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Fermionic systems differ from bosonic ones in several ways, in particular the time-reversal operator T is odd,
T 2 = −1. For PT -symmetric bosonic systems, the no-signaling principle and the quantum brachistochrone
problem have been studied to some degree, both of them controversially. In this paper, we apply the basic
methods proposed for bosonic systems [Y. Lee et al., Phys. Rev. Lett. 112, 130404 (2014); C. M. Bender et al.,
ibid. 98, 040403 (2007)] to fermionic two- and four-dimensional PT -symmetric Hamiltonians and obtain several
surprising results: We find, in contrast to the bosonic case, that the no-signaling principle is upheld for two-
dimensional fermionic Hamiltonians; however, the PT symmetry is broken. In addition, we find that the time
required for the evolution from a given initial state, the spin up, to a given final state, the spin down, is a
constant, independent of the parameters of the Hamiltonian, under the eigenvalue constraint. That is, it cannot,
as in the bosonic case, be optimized. We do, however, also find a dimensional dependence: Four-dimensional
PT -symmetric fermionic Hamiltonians considered here again uphold the no-signaling principle, but it is not
essential that the PT symmetry be broken. The symmetry is, however, broken if the measure of entanglement
is conserved. In the four-dimensional systems, the evolution time between orthogonal states is dependent on
the parameters of the Hamiltonian, with the conclusion that it again can be optimized and approach zero under
certain circumstances. However, if we require the conservation of entanglement, the transformation time between
these two states becomes the same constant as that found in the two-dimensional case, which coincides with the
minimum time for such a transformation to take place in the Hermitian case.
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I. INTRODUCTION

Since the seminal work of Bender and Boettcher [1], the
properties of systems with PT symmetry have been studied
extensively and have led to important insights [2]. For the
most part, these studies encompass bosonic systems, where
time-reversal symmetry T is represented simply by complex
conjugation. For fermionic systems, the situation is more com-
plicated: The fact that T 2 = −1 leads to essential differences
in the formulation and the possible outcomes. One notes, for
example, that if a PT -symmetric Hamiltonian H describing
fermions has a real eigenvalue, then H has a corresponding
degenerate pair of eigenvectors ψ and PT ψ , which is a
consequence of Kramer’s theorem for conventional quantum
mechanics. Non-Hermitian fermionic systems have been stud-
ied within the wider framework of pseudo-Hermiticity [3].

In a previous paper, we constructed two- and four-
dimensional representations of the PT - and CPT -symmetric
fermionic algebras [4] and constructed a many-body second-
quantized non-Hermitian PT -symmetric Hamiltonian mod-
eled on quantum electrodynamics, which we were able to
solve exactly. Based on the knowledge gained in that work, we
now study two current problems of fermionic systems, which
previously have been discussed only for bosons, notably quite
controversially in the literature. These are (a) The no-signaling
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principle and (b) the quantum brachistochrone problem. Both
have a common technical feature: The time-evolution operator
for a non-Hermitian PT -symmetric Hamiltonian must be
considered. We discuss these problems in turn.

A. The no-signaling principle

Lee et al. [5] initiated the discussion of the no-signaling
principle by studying a two-dimensional bosonic locally PT -
symmetric Hamiltonian H2×2 attributed to Alice combined
with a two-dimensional Hermitian Hamiltonian attributed to
Bob, the latter taken trivially to be 1. The combined system is
then given as Htot = H2×2 ⊗ 1. Both parties start out with an
initial maximally entangled state, given by |ψ〉 = (1/

√
2)(| +x

+x〉 + | −x −x〉), where |±k〉 are the eigenstates of the Pauli
matrices σk , k = x, y, z. They then evaluate the no-signaling
condition [6,7],∑

a

P (a, b|A+, B ) =
∑

a

P (a, b|A−, B ) = P (b|B ), (1)

where a and b are the measurement outcomes of our two space-
like separated parties Alice and Bob and A± and B are different
local measurements done by Alice and Bob on their respective
sides. This condition means that the probability distribution of
Bob over his measurement outcomes is unaffected by Alice’s
choice of measurements on her side.

The first assumption made is that a local PT -symmetric
(bosonic) Hamiltonian can coexist with a Hermitian Hamilto-
nian. The second, and perhaps more surprising assumption, is
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that the authors assume that the postmeasurement probabilities
that must be computed in evaluating (1) should be performed
within the framework of a conventional Hilbert space pre-
scription, using a standard Dirac inner product. These authors
find that if one requires the condition

∑
a P (a, b|A+, B ) =∑

a P (a, b|A−, B ) to be respected, Alice’s Hamiltonian is
forced to be Hermitian. They thus conclude that the no-
signaling principle is violated for all 2 × 2 (nontrivial) PT -
symmetric Hamiltonians with even time reversal, T 2 = +1.
Although they do not prove it explicitly, they claim that the
use of a CPT inner product does not cure this problem.

Subsequent to this, in a detailed calculation, Japaridze
et al. [8] revisited this problem and concluded that the calcula-
tions, redone using the CPT inner product for the evaluation
of the probabilities, in fact do preserve the no-signaling
principle. In the further literature, Brody [9] discussed the
physical applicability of the claims of [5] and demonstrated
the consistency of PT -symmetric quantum mechanics with
special relativity through the proposal that the metric operator
on Hilbert space is not an observable. In other words, the
author claimed that there is no statistical test that can be
performed on the outcomes of measurements with the aim
of distinguishing between Hermiticity and PT symmetry of
a given Hamiltonian, at least for closed systems in finite
dimensions.

In the work presented in this paper, we return to the ansatz
of [5] and ask the question of how the outcomes will differ
for fermionic systems. To this end, we perform calculations
for both 2 × 2 and 4 × 4 PT -symmetric fermionic matrix
Hamiltonians. We arrive at the surprising results that the
no-signaling principle, as discussed in the formalism of [5],
is upheld, even with the unusual calculational constraints of
using the conventional Dirac inner product. In addition, we also
discuss this by calculating the marginal probabilities and also
show that the measure of entanglement is conserved. However,
we find that PT symmetry is broken in the two-dimensional
case, while this symmetry breaking is not essential in four
dimensions unless the requirement of conservation of the
entanglement is imposed: In this case, the PT symmetry of
the Hamiltonian is broken.

B. The PT -symmetric fermionic quantum
brachistochrone problem

The quantum brachistochrone problem is an attempt to find
the minimal time required to transform a given initial state
to a given final state in a system governed by a parametrized
Hamiltonian H , while the difference between the largest and
smallest eigenvalues is held fixed [10,11]. This has been
studied by Bender et al. [10], who chose a (bosonic) PT -
symmetric matrix Hamiltonian and studied the optimal time
required to evolve a spin-up state to a spin-down one. These
authors found the intriguing result that the evolution time can
approach zero, provided that the elements of the Hamiltonian
are extremely large.

For our case, we find a surprising result, viz., that the
time to transform a spin-up state to a spin-down one, under
the same eigenvalue constraint, is a constant, independent
of the parameters of the Hamiltonian. This constant is the
same as the optimal time for such a transformation in the

Hermitian case [10]. We make the crucial observation that in
the two-dimensional case, the spin-up and spin-down states
are, in fact, orthogonal to each other with respect to the CPT
inner product. In four dimensions this is not the case, and then
a dependence on the parameters of the Hamiltonian arises,
so that the required time can be optimized and can be made
arbitrarily small. However, if we take the conservation of the
entanglement into account, the transformation time becomes
the same constant as in the two-dimensional case.

This paper is structured as follows. In Sec. II, we discuss the
no-signaling principle and the quantum brachistochrone prob-
lem for the 2 × 2 PT -symmetric fermionic Hamiltonians. In
Sec. III both are elucidated for the 4 × 4 case. We provide some
further notes on PT -symmetric quantum state discrimination
in Sec. IV and make some concluding remarks in Sec. V.

II. TWO-DIMENSIONAL MODEL

A. No-signaling principle

A general PT -symmetric fermionic two-dimensional
Hamiltonian is described by [4]

H =
(

α β

γ α

)
(α, β, γ real), (2)

which is self-adjoint with respect to the PT inner product for
fermions, and it commutes with PT .

We recall that the fermionic PT inner product is defined
as [12]

〈φ|ψ〉PT = (PT φ)T Zψ, (3)

where the parity P , being a linear operator, can be represented
by a matrix S as Pψ = Sψ , and time-reversal T , being an
antilinear operator, can be represented by a matrix Z combined
with the complex conjugation operation, i.e., T ψ = Zψ∗.

Alice and Bob are two spacelike separated parties who wish
to communicate with each other without using any classical
protocol. Without loss of generality, we can assume that Alice’s
system is governed by a special case of (2) as

H =
(

1 sin α

cos α 1

)
, (4)

and Bob’s is governed by the identity matrix. The two parties
do not interact with each other.

The eigenvalues of (4) read

λ± = 1 ±
√

1
2 sin 2α, (5)

with the corresponding eigenvectors

|λ+〉 = 1√
2

(
4
√

tan α
4
√

cot α

)
,

|λ−〉 = 1√
2

(
4
√

tan α

− 4
√

cot α

)
.

The eigenvalues of H in (5) are real, provided that sin 2α > 0.
This inequality defines the region of unbroken PT symmetry.

We note that the eigenvectors of H are not orthogonal to
each other with respect to the conventional Dirac inner product,
however, it is easy to establish that 〈λ−|λ+〉PT = 0.

022105-2



No-SIGNALING PRINCIPLE AND QUANTUM … PHYSICAL REVIEW A 98, 022105 (2018)

The time-evolution operator regarding Alice’s Hamiltonian
can be evaluated as

U = e−iH t = − 2i√
2 sin 2α

e−iπ/ω

(
0 sin α

cos α 0

)
, (6)

where ω = λ+ − λ− and we have set t = π/ω.
If Alice performs the measurement 1 with respect to the

information that she wants to send to Bob, the state vector of
the composite system of Alice and Bob after t = π/ω evolves
to

|ψ+
f 〉 = (U1 ⊗ 1)|ψ〉, (7)

where |ψ〉 is the shared maximally entangled state described
in terms of the eigenvectors of σx as

|ψ〉 = 1√
2

(|+x〉 ⊗ |+x〉 + |−x〉 ⊗ |−x〉), (8)

which is used by the two parties to discuss their communication
protocol beforehand.

The measure of entanglement [13],

E = −trA(ρA log2 ρA) = −trB (ρB log2 ρB ), (9)

implies that E(ψ ) = 1, where

ρA = ρB = 1

2

(
1 0
0 1

)
. (10)

Thus, the final state reads

|ψ+
f 〉 = −ie−iπ/ω

⎛
⎜⎝

0
sin α

cos α

0

⎞
⎟⎠. (11)

We note that (11) is normalized with regard to the conventional
Dirac inner product for Hermitian quantum mechanics.

Now, if Alice performs the measurement σx , the final state
of the composite system after t = π/ω becomes

|ψ−
f 〉 = (Uσx ⊗ 1)|ψ〉, (12)

which is given explicitly as

∣∣ψ−
f

〉 = −ie−iπ/ω

⎛
⎜⎝

sin α

0
0

cos α

⎞
⎟⎠, (13)

where it is normalized as before.
Bob’s density matrix when Alice performs the measurement

1 is

ρ+
B = TrA(|ψ+

f 〉〈ψ+
f |), (14)

which takes the form

ρ+
B =

(
cos2 α 0

0 sin2 α

)
. (15)

For Alice’s second measurement, Bob’s density matrix reads

ρ−
B =

(
sin2 α 0

0 cos2 α

)
. (16)

In order for the no-signaling principle to be respected, Bob’s
density matrix should not be dependent on Alice’s choice of

measurements, that is,

ρ+
B = ρ−

B , (17)

which can be fulfilled if cos α = − sin α, implying that Alice’s
Hamiltonian, (4), is still non-Hermitian and PT symmetric.
However, the symmetry is broken.

Now, if Alice and Bob measure their corresponding subsys-
tems with the conventional quantum projectors |±y〉〈±y |, we
find

P (a, b|A±, B ) = 〈ψ±
f |(|a〉〈a| ⊗ |b〉〈b|)|ψ±

f 〉 (18)

for the joint probabilities, where A± correspond to the mea-
surements 1 and σx , performed by Alice, and a and b are the
possible outcomes ±y , i.e., the eigenvectors of σy .

The two marginal probabilities are found to be∑
a=±y

P (a,+y |A+, B ) =
∑
a=±y

P (a,+y |A−, B ) = 1

2
. (19)

The above calculation shows that Bob’s probability distribution
over his local measurement outcomes is not altered by Alice’s
choice of measurements on her side; that is to say, the no-
signaling principle is respected.

We conclude that whether the symmetry is broken or not,
Alice’s Hamiltonian remains PT symmetric without violating
the no-signaling principle.

As a side remark, we note that the measure of entanglement
is also conserved. Our starting point was a maximally entangled
state, and in the end we still have a maximally entangled one.
To see this, first, we obtain Bob’s reduced density matrix ρB .
To do so, we calculate the density matrix of the composite
system after time t = π/ω, that is,

ρ = 1
2 (|ψ+

f 〉〈ψ+
f | + |ψ−

f 〉〈ψ−
f |), (20)

which reads

ρ = 1

2

⎛
⎜⎜⎝

sin2 α 0 0 sin α cos α

0 sin2 α sin α cos α 0
0 sin α cos α cos2 α 0

sin α cos α 0 0 cos2 α

⎞
⎟⎟⎠.

(21)

By taking the partial trace over A, we obtain ρB as

ρB = 1

2

(
1 0
0 1

)
. (22)

Equation (9) implies that the entanglement measure is still
unity, although our time-evolution operator (6) is not unitary
in the context of conventional Hermitian quantum mechanics.

B. Quantum brachistochrone problem

Given the initial and final states, we now investigate which
PT -symmetric fermionic two-dimensional matrix Hamilto-
nian H can achieve the transformation between these two
states in the least time, provided that the difference between
the largest and smallest eigenvalues of H is held fixed. To
approach this problem, one can determine the optimal time for
the Hamiltonian acting in the subspace spanned by the given
initial and final states [14].

First, we note that the difference between the largest and the
smallest eigenvalues of (2), that is, the eigenvalue constraint
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E+ − E− = �, reads

� = 2
√

βγ . (23)

Here �2 is positive if the symmetry is unbroken.
The time-evolution operator with regard to (2) is

U = e−iH t

= e−iαt

⎛
⎝ cos 1

2�t −i
√

β

γ
sin 1

2�t

−i
√

γ

β
sin 1

2�t cos 1
2�t

⎞
⎠.

(24)

The initial state, chosen arbitrarily to be spin up, |ψ0〉 = ( 1
0 ),

evolves to the final state, |ψf 〉 = ( a

b
), as

(
a

b

)
= U

(
1
0

)
= e−iαt

(
cos 1

2�t

−i
√

γ

β
sin 1

2�t

)
. (25)

We note that the time-evolution operator preserves the
CPT norm of the initial state, 〈ψ0|ψ0〉CPT = 〈ψf |ψf 〉CPT =√

γ /β, where theCPT inner product is defined as 〈φ|ψ〉CPT =
(CPT φ)T Zψ [12]. The C operator reflects the sign of the PT
norm and forces the norm of the state vectors to be positive.
Thus, the Hamiltonian plays a key role in determining the
operator C. For the problem at hand, its matrix representation
K can be found to be

K =
(

0
√

β/γ√
γ /β 0

)
. (26)

Now, let us assume that a = 0 and b = 1, that is, we flip the
spin-up state to a spin-down one. To obtain the time required
for this process, we solve for the first component of (25),
finding

t = π

�
, (27)

which is not dependent on the parameters of the Hamiltonian
under the eigenvalue constraint. We also note that this constant
is the minimum time for such a transformation in the Hermitian
case, also called the passage time [10,15].

In addition, one can also show that ( 1
0 ) and ( 0

1 ) are indeed
orthogonal to each other with respect to theCPT inner product,
i.e., 〈ψf |ψ0〉CPT = 0.

III. FOUR-DIMENSIONAL MODEL

A. Quantum brachistochrone problem

A four-dimensional five-parameter Hamiltonian which sat-
isfies all the criteria of PT -symmetric fermionic quantum
mechanics, i.e., self-adjointness and invariance under PT , can
be written as [12,16]

H =

⎛
⎜⎝

a0 0 −C− −B−
0 a0 −B+ C+

C+ B− −a0 0
B+ −C− 0 −a0

⎞
⎟⎠, (28)

where B± = b1 ± ib2 and C± = b3 ± ib0. The parameters a0,
b0, b1, b2, and b3 are real.

Here the parity operator is taken to be the Dirac matrix γ0,
and the time-reversal operator is taken as the matrix Z followed
by complex conjugation, where Z = diag[iσy]. Note that with
these choices P and T commute, P2 = 1, and T 2 = −1.
These choices for the parity and time-reversal operators are
similar to those of Bjorken and Drell [17] derived in the context
of coupling the Dirac electron to electromagnetic fields.

The eigenvalues of (28) read

E± = ±
√

a2
0 − b2

0 − b2
1 − b2

2 − b2
3, (29)

which are twofold degenerate. The eigenvectors corresponding
to the positive energy are

|ψ1〉 = i√
2E+

⎛
⎜⎜⎜⎜⎝

√
a0+E+√

b2
0+b2

1+b2
2+b2

3

C−
√

a0+E+√
b2

0+b2
1+b2

2+b2
3

B+√
a0 − E+

0

⎞
⎟⎟⎟⎟⎠, |ψ2〉 = PT |ψ1〉, (30)

while those corresponding to the negative energy are

|ψ3〉 = i√
2E+

⎛
⎜⎜⎜⎜⎝

√
a0+E−√

b2
0+b2

1+b2
2+b2

3

C−
√

a0+E−√
b2

0+b2
1+b2

2+b2
3

B+√
a0 − E−

0

⎞
⎟⎟⎟⎟⎠, |ψ4〉 = PT |ψ3〉. (31)

The above degeneracy is the PT analog of the phenomenon
of Kramer’s theorem in conventional Hermitian quantum
mechanics, where the Hamiltonian is invariant under odd time
reversal.

The eigenvalue constraint, E+ − E− = �, given in terms
of the parameters of the Hamiltonian, reads

�2 = 4
(
a2

0 − b2
0 − b2

1 − b2
2 − b2

3

)
,

which is a positive quantity when the symmetry is unbroken,
that is, the eigenvalues are real, a2

0 > b2
0 + b2

1 + b2
2 + b2

3.
Then the time-evolution operator for the Hamiltonian (28)

is evaluated to be

U = e−iH t =

⎛
⎜⎜⎜⎜⎜⎝

cos 1
2�t − 2ia0

�
sin 1

2�t 0 2iC−
�

sin 1
2�t

2iB−
�

sin 1
2�t

0 cos 1
2�t − 2ia0

�
sin 1

2�t
2iB+

�
sin 1

2�t − 2iC+
�

sin 1
2�t

− 2iC+
�

sin 1
2�t − 2iB−

�
sin 1

2�t cos 1
2�t + 2ia0

�
sin 1

2�t 0

− 2iB+
�

sin 1
2�t

2iC−
�

sin 1
2�t 0 cos 1

2�t + 2ia0
�

sin 1
2�t

⎞
⎟⎟⎟⎟⎟⎠. (32)
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The initial state, which we arbitrarily choose to be

|ψ0〉 =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠,

evolves to the final state

|ψf 〉 =

⎛
⎜⎝

a

b

c

d

⎞
⎟⎠,

through U as

⎛
⎜⎝

a

b

c

d

⎞
⎟⎠ = U

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

cos 1
2�t − 2ia0

�
sin 1

2�t

0

− 2iC+
�

sin 1
2�t

− 2iB+
�

sin 1
2�t

⎞
⎟⎟⎟⎟⎠. (33)

To investigate whether the norm of the initial state is conserved
or not, we examine the CPT inner product for fermions as
defined in Ref. [12], 〈φ|ψ〉CPT = (CPT φ)T Zψ . One can also
obtain the matrix representation of C for the problem at hand
as 2H/�. Then it is easy to establish that the probability is
conserved, that is, 〈ψ0|ψ0〉CPT = 〈ψf |ψf 〉CPT = 2a0/�.

Equation (33) indicates that the final state cannot be a spinor
of a particle, so we consider it to correspond to that of an
antiparticle and choose, say, a = 0, b = 0, c = 0, and d = 1.
(This is reminiscent of the fact that the quantum states of a
particle and an antiparticle can be interchanged by applying the
charge conjugationC, parityP , and time-reversalT operators.)

The first component implies that

t = 2

�
arctan

(
�

2a0

)
. (34)

To optimize this result over all positive a0, t can approach zero
as a0 goes to infinity. This result requires that |B+| is also
extremely large, as can be seen from the fourth component
of (33). Thus, we can perform a spinor flip from a particle
to that of an antiparticle in an arbitrarily short amount of time
under the given eigenvalue constraint, provided that at least two
parameters of the five-parameter PT -symmetric Hamiltonian
in (28) are extremely large.

We recall at this point that the time for evolution between
two orthogonal states in conventional quantum mechanics is
limited by the uncertainty principle [18]. We note, however,
that the initial and final states, |ψ0〉 and |ψf 〉, are not orthogonal
to each other with respect to the CPT inner product, that is,
〈ψf |ψ0〉CPT = −2B+/�.

It is interesting to note that a tunable passage time could
also be found numerically in the context of dissipative systems
using the time-evolution operator associated with a non-
Hermitian, non-PT -symmetric Hamiltonian [19]. This study
deals with bosonic systems.

B. No-signaling principle

For simplicity, we assume that Alice’s system is governed
by a special case of (28) as

H =

⎛
⎜⎝

a0 0 0 −B−
0 a0 −B+ 0
0 B− −a0 0

B+ 0 0 −a0

⎞
⎟⎠. (35)

After time t = π/�, the time-evolution operator with regard
to Alice’s system reads

U =

⎛
⎜⎜⎜⎜⎝

− 2ia0
�

0 0 2iB−
�

0 − 2ia0
�

2iB+
�

0

0 − 2iB−
�

2ia0
�

0

− 2iB+
�

0 0 2ia0
�

⎞
⎟⎟⎟⎟⎠. (36)

As in the two-dimensional case, we assume Alice and Bob
share a maximally entangled state to discuss their communi-
cation protocol beforehand:

|ψ〉 = 1
2 (|+x〉1 ⊗ |+x〉1 + |+x〉2 ⊗ |+x〉2 + |−x〉1 ⊗ |−x〉1

+ |−x〉2 ⊗ |−x〉2), (37)

where |±x〉1,2 are the eigenvectors of �x = ( σx 0
0 σx

).
If Alice performs the measurement 1, after t = π/� the

state vector of the composite system reads

|ψ+
f 〉 = (U1 ⊗ 1)|ψ〉, (38)

which becomes

|ψ+
f 〉 =

√
a2

0 − |b|2
a2

0 + |b|2

⎛
⎜⎜⎝

V +
W+

W+′

V +′

⎞
⎟⎟⎠, (39)

where |b|2 = b2
1 + b2

2 and

V + =

⎛
⎜⎜⎝

− ia0
�

0
0

iB−
�

⎞
⎟⎟⎠, W+ =

⎛
⎜⎜⎝

0
− ia0

�

iB+
�

0

⎞
⎟⎟⎠. (40)

Also,

W+′ =

⎛
⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎠W+∗

, (41)

and

V +′ =

⎛
⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠V +∗

. (42)

Now, if Alice performs the measurement �x , the final state
of the composite system of Alice and Bob after time t = π/�

becomes

|ψ−
f 〉 = (U�x ⊗ 1)|ψ〉, (43)
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which is given explicitly as

|ψ−
f 〉 =

√
a2

0 − |b|2
a2

0 + |b|2

⎛
⎜⎜⎝

W−
V −

V −′

W−′

⎞
⎟⎟⎠, (44)

where W− is obtained by replacing B+ in W+ by B− and V −
is obtained by replacing B− by B+ in V +.

When Alice performs the first measurement, Bob’s density
matrix reads

ρ+
B = TrA(|ψ+

f 〉〈ψ+
f |), (45)

where

ρ+
B = 1

4

⎛
⎜⎜⎜⎜⎝

1 0 0 2a0B+
a2

0+|b|2
0 1 2a0B−

a2
0+|b|2 0

0 2a0B+
a2

0+|b|2 1 0
2a0B−
a2

0+|b|2 0 0 1

⎞
⎟⎟⎟⎟⎠. (46)

For Alice’s second measurement, Bob’s density matrix be-
comes

ρ−
B = 1

4

⎛
⎜⎜⎜⎜⎝

1 0 0 2a0B−
a2

0+|b|2
0 1 2a0B+

a2
0+|b|2 0

0 2a0B−
a2

0+|b|2 1 0
2a0B+
a2

0+|b|2 0 0 1

⎞
⎟⎟⎟⎟⎠. (47)

The no-signaling principle is respected if ρ+
B = ρ−

B . This
requires that B+ = B−, which implies that b2 must vanish.
Under this constraint, the Hamiltonian that governs Alice’s
system, (35), is still non-Hermitian and PT symmetric, and
its eigenvalues are also real, provided that a2

0 > b2
1.

To investigate the conservation of the entanglement mea-
sure, we first construct the density matrix of the composite
system as before, according to (20). Then we calculate the
reduced density matrix and by using (9) arrive at the measure
of entanglement as being

E = 1 + 2a0b1

a2
0 + b2

1

log4

2
(
a2

0 + b2
1

)
a0b1

. (48)

The measure is no longer conserved; in fact, it has been
increased. However, this measure can still be unity if a0

approaches zero. This also implies that the eigenvalues are
no longer real and thus that the PT symmetry is broken.
Another implication of this is that now the time required
to transform between the initial and final states mentioned
in the brachistochrone problem, (34), approaches π/� as a0

approaches zero. This value is again, as in the two-dimensional
case (27), the optimal time for such a transformation in the
Hermitian case.

IV. A NOTE ON PT -SYMMETRIC QUANTUM STATE
DISCRIMINATION

It is well known that if a system is in one of two nonorthogo-
nal quantum states, |ψ1〉 and |ψ2〉, it is not possible to determine
with absolute certainty which state the system is in with just
one measurement [20]. This has been challenged by Bender
et al. [21] by exploiting the features of a non-Hermitian

PT -symmetric Hamiltonian. A key point is that the inner
product of such a problem is determined by the Hamiltonian at
hand; that is, it is determined dynamically. Thus, it is possible
to introduce a Hamiltonian in such a way that relative to its
inner product the two states |ψ1〉 and |ψ2〉 become orthogonal.

The general PT -symmetric Hamiltonian which they con-
sidered is built on the assumption that the time-reversal
operator is just complex conjugation, and as a result of this,
they arrived at a complex Hamiltonian. And they concluded
that this ability to distinguish between a pair of nonorthogonal
states with a single measurement is due to the complex degrees
of freedom made available by PT symmetry.

We show that their results are still valid for the fermionic
case for which it turns out that the non-Hermitian PT -
symmetric Hamiltonian is real [see (2)].

First, we consider the two states |ψ1〉 and |ψ2〉 on the Bloch
sphere that are separated by the angular distance 2ε as

|ψ1〉 =
(

cos θ
2

eiφ sin θ
2

)
, |ψ2〉 =

(
cos( θ

2 + ε)
eiφ sin( θ

2 + ε)

)
. (49)

For definiteness, we choose φ = π and θ = 2π/3 − ε.
These two states are not orthogonal in the conventional

sense, i.e., 〈ψ1|ψ2〉 �= 0. Now, by considering (2), (26), and
the inner product 〈ψi |ψf 〉CPT = (CPT ψi )T Zψf , we can
construct the bra vector corresponding to |ψ1〉 as

〈ψ1|CPT =
⎛
⎝

√
γ

β
cos( π

3 − ε
2 )

−
√

β

γ
sin( π

3 − ε
2 )

⎞
⎠

T

. (50)

Then we require that 〈ψ1|ψ2〉CPT vanishes, which results in
the condition

tan2 ε

2
= γ + 3β

3γ + β
. (51)

Now, to distinguish between the two states, we need the
projection operators

|ψ1〉〈ψ1|CPT , |ψ2〉〈ψ2|CPT . (52)

Thus, by applying one of these projection measurements, we
can distinguish between states |ψ1〉 and |ψ2〉 with absolute
certainty.

V. CONCLUDING REMARKS

In this paper, we have applied the procedures suggested
by [5,10] for studying the no-signaling principle and the quan-
tum brachistochrone problem in PT -symmetric fermionic
two- and four-dimensional models. The results show several in-
teresting properties. First, a dimensional dependence emerges.
For the quantum brachistochrone problem, the time required
to transform a spin-up state to a spin-down state in the two-
dimensional case, unlike its bosonic counterpart, shows no de-
pendence on the parameters of the Hamiltonian, and it is a con-
stant under the eigenvalue constraint, where this constant coin-
cides with the minimum time for such a transformation in the
Hermitian case. A parameter dependence, however, reemerges
as a feature of the analysis of the four-dimensional system,
and it can approach zero provided that some parameters of
the Hamiltonian are extremely large. In this case, however,
one again recovers the same constant for the transformation
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time as in the two-dimensional case by taking the conservation
of entanglement into account. In general, the brachistochrone
itself may be related to the orthogonality or alignment of
the initial and final states within the chosen theory. Second,

the no-signaling principle is upheld in the two-dimensional
system, with the caveat that PT symmetry is broken. In four
dimensions, however, it is again upheld, but PT symmetry is
broken only if the conservation of entanglement is enforced.
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