently there has
been increasing interest in using multiple Hartree−Fock states
as a basis for nonorthogonal configuration interaction (NOCI)
calculations, providing a more egalitarian treatment of
individual low energy SCF solutions.11−16

Since each Hartree−Fock state is itself an mean-field
optimized solution, excited configurations can be accurately
represented in the NOCI basis set.15 Consequently, NOCI also
provides an alternative to the multiconfigurational Complete

Active Space SCF (CASSCF)17 approach using an “active
space” of relevant Hartree−Fock determinants. This results in
wave functions that reproduce avoided crossings and conical
intersections at a similar scaling to the SCF method itself.11,16

Furthermore, the inherent multireference nature of NOCI
enables strong static correlation to be captured, while additional
dynamic correlation can subsequently be computed using the
pertubative NOCI-MP2 approach.18,19

Unless it is strictly enforced, there is no guarantee that SCF
solutions possess the same symmetries as the exact wave
function.20,21 Restricted Hartree−Fock (RHF) wave functions,
for example, are eigenfunctions of the spin operator S ̂2 but may
break the molecular point group symmetry at singlet
instabilities.22−24 In constrast, the unrestricted Hartree−Fock
(UHF) approach allows the wave function to break both spatial
and S ̂2 symmetry, leading to spin contaminated states
containing a mixture of singlet and triplet components.20,25,26

Alongside capturing static correlation, including symmetry
broken SCF states in a NOCI calculation allows spatial
symmetry to be restored and reduces spin contamination in a
similar style to the Projected21,27−29 and Half-Projected30−33

Hartree−Fock approaches. However, as a projection after
variation approach, NOCI retains the size consistency of the
SCF determinants to provide size-consistent approximations
for singlet and triplet wave functions.
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Crucially, NOCI requires the existence of multiple Hartree−
Fock solutions across all molecular geometries of interest to
ensure the basis set size is consistent and prevent discontinuous
NOCI energies.11,14 There is, however, no guarantee that
Hartree−Fock states must exist everywhere, and in fact they
often vanish as the geometry is varied. This is demonstrated by
the coalescence of the low energy UHF states with the ground
state RHF solution at the Coulson−Fischer point in H2,

34

although further examples are observed in a wide array of
molecular systems.35−37

To construct a continuous basis set of SCF solutions for
NOCI, Thom and Head−Gordon proposed that Hartree−Fock
states may need to be followed into the complex plane.11 We
have recently reported a holomorphic Hartree−Fock theory as
a method for constructing a continuous basis of SCF
determinants in this manner.38,39 In holomorphic Hartree−
Fock theory, the complex conjugation of orbital coefficients is
removed from the standard Hartree−Fock energy to yield a
complex differentiable function which we believe has a constant
number of stationary points across all geometries.38 Using a
revised SCF method, we have demonstrated the existence of
holomorphic UHF (h-UHF) solutions for H2, H4

2+ and H4.
39

The h-UHF states exist across all geometries, corresponding to
real Hartree−Fock solutions when these are present and
extending into the complex plane when the real states
disappear.
Despite the promise of holomorphic Hartree−Fock theory,

there is currently limited understanding about the nature of
holomorphic solutions. For example, underpinning this theory
we believe that the number of stationary points of the
holomorphic energy function is constant (including solutions
with multiplicity greater than 1), and thus states must exist for
all geometries.
In the current work, we attempt to understand the simplest

application of holomorphic Hartree−Fock theory by inves-
tigating the holomorphic RHF (h-RHF) solutions to two-
electron problems. First, we outline the key concepts of the
theory before providing a derivation for the exact number of h-
RHF states for two electrons in n basis functions. In doing so
we demonstrate that this number is constant for all geometries.
We then study the full set of h-RHF states for HZ, HHeH2+,
and HHeH (STO-3G), investigating the behavior of these
states as molecular geometry or atomic charges are varied, and
discussing the isomorphism between systems with two
electrons and two electron holes. Finally, we investigate the
h-RHF states of ethene (STO-3G) and demonstrate the
application of NOCI to its internal rotation by considering the
π and π* orbitals with frozen core and virtual orbitals as a two-
electron SCF problem.

2. HOLOMORPHIC HARTREE−FOCK THEORY

We begin with an orthonormal set of n real single-particle basis
functions, denoted {χμ}, from which the closed-shell molecular
orbitals can be constructed as

∑ϕ χ=
μ

μ μci

n

i
(1)

In standard RHF theory, to ensure orthogonality of molecular
orbitals, the orbital coefficients {cμi} are elements of a unitary
matrix

∑ δ* =
μ

μ μc c
n

i j ij
(2)

The density matrix is then constructed as Pμν = ∑i
Ncμicνi*, where

N is the number of occupied spatial orbitals, and the Hartree−
Fock energy is given by

∑ ∑ μν στ μτ σν= + + | − |
μν

μν μν
μνστ

μν στE h P h P P2 [2( ) ( )] .
n n

0

(3)

where h0 is the nuclear repulsion, hμν are the one-electron
integrals, and (μν|στ) are the two-electron integrals. RHF
solutions then exist as stationary points of eq 3 constrained by
eq 2.
Conventionally, the Hartree−Fock energy function is

considered only over the domain of real orbital coefficients.
Extending this domain to the complex plane turns eq 3 into a
function of several complex variables {cμk} and their complex
conjugates {cμk* }. However, since the dependence on {cμk* }
violates the Cauch−Riemann conditions,40 the Hartree−Fock
energy is usually interpreted as a function of the real variables
ℜ μc{ [ ]}k and ℑ μc{ [ ]}k to ensure gradients are well-defined.
Consequently, E remains a polynomial of only real variables
and we cannot expect the number of stationary points to be
constant for all geometries, as previously demonstrated in the
single variable case.38

In holomorphic Hartree−Fock, states that disappear can be
followed into the complex plane by defining a revised complex-
analytic energy as a function of the holomorphic density matrix
P̃μν = ∑i

Ncμicνi, where now the complex conjugation of orbital
coefficients has been removed. Since P̃ is a complex symmetric
matrix, its eigenvectorswhich form the holomorphic one-
electron orbitalsmust be complex orthogonal41,42 and the
orbital coefficients are elements of a complex orthogonal matrix
such that

∑ δ=
μ

μ μc c
n

i j ij
(4)

The h-RHF energy is then defined in terms of P̃ as

∑ ∑ μν στ μτ σν̃ = + ̃ + ̃ | − | ̃
μν

μν μν
μνστ

μν στE h h P P P2 [2( ) ( )]
n n

0

(5)

With no dependence on the complex conjugate of orbital
coefficients, this function is a complex analytic polynomial
which, by taking inspiration from the fundamental theorem of
algebra, we believe must have a constant number of solutions at
all geometries.38,39

3. ENUMERATING THE H-RHF STATES
The closed-shell h-RHF approach with two-electrons, described
by a single molecular orbital ϕ and n orbital coefficients {cμ},
provides the simplest system in which we can consider proving
the number of holomorphic Hartree−Fock states is constant
for all geometries. In this case, ϕ is constructed from a linear
combination of n real orthogonal basis functions as

∑ϕ χ=
μ

μ μ
=

cr r( ) ( )
n

1 (6)
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with the requirement for complex orthonormalization introduc-
ing the constraint

∑ =
μ

μ
=

c 1
n

1

2

(7)

The holomorphic restricted Hartree−Fock energy is given by
the polynomial

∑ ∑̃ = + +
μ ν

μν μ ν
μ ν σ τ

μνστ μ ν σ τ
= =

E c c h h c c h c c c c( ,..., ) 2n

n n

1 0
, 1 , , , 1

(8)

where hμνστ = 2(μν|στ) − (μτ|σν), and the h-RHF states exist as
stationary points constrained by eq 7. Identifying the number of
these stationary points can be achieved through the
mathematical framework of algebraic geometry.43

Algebraic geometry forms a vast and complex field,
encompassing the study of solutions to systems of polynomial
equations in an affine or projective space. Affine spaces provide
a generalization to Euclidean space independent of a specific
coordinate system. An n-dimensional affine space = n n is
described by the n-tuples (a1, ..., an), where ∈ ai are
coordinates of the space. Alternatively, a projective n-space

= + n n 1 is described by the (n+1)-tuples (a0, ..., an) under
the scaling relation (a0, ..., an) ∼ (λa0, ..., λan), where λ is a
nonzero scalar and the point (a0, ..., an) = 0 is excluded.43

An affine space can be viewed as the subset of a projective
space where a0 ≠ 0. In contrast, points where a0 = 0 are
referred to as “points at infinity” and allow geometric
intersection results to be consistently defined without
exceptions. For example, in 2 two lines must always intersect
exactly once unless they are parallel, while in 2 parallel lines
intersect at a point at infinity. Therefore, in the projective space
2, the intersection rule is generalized without exceptions.
Using this terminology, the spatial orbital ϕ with n basis

functions is represented by a point (c1, ..., cn) in the affine space
= n n. The holomorphic Hartree−Fock energy (eq 8) is a

function ̃ → E: n given by a polynomial of degree 4.
Satisfying the normalization constraint (eq 7) involves

restricting solutions to the hypersurface ⊆ X n defined as

∑= ∈ =
μ

μ
=

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

X c c c( ,..., ) 1n
n

n

1
1

2

(9)

Points corresponding to h-RHF states are then the vanishing
points of the differential dẼ restricted to X.
To enable a complete enumeration of these points, we must

first convert to the projective space n represented by the
points (c0, ..., cn). This is achieved through the mapping (c1, ...,
cn) (c1/c0, ..., cn/c0), converting all polynomials in the affine
coordinates {c1, ..., cn} to homogeneous polynomials in the
projective coordinates {c0, ..., cn}. Following this transformation,
the constraint becomes

∑ =
μ

μ
=

c c
n

1

2
0
2

(10)

and solutions are therefore restricted to the hypersurface

̅ ⊆ X n defined as

∑̅ = ∈ =
μ

μ
=

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

X c c c c( ,..., )n
n

n

0
1

2
0
2

(11)

The holomorphic energy can then be written as a rational

function on n

= ̃ = ̅⎛
⎝⎜

⎞
⎠⎟F c c E

c
c

c
c

E c c
c

( ,..., ) ,...,
( ,..., )

n
n n

0
1

0 0

0

0
4

(12)

where E̅ is the homogeneous version of Ẽ given by

Figure 1. Constrained projective h-RHF energy FX̅ for the n = 2 system H2 (STO-3G) at a bond length of 2.5 Å. The coordinate c0 defines the

normalization constant, representing the distance of a point from the origin, and =∂
∂

̅ 0F
c

X

0
for all c0 ≠ 0. Exploiting this invariance, every stationary

point constrained to the circle c1
2 + c2

2 = 1 (black curve) with c2 ≠ 0 can also be located as a stationary point constrained to the line c2 = 1 (blue line),
where rescaling recovers the normalized h-RHF state (dashed line). Because of the overall sign symmetry, only half the stationary points need to be
considered (filled circles vs open circles).
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∑

∑

̅ = +

+

μ ν
μν μ ν

μ ν σ τ
μνστ μ ν σ τ

=

=

E c c h c h c c c

h c c c c

( ,..., ) 2n

n

n

0 0 0
4

, 1
0
2

, , , 1 (13)

Consequently, h-RHF states exist as vanishing points of the
differential

∑= ∂
∂

+ ∂
∂μ μ

μ
=

F
F
c

c
F
c

cd d d
n

0
0

1 (14)

restricted to the hypersurface X̅.
From here, it can be shown that, including multiplicities, the

number of such vanishing points (and thus the exact number of
h-RHF solutions) is given by

= −N
1
2

(3 1)n
solutions (15)

A rigorous proof of this relationship is mathematically involved
and beyond the scope of the current communication, but will
form the focus of a future publication. Instead, here we present
a more intuitive derivation.
Consider the case of one basis function, n = 1; clearly there

are two trivial solutions at (−1) and (1) in the affine space 1.
Both points give the same density matrix and therefore describe
equivalent h-RHF states. This overall sign symmetry arises for
all h-RHF states and is henceforth implicit.
Now consider the n = 2 case, represented by a point (c0, c1,

c2) in projective space 2. The projective h-RHF energy F is
then given by

∑

∑

= +

+

μ ν
μν

μ ν

μ ν σ τ
μνστ

μ ν σ τ

=

=

F c c c h h
c c

c

h
c c c c

c

( , , ) 20 1 2 0
, 1

2

0
2

, , , 1

2

0
4

(16)

Restriction to the hypersurface X̅, in this case given by c0
2 = c1

2 +
c2
2, causes F to become equivalent to the normalized h-RHF
energy where c0 provides the normalization factor. Con-
sequently, the constrained function F X̅ is invariant to a global
rescaling of the orbital coefficients c1 and c2 and the partial

derivative ∂
∂

̅F
c

X

0
is zero for all c0 ≠ 0, as illustrated for H2 (STO-

3G) in Figure 1. Although it is possible for solutions to exist
with c0 = 0, we find these arise only when electron−electron
interactions vanish completely. We do not expect this to occur
in real molecular systems, and therefore continue our intuitive
derivation under the assumption that c0 ≠ 0 for all stationary
points.
First consider the case c2 ≠ 0. Exploiting the invariance of F X̅

to c0 allows the h-RHF solutions to be located as stationary
points along either the circle c1

2 + c2
2 = 1 (black curve in Figure

1) or the line c2 = 1 (blue line in Figure 1). Taking the latter

approach enforces dc2 = 0 and, when combined with =∂
∂

̅ 0F
c

X

0
,

the constrained differential becomes

=
∂
∂̅

̅

=

F
F
c

cd dX
X

c1 1
1

2 (17)

Since F is a fourth degree polynomial in c1, the partial derivative
∂
∂ =

̅F
c c 1

X

1
2

is third degree in c1 and has three roots, each defining

Figure 2. Constrained projective h-RHF energy FX̅ plotted on the sphere c1
2 + c2

2 + c3
2 = 1 and the plane c3 = 1 for linear H3

+ (STO-3G) at a bond
length of 2.5 Å. Nine stationary points can be located on the plane c3 = 1, as shown alongside their corresponding orbital plots. The remaining four
h-RHF states exist at the infinities of this plane, and can be located by finding the stationary points constrained to the plane c3 = 0. The bond length
has been chosen such that all solutions and their energies are real, although the results extend to geometries where complex h-RHF states are
present.
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an h-RHF state. Next we consider the case c2 = 0, recovering
the n = 1 system and yielding one further solution in the affine
space 2 at (1,0). The total number of solutions for two basis
functions is therefore 3 + 1 = 4.
We continue by adding a third basis function, represented in

3 by the point (c0, c1, c2, c3), and rotate the orbital coefficients

such that =∂
∂

̅ 0F
c

X

3
wherever c3 = 0. First consider c3 ≠ 0.

Similarly to n = 2, the h-RHF states can be located as stationary
points on either the sphere c1

2 + c2
2 + c3

2 = 1 or the plane c3 = 1,
as shown for H3

+ (STO-3G) in Figure 2. By considering the
stationary points on the plane c3 = 1, the constrained
differential dF X̅ reduces to

=
∂
∂

+
∂
∂̅

̅

=

̅

=

F
F
c

c
F
c

cd d dX
X

c

X

c1 1
1

2 1
2

3 3 (18)

The required solutions are now located by finding the common
intersections of the third degree homogeneous polynomials

∂
∂

=
∂
∂

=̅

=

̅

=

F
c

F
c

0 and 0X

c

X

c1 1 2 13 3 (19)

Beźout’s Theorem states that the number of common
intersections of n homogeneous polynomials in the projective
space n is given by the product of the degrees of each
polynomial.43 Consequently, the number of solutions to eq 19
is given by 3 × 3 = 9, yielding nine h-RHF states with c3 ≠ 0.
We continue by considering the case in which c3 = 0 and
recover a system of two basis functions analogous to Figure 1.
This regime yields a further 3 + 1 = 4 solutions, and thus the
total number of h-RHF states for n = 3 is 9 + 3 + 1 = 13.
We can iteratively extend this argument to a general two-

electron system with n basis functions and find the number of
solutions is given by

∑=
=

−

N 3
i

n
i

solutions
0

1

(20)

Expressing this geometric series in a closed form then recovers
eq 15. Crucially, both this intuitive derivation and the more
rigorous proof are independent of the nuclear repulsion, one-
and two-electron integrals. Therefore, the number of h-RHF
solutions depends only on the number of basis functions and
every solution must be conserved as the geometry or atomic
charges of a system are varied.
It is important to note that eq 15 may include solutions with

a multiplicity greater than one, for example exactly when states
coalesce at the Coulson−Fischer point. Alternatively, it is
possible for continuous lines or planes of solutions in the
orbital coefficient space to exist. We believe this will occur for
systems with degenerate basis functions, for example molecules
with cylindrical symmetry; however, an infinite number of
solutions can be avoided by forcing the single-particle orbitals
to transform as an irreducible representation of the molecular
point group.
We also note that eq 15 has previously been identified by

Stanton as an upper bound on the number of real closed-shell
Hartree−Fock solutions for two-electron systems.44 Stanton
arrived at this result geometrically for the n = 2 case, but was
restricted to considering the n ≥ 3 case in the zero differential
overlap limit, where

δ=μν μν μμh h (21)

and

μν στ δ δ μμ σσ| = |μν στ( ) ( ) (22)

In contrast, employing the algebraic geometry approach
presented above yields an entirely generalized geometric
proof. Furthermore, our approach proves that eq 15 provides
not only an upper bound on the number of real RHF solutions,
but also the exact number of h-RHF states for two-electron
systems. We believe that using algebraic geometry will
subsequently enable the number of holomorphic solutions to
be computed for both unrestricted or many electron systems,
however there may be challenges in obtaining a general closed
formula for these cases.

Figure 3. Four h-RHF states for HZ (STO−3G) are located for all bond lengths and charges QZ. Each h-RHF state corresponds to a real RHF state
(red/solid) where such states exist. h-RHF states with complex orbital coefficients (magenta/dashed) form in complex−conjugate pairs with
degenerate standard Hartree−Fock energies. In the case of QZ = 2.00 au, corresponding to HHe+ a pair of degenerate states exist with complex
coefficients across all geometries.
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Finally, we note that the number of h-RHF states predicted
by eq 15 is much larger than the dimension of the full
configuration interaction (FCI) space for two-electrons, given
by n2. However, the nonorthogonality of different SCF
solutions allows each state to span multiple FCI determinants,
enabling a more compact description of the Hilbert space
through a small number of relevant h-RHF states.

4. CLOSED-SHELL STATES OF HZ IN STO-3G
Since the number of h-RHF states for two-electron systems
depends on only the number of basis functions, any pair of
distinct two-electron systems with the same number of basis
functions can be smoothly interconverted by either moving the
basis function centers (e.g. changing structure) or adjusting the
atomic charges (e.g. changing atoms). This concept can be
demonstrated by considering the h-RHF solutions of the HZ
molecule using the STO-3G basis set. Varying the nuclear
charge of the hydrogenic Z atom, QZ, between 0 and 2, enables
the smooth interconversion along the isoelectronic sequence
H− → H2 → HHe+.45 This simple system is of particular
interest as an archetypal model for the qualitative nature of the
h-RHF states in symmetric and asymmetric diatomics.
The sole occupied spatial orbital is expressed in terms of the

RHF rotation angle θ describing the degree of mixing between
the 1s atomic orbitals on H and Z,

ϕ θ π χ θ π χ= − + −⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠r r r( ) sin

4
( ) cos

4
( )1s,H 1s,Z (23)

With two basis functions, eq 15 dictates that four h-RHF states
exist for all bond lengths RHZ and values of QZ.
We begin by considering the case where QZ = 1.00 au,

corresponding to H2, and plot the conventional Hartree−Fock
energy of each h-RHF solution from RHZ = 0.5 Å to RHZ = 4.0
Å in Figure 3 (left panel). In the dissociation limit, each
solution has real orbital coefficients and corresponds to a real

Hartree−Fock state (red/solid), representing the σg
2, σu

2, and
degenerate ionic H+−Z− and H−−Z+ states in order of
ascending energy. As the internuclear distance is reduced, the
ionic states coalesce with the σu

2 state at a Hartree−Fock
instability threshold and disappear at shorter bond lengths. In
contrast, the corresponding h-RHF solutions continue to exist
with complex orbital coefficients (magenta/dashed), forming a
degenerate pair related by complex conjugation. Significantly,
although the conventional Hartree−Fock energy of these states
appears kinked at the coalescence point, their path through
orbital coefficient space is both smooth and continuous, and it
is this property that is essential for NOCI. Using the
classification of Hartree−Fock singlet instability thresholds
developed by Mestechkin,22−24 the coalescence point for Qz =
1.00 au can be identified as a “confluence” point, where two
maxima converge onto a minimum, as shown in Figure 4a.
In contrast, the molecular symmetry is broken by moving to

QZ = 1.15 au (middle panel of Figure 3), lifting the degeneracy
of the ionic states and leading to the coalescence of only the σu

2

and H+ − Z− states at a “pair annihilation” point. Beyond this
point, both real RHF solutions disappear while, again, their h-
RHF counterparts continue as a complex degenerate pair. The
existence of complex h-RHF states arising at this pair
annhilation point indicates the applicability of holomorphic
Hartree−Fock for vanishing states in asymmetric diatomics
including LiF.11

As QZ is increased further, the coalescence point occurs at
increasing bond lengths until eventually only two real Hartree−
Fock solutions exist across all geometries, as demonstrated for
QZ = 2.00 au (right panel of Figure 3). The remaining two h-
RHF solutions form a degenerate pair with complex orbital
coefficients across all geometries. Although no electronic state
appears to correspond to these complex solutions, they can be
smoothly evolved into real states with physical significance by
varying QZ, as shown in Figure 5. Consequently, we believe

Figure 4. Conventional Hartree−Fock energy plotted as a function of the RHF rotation angle, θ (eq 23) for QZ = 1.00 au and QZ = 1.15 au. (a)
When QZ = 1.00 au the molecule possesses ∞h symmetry and the ionic solutions simultaneously converge with the σu

2 state, disappearing at a triply
degenerate A3 cusp catastrophe in a pitchfork bifurcation. (b) For QZ = 1.15 au the molecular symmetry becomes ∞v, decomposing the pitchfork
bifurcation into a primary branch and two secondary modes that coalesce and disappear at a doubly degenerate A2 fold catastrophe.
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these states should be considered as “dormant” analytic
continuations of real states.

The field of catastrophe theory allows the nature of real RHF
coalescence points in HZ to be comprehensively understood as
both QZ and RHZ are varied. Catastrophe theory provides a
framework for qualitatively investigating stationary points for
potentials that depend on a certain set of system control
parameters.46 Generally, applications focus on degenerate
equilibrium points where one or more higher derivatives of
the potential function are zero, referred to as non-Morse critical
points. Expanding the potential at these points as a Taylor
series in small perturbations of the parameters allows the

degeneracy to be lifted in a process referred to as “unfolding”.
For one-dimensional potentials, this allows any non-Morse
critical point to be classified as one of only seven “elementary
catastrophes”.47

In HZ, the number of stationary points of the conventional
Hartree−Fock energy is controlled by two physical parameters
RHZ and QZ, and we consider the behavior of stationary points
around RHZ = 1.19 Å, QZ = 1.00 au, and θ = 0, corresponding to
the RHF confluence point of H2. When QZ = 1.00 au, the
confluence point is a triply degenerate non-Morse critical point
and the RHF solutions disappear in a pitchfork bifurcation as
shown in Figure 4a. In contrast, for QZ ≠ 1.00 au the pair
annihilation point corresponds to a doubly degenerate non-
Morse critical point and the pitchfork bifurcation is broken into
a primary branch, existing across all geometries, and two
secondary solutions which coalesce and disappear, as shown in
Figure 4b.
Simultaneously considering the stationary points as both RHZ

and QZ are varied reveals the related elementary catastrophe to
be a triply degenerate cusp or A3 catastrophe.

46 In contrast, pair
annihilation points correspond to doubly degenerate fold or A2
catastrophe. This identification indicates fold catastrophes are
significantly more widespread than cusp catastrophes in
molecular systems, with the simultaneous convergence of
three RHF states in H2 arising directly from the additional
plane of symmetry. Despite this, the existence of complex h-
RHF solutions for each case in Figure 3 demonstrates that
holomorphic Hartree−Fock states will always exist regardless of
the molecular symmetry or the nature of the singlet instability.

5. ISOMORPHISM OF HHeH2+ AND HHeH

We now consider the two-electron linear HHeH2+ molecule
using the STO-3G basis set. As a system with three basis
functions, eq 15 predicts 13 h-RHF states, plotted across a
range of symmetric bond lengths in Figure 6a. Similarly to H2,
HHeH2+ possesses ∞h symmetry and thus the disappearance
of the high energy real RHF states occurs at a triply degenerate

Figure 5. Four h-RHF solutions of HZ (STO−3G) are plotted against
the nuclear charge QZ for a bond length of 2.50 Å, showing the smooth
interconversion between the complex h-RHF states of HHe+ (at QZ =
2.00 au) and H2 (at QZ = 1.00 au). Two h-RHF states of HHe+ that
exist with complex coefficients for all bond lengths are seen to
smoothly interconvert with real h-RHF states of H2 as QZ is varied.

Figure 6. Thirteen h-RHF states for (a) HHeH2+ and (b) HHeH in STO-3G for a range of symmetric H−He bond lengths. Six solutions have
complex coefficients across all bond lengths, arising in degenerate complex-conjugate pairs. At around 0.7 Å in HHeH2+ and around 0.9 Å in HHeH,
two pairs of complex solutions coalesce to form a 4-fold degenerate set of complex h-RHF states.
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cusp A3 catastrophe. Beyond this point, the corresponding h-
RHF states become complex, forming a degenerate pair related
by complex conjugation. Eight further dormant solutions
similar to those seen in HHe+ exist with complex coefficients
across all geometries. Furthermore, at R = 0.5 Å we observe the
convergence of two pairs of degenerate complex h-RHF states
to form a set of four degenerate complex solutions.
Mathematically, systems with two electrons or two electron

holes in the n basis functions are isomorphic and have the same
number of h-RHF states. The HHeH2+ and HHeH systems in
STO-3G provide one of the simplest examples, as shown in
Figure 6. In both cases there are 13 h-RHF states across the all
molecular geometries including eight dormant states. Again, in
HHeH the coalescence of two pairs of degenerate complex h-
RHF states to form a set of four degenerate complex solutions
can be observed at R = 0.7 Å. Although the relative standard
Hartree−Fock energies of the states in HHeH are in the reverse
order to those in HHeH2+, the qualitative behavior of solutions
at coalescence points is equivalent and arises between the same
pairs of h-RHF states.
Exploiting this isomorphism allows eq 15 to be extended to

systems with 2n − 2 electrons. To our knowledge, only
Fukutome has previously attempted to enumerate the Hartree−
Fock states for a general multiple electron system.48 Fukutome
expressed the Hartree−Fock problem as a density matrix
equation to obtain lower and upper bounds on the number of

complex Hartree−Fock solutions as 2K and 2(n
2−K), where K =

min(N, n − N). To represent closed-shell systems with two-
electron holes we take N = n−1 and K = 1, and thus
Fukutome’s result predicts lower and upper bounds of 2 and

2(n
2−1) = 1/2 × 4n, respectively. Since all real Hartree−Fock

solutions are simultaneously also complex and holomorphic
Hartree−Fock solutions, both Fukutome’s expression and eq
15 provide independent upper bounds on the number of real
RHF states. Consequently, our result of 1/2 × (3n − 1) provides

a significantly reduced upper bound on the number of real RHF
states in these systems.

6. ROTATION OF ETHENE

Although the examples presented in sections 4 and 5 provide
insightful models for understanding the emergence of h-RHF
solutions, we are not restricted to molecular systems containing
only two electrons. The properties and reactivity of many
molecules are dominated by a subset of only two electrons
which, by freezing the remaining core electrons, can also be
considered as two-electron problems. The electronic energy
levels in the rotation of ethene, for example, depend strongly
on the two-electron, two-center π bond.
Starting with an orthogonal basis set composed of the STO-

3G ground state RHF molecular orbitals at the optimized
planar 2h geometry, we select the b3u (π) and b2g (π*)
orbitals as an active pair and freeze the remaining core electrons
and virtual orbitals. An h-RHF calculation using the π electrons
in this active space reduces the system to a two-electron
problem in two basis functions, yielding four solutions through
eq 15. Because of the symmetry equivalence of the carbon
centers, the h-RHF states resemble those of H2, corresponding
at dissociation to the (π)2 and (π*)2 configurations and the
degenerate symmetry broken H2C

+−C−H2 and H2C
−−C+H2

ionic states. As the carbon−carbon bond length RCC is
shortened, the ionic states coalesce with the (π*)2 state at
around RCC = 1.29 Å in a triply degenerate A3 cusp catastrophe
analogous to Figure 4a.
The evolution of the h-RHF states as the torsion angle ϕT

varies for RCC = 1.256 Å is shown in Figure 7a. As ϕT increases
or decreases from the 90° perpendicular structure ( 2d)
toward the planar geometry, the ionic states simultaneously
coalesce with the antibonding (π*)2 state at two A3 cusp
catastrophes located at around ϕT = 45° and 135°. This mirrors
a previous analysis by Fukutome.49 Beyond these singlet

Figure 7. Four h-RHF states for two electrons in the space of π and π* orbitals of CH2XH2 (STO-3G) freezing the remaining core electrons and
virtual orbitals at a C−X bond length of RCC = 1.256 Å. X is a carbon-like atom with nuclear charge QX. At ϕT = 90°, every h-RHF solution
corresponds to a real RHF state (red/solid). As ϕT moves toward 0° or 180°, real RHF states coalesce while h-RHF solutions continue with complex
orbital coefficients (magenta/dashed). Breaking the molecular symmetry splits the degeneracy of the high energy ionic states, changing the
coalescence points from triply degenerate A3 cusp catastrophes to doubly degenerate A2 fold catastrophes.
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instability points, the related h-RHF states continue to exist

with complex orbital coefficients.
Similarly to HZ, breaking of the molecular symmetry can be

modeled by replacing one carbon with a carbon-like nucleus X

containing six electrons and a variable nuclear charge QX.

Increasing QX from 6.0 au splits the degeneracy of the ionic

states, leading to the coalescence of only the (π*)2 and H2X
−−

C+H2 states at two doubly degenerate A2 fold catastrophes that
shift toward ϕT = 90°, as shown for QX = 6.1 au in Figure 7b.
The critical manifold, sketched in Figure 8, demonstrates the

evolution of these coalescence points over all possible variations
of RCC, ϕT, and QX. For very short RCC there exist only two real
RHF states for all ϕT and QX. As the bond length increases, two
A3 cusp catstrophes emerge in the plane QX = 6 au from an A3

+

cusp creation point.50 These symmetry related A3 catastrophes

Figure 8. Sketch of the critical manifold (left) showing the types of coalescence points between real RHF solutions in ethene and their dependence
on the molecular control parameters RCC, ϕT and QX. Sections through the critical manifold (right) demonstrate the dependence of these
coalescence points on ϕT, and QX at various values of RCC. Doubly and triply degenerate coalescence points correspond to A2 fold and A3 cusp
catastrophes, respectively. Two cusp catastrophes emerge from an A3

+ cusp creation catastrophe and recombine at an A3
− cusp annihilation

catastrophe. Within the conoidal structure (shaded) there exist four real RHF states while outside there are only two.

Figure 9. Lowest four h-UHF (blue/cyan) and four h-RHF (red/magenta) states located using two electrons in the π and π* orbitals of ethene
(STO-3G) with a frozen core and virtual approximation. At this bond length, the h-UHF states have real orbital coefficients (blue) across all torsion
angles ϕT. The C−H and C−C bond lengths and angles are fixed at their optimal values and the virtual orbitals are relaxed as ϕT varies between 0°
and 180°. Using these solutions as a basis for NOCI recovers the 1B1,

3A2, and
1B2 states (green), predicting the crossing of the lowest energy singlet

and triplet surfaces in agreement with the exact FCIQMC results for the STO-3G basis set.
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are connected by two A2 fold catastrophes when QX ≠ 6 au.
Further increasing RCC causes the A3 catastrophes to move
away from ϕT = 90° until they recombine at ϕT = 0° (or the
symmetry related point ϕT = 180°) at an A3

− cusp annhilation
point.50 At larger bond lengths there are no coalescence points
for QX = 6 au while the two A2 fold catastrophes remain when
QX ≠ 6 au.
We next use these states as a basis for NOCI to investigate

the multireference energy levels as ϕT varies, while retaining the
STO-3G optimized bond lengths and angles. Increasing ϕT
from 0° to 90° causes the energies of the bonding π and
antibonding π* orbitals to converge, forming a degenerate e
molecular orbital pair. Consequently, the perpendicular 2d
structure consists of the nearly degenerate 1B1 and

3A2 states
accompanied by the higher energy 1B2 and 1A1 states. These
correlate respectively to the 1Ag,

3B1u,
1B1u, and

1Ag states at the
planar 2h geometry.
The correct ordering of the 1B1 and

3A2 states has long been
a subject of particular interest, with general valence bond51 and
multiconfigurational SCF52−55 calculations both indicating that
the 1B1 state lies below the 3A2 state in a rare violation of
Hund’s rules.56,57 To capture the triplet states using NOCI,
spin contaminated h-UHF solutions must be included in the
basis set. For this particular case where n = 2, our formal
mathematical treatment indicates a further four h-UHF states
exist across all geometries. Retaining the frozen core and virtual
orbital approximations, these additional h-UHF solutions have
real orbital coefficients for all ϕT, corresponding to the diradical
states and the (π)1 (π*)1 configurations. Unfreezing the virtual
orbitals and relaxing the SCF states then allows the inclusion of
hyperconjugation with the C−H σ* orbitals. Using these eight
solutions, the three lowest NOCI energy levels are computed as
shown in Figure 9. With this basis set and carbon−carbon bond
length only the ionic h-RHF states become complex, however
including these states is essential to prevent discontinuities in
the singlet NOCI energy levels.
The NOCI results presented in Figure 9 indicate that the 3A2

state lies below the 1B1 state at the 90° transition structure, as
predicted by Hund’s rules.56,57 However, Schmidt et al. note
that such results can arise when only the two π electrons are
correlated53for example in the two-configuration SCF
calculations of Yamaguchi et al.58while the correct ordering
requires correlation with the core electrons to be included. To
verify our NOCI results, we compute the exact, fully correlated
energies of the 1B1 and

3A2 states within the STO-3G basis set
using Full Configuration Interaction Quantum Monte−Carlo
(FCIQMC)59 and obtain energies of −76.98253(5) Eh and
−76.98833(5) Eh, respectively, confirming the ordering
predicted by NOCI. Further comparison with the FCIQMC
results indicates that, despite only including 8 out of 1.1 × 107

determinants from the full Hilbert space, NOCI captures 93%
and 92% of the 1B1 and

3A2 correlation energies.
Although these NOCI energy levels suggest the 1B1 and

3A2
states do cross in the rotation of ethene, it is important to
remember that this is a minimal basis set calculation ignoring
any geometrical relaxation for the triplet 3A2 state or the
nonplanar structures. Regardless, it is reassuring to observe the
qualitative accuracy of NOCI within the STO-3G basis set
approximation using a minimal number of determinants and a
frozen core approximation. Furthermore, the occurrence of
complex h-RHF solutions as the molecular control parameters
vary highlights the important role of holomorphic Hartree−

Fock theory if NOCI is to be applied over all ranges of
molecular geometries and compositions.

7. COMPUTATIONAL DETAILS

Calculations to locate h-RHF and h-UHF solutions were
performed using a holomorphic analogue to the Geometric
Direct Minimisation60 method implemented with processing
from SciPy.61 FCIQMC energies were obtained using the
HANDE 1.162 stochastic quantum chemistry package. All one-
and two-electron integrals were computed in Q-Chem 4.363

while all figures were plotted using Matplotlib.64

8. CONCLUSIONS

In this work we have highlighted the properties and behavior of
h-RHF solutions for two-electron problems. By formulating the
h-RHF problem in the framework of algebraic geometry, the
exact number of h-RHF states (counted with multiplicity) has
been identified as 1/2(3

n − 1), where n is the number of basis
functions. Consequently, h-RHF states exist for all geometries
and atomic charges, and always provide a continuous basis for
NOCI. Furthermore, this expression provides an upper bound
on the number of real RHF states, rigorously proving the result
obtained by Stanton.44 We believe that algebraic geometry will
also yield a generalized result for unrestricted or multiple
electron systems, although it may be challenging to obtain a
closed formula for these cases.
Through an in-depth study of HZ, HHeH2+, HHeH, and

ethene we have demonstrated the behavior of h-RHF states as
molecular geometry or atomic charges are changed. For HZ
and ethene, the presence of molecular symmetry determines
whether real RHF states coalesce at a triply degenerate
confluence or a doubly degenerate pair annihilation point,
although complex holomorphic states emerge in both cases. By
applying the generalized framework of catastrophe theory, we
have illustrated the influence of molecular control parameters
including geometry and atomic compositions on the type of
these coalescence points. Moreover, we have identified dormant
h-RHF states with complex orbital coefficients across all
geometries. These states are not observed in standard Hartree−
Fock but can be smoothly evolved into real RHF states by
changing geometry or atomic charges and represent analytic
continuations of the corresponding real RHF states.
Further investigating the h-RHF states of HHeH2+ and

HHeH in STO-3G demonstrates the isomorphism between
systems with two electrons and systems with two electron
holes. Exploiting this isomorphism allows the number of h-
RHF states to be identified for both types of system. A
comparison to the upper bound of 1/2 × 4n real RHF states
obtained by Fukutome48 indicates that the number of h-RHF
states provides a new reduced upper bound for systems with
two electron holes.
Finally, by considering the π electrons in ethene as a two-

electron problem, we have used the four h-RHF states and four
h-UHF as a basis for NOCI to identify a crossing of the lowest
energy singlet and triplet states at a torsion angle of 90°. A
comparison with the exact STO-3G energies computed using
FCIQMC then verifies this result within the basis set
approximation, demonstrating the potential of combining
holomorphic Hartree−Fock theory and NOCI.
Ultimately, the understanding on the nature of h-RHF

solutions developed in this study provides a stronger platform
for exploiting holomorphic states as a basis for NOCI, while
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also providing insight into the nature of Hartree−Fock states in
general.
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