
Physics of nonhermitian degeneracies ∗)

M.V. Berry
∗∗

)

H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK

Received 1 July 2004
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14–16 June 2004). After explaining some general features of nonhermitian degeneracies
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1 Introduction

Nonhermitian hamiltonians usually enter physics as a description of part of a
system, as a result of a decision not to incorporate all freedoms — for example
those describing dissipation. Examples are complex refractive indices in optics, and
complex potentials describing the scattering of electrons or X-rays, or by nuclei
(‘cloudy crystal ball’). Traditionally, the nonhermiticity has been regarded as a
perturbation, with the physics essentially unchanged from the hermitian case, ex-
cept for an exponential decay (for example during propagation through a crystal).
But nonhermitian physics differs radically from hermitian physics in the presence
of degeneracies, that is coalescences of eigenvalues. My aim here is to illustrate this
essentially nonhermitian behaviour with a series of examples, drawn from several
areas of physics, that I have encountered over the past decade (Sections 3–7), after
some general remarks (Section 2).

Professor Dieter Heiss and his colleagues have arrived at similar insights, and
this paper can be regarded as complementary to his [1]. A minor difference, of no
physical consequence, is that Heiss uses the term ‘exceptional points’, introduced
in an authoritative work by Kato [2] to denote what I call nonhermitian degen-
eracies. My opinion is that the term degeneracy is appropriate because it is well
established in mathematics as a label for any type of coalescence. Its applicability
to the nonhermitian case is further strengthened by the observation that here it is
not only the eigenvalues but also the eigenvectors that coalesce.

The examples I will give reflect my interests, so there is no attempt to be
comprehensive. And since all the work has been published already, I restrict myself
to a brief description of each case.

∗) Presented at the Second International Workshop on Pseudohermitian Hamiltonians in Quan-
tum Physics, Prague, Czech Republic, 14–16 June, 2004.
∗∗) http://www.physics.bristol.ac.uk/staff/berry mv.html
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2 Hermitian and nonhermitian generalities

The emphasis here is on degeneracies involving two states, and on generic sit-
uations, that is situations that are stable under perturbation. Therefore we are
considering not individual degenerate matrices but families of such matrices, pa-
rameterised by several variables. With this understanding, the differences between
hermitian and nonhermitian degeneracies can be summarised as follows.

For hermitian matrices that are real symmetric (commonly describing nondissi-
pative physics with time-reversal symmetry), degeneracies are of codimension two,
that is, degeneracies are isolated points in a two-parameter space, robust in the
sense that when additional parameters are varied, preserving the real symmetric
character of the matrix, they are not destroyed but simply move. In the three-
dimensional space of eigenvalue and two parameters, the eigenvalue surfaces form a
double cone (diabolo) with apex at the degeneracy; such degeneracies are referred
to as ‘conical intersections’ or ‘diabolical points’ [3].

For complex hermitian matrices (commonly describing nondissipative physics
without time-reversal or other antiunitary symmetry), degeneracies are of codi-
mension three, that is isolated points in a three-parameter space, robust against
any hermitian perturbation.

After a circuit in the parameter space (either surrounding a degeneracy in the
real symmetric case or near a point of degeneracy on the complex hermitian case),
each of the two eigenfunctions returns to its original form, apart from a phase shift
that depends on the (physically or mathematically enforced) continuation rule (e.g.
a geometric phase [4, 5] if the rule is parallel transport). Approaching the degen-
eracy, the two eigenvectors remain orthogonal. The left eigenvector (eigenvector of
the adjoint — i.e. hermitian conjugate — matrix) is identical to the corresponding
right eigenvector.

For nonhermitian matrices, whether symmetric or not, degeneracies are of codi-
mension two, that is points in a two-parameter space and curves in a three-parameter
space. These nonhermitian degeneracies are not diabolical points but rather branch-
points, with associated Riemann sheets: around a circuit encircling the degeneracy,
the eigenvalues, and the corresponding eigenvectors, interchange. If the nonhermi-
tian matrix is a perturbation of a real symmetric matrix, and the parameter space
is a plane, the perturbation splits the diabolical point into two branch-point degen-
eracies. If the nonhermitian matrix is a perturbation of a complex hermitian matrix,
and the parameter space is three-dimensional, the perturbation makes the isolated
hermitian degeneracy point explode into a ring of branch-point degeneracies. A
general model for these eigenvalue phenomena is

M =
(

z x− iy
x+ iy −z

)
+ i

(
z0 x0 − iy0

x0 + iy0 −z0

)
, (1)

where r = {x, y, z} is the three-dimensional parameter space of the hermitian
part of M, and r0 = {x0, y0, z0} characterises the nonhermitian perturbation. The
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eigenvalues are

λ =
√

(r + ir0) · (r + ir0) =
√
r2 − r20 + 2i r · r0 , (2)

showing that the perturbation splits the degeneracy, defined by λ+ = λ− (= 0 in
this traceless case) from the isolated hermitian point degeneracy at r = 0 to a ring
of branch-points with radius r0 in the plane perpendicular to r0. Nonhermitian
degeneracies are stable against any perturbations, hermitian or nonhermitian.

The branch-point nature of a nonhermitian degeneracy has implications: since
the eigenvectors interchange around a circuit of the nonhermitian degeneracy, two
circuits are required to make the states return, apart from an overall phase that
again depends on the continuation rule (in a recent experiment [6] the continuation
was a sign, so four circuits were necessary to make both states return, including
phases). Also, on approaching a nonhermitian degeneracy, the two states involved
in the degeneracy become parallel rather than remaining orthogonal as in the her-
mitian case (though of course the two left and the two right eigenvectors form a
biorthogonal set). Finally, the left and right eigenvectors become orthogonal at the
degeneracy, rather than remaining parallel as in the hermitian case.

3 Nonhermitian nonphysics of a pile of plates [7]

Every physicist has probably noticed that a pile of N overhead-projector trans-
parency sheets looks more and more like a mirror as N increases. The first serious
attempt at a theory of such ‘transparent mirrors’ was by Stokes [8], who calcu-
lated all the multiple reflections of light from the plates. (Stokes had observed the
phenomenon in piles of cover slips for microscope slides). In modern terminology,
he argued that because the sheets, and spaces between them, are large compared
with the wavelength, wave effects can be neglected, so it is sufficient to work with
incoherent reflections and transmissions of intensity rather than amplitude.

If the intensity transmission and reflection coefficients from a single sheet are
τ and ρ, with τ + ρ = 1 since there is no loss, the matrix giving the forward- and
backward-propagating intensities after the n-th sheet, in terms of the intensities
immediately before, is

m =
(

1 0
0 1

)
+
ρ

τ

(
−1 1
−1 1

)
. (3)

This is a real nonsymmetric matrix and therefore nonhermitian, with degenerate
eigenvalues 1. The matrix governing the whole pile is mN . Usually the elements
of such a matrix power grow exponentially with N , which would imply that the
transmission would decrease exponentially withN , so the reflection — the mirroring
— would saturate exponentially to unity. But for this nonhermitian degenerate m,
the result ∣∣∣∣ −1 1

−1 1

∣∣∣∣
2

=
∣∣∣∣ 0 0

0 0

∣∣∣∣ (4)
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implies

mN =
(

1 0
0 1

)
+N

ρ

τ

(
−1 1
−1 1

)
, (5)

which in turn implies that the transmitted intensity TN decays linearly with N ,
rather than exponentially:

TN =
1

1 +N
ρ

τ

. (6)

This seems to imply a physical effect of a nonhermitian degeneracy representing
a system without absorption. But it is wrong! Coherence of the multiple reflections
cannot be neglected, because there can be topologically distinct scattering paths
that pass through the same spaces and sheets (though in a different order). In fact,
the coherent interference is destructive, and appropriate averaging over the random
air gaps between the sheets leads to the exact result

〈TN 〉 = τN = exp
[
−N log

(
1
τ

)]
. (7)

This exponential mirroring is an unexpected example of Anderson localization (de-
structive random interference). Experiments with stacks of 30 and 50 sheets con-
firmed this law, rather than Stokes’s linear mirroring. In this example, nonhermitian
physics is nonphysics.

4 Linewidths of unstable lasers [9]

In laser pointers, and small demonstration lasers, the cavities consist of two
mirrors that are concave towards each other. These are stable lasers, whose modes,
that are eigenfunctions of the unitary round-trip wave operator (two propagations
and two reflections), have the familiar gaussian transverse profile, localised near
the optical symmetry axis.

Powerful lasers, on the other hand, are unstable: one of the mirrors is reversed,
so light leaks away from the edges. The advantage of the instability is that now
the cavity is filled with light, so all the lasing material is used. A fundamental
consequence of the leaking is that the round-trip operator T for the light that
forms the mode is nonunitary: it is the exponential of a nonhermitian operator. An
explicit expression for the operator in the simplest case (a ‘strip resonator’) is [10]

Tu(x) =

√
A

2γiM

1∫
−1

dy exp
[

1
2 iA

(
y − x

M

)2
]
u(y) = γu(x) . (8)

Here u(x) is the mode, with δ the complex propagation constant with |γ| < 1; x
is a transverse coordinate whose limits ±1 correspond to the edges of the mirror
beyond which the light leaks away (if the limits are replaced by ±∞, T is unitary).
M (> 1) is the magnification (ratio of focal lengths of the mirrors); the parameter A
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is the important Fresnel number, inversely proportional to the wavelength; usually
A
 1.

The eigenfunctions u of (8) are very different from the familiar gaussian beams
of stable lasers. In particular, the graph of the intensity |u(x)|2 are fractal [11–13], as
suggested by experiment [14]. In the present context, the important nonhermitian
(=nonunitary here) physics arises from the fact that the right eigenvectors u(x) are
different from the corresponding left eigenvectors ν(x) (which are the eigenvectors
of T† rather than T); in particular, the overlap

〈ν|u〉 =

1∫
−1

dx ν∗(x)u(x) (9)

of the normalised u and ν is less than unity. The importance of this is that the
overlap determines the laser linewidth through the Petermann factor

K =
1

|〈ν|u〉|2 , (10)

by which the minimum linewidth (governed by quantum optics) is magnified by the
nonunitarity.

Nonunitarity implies K > 1. Computations of K as a function of A had shown
strong peaks. These were explained by the observation that at a nonhermitian
degeneracy u and v are orthogonal, so K = ∞. Since nonhermitian degeneracies
have codimension 2, this situation (bad for the operation of the laser) does not
usually happen for real A. But it is expected for complex A, and K is large for
degeneracies near the real axis in the complex A plane. As a function of ReA, K
displays an unusual ‘square root of Lorentzian’ lineshape, reflecting its origin in
a degeneracy of resonances rather than an individual resonance. (By changing M
as well, degeneracies can be steered onto the real A axis, making K = ∞ for this
special case.)

A large-A asymptotic theory for the operator (8) gives a detailed description of
the arrangement of the degeneracies, in particular their proximity to the real A axis.
All details of the theory agree with numerical simulations based on discretization
of the intergal operator (8), but await investigation in laboratory experiments.

5 Atoms diffracted by imaginary crystals of light [15]

Interfering laser beams can create a ‘crystal of light’ that splits a beam of inci-
dent atoms into a set of Bragg-diffracted beams. The atoms are represented by an
amplitude satisfying Schrödinger’s equation, with a periodic potential proportional
to the light intensity. The interaction involves the laser frequency and relevant
transition frequencies in the atoms. For appropriate detuning, the potential can be
complex, indicating incoherent loss of atoms to levels not involved in the diffraction,
and a nonhermitian evolution operator. Experiments by Zeilinger and colleagues
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[16] correspond to the extreme situation where the potential is purely imaginary,
described in the simplest case by a Schrödinger equation

−∇2ψ(x, z) + iQ cos2(Kx)ψ(x, z) = k2ψ(x, z) , (11)

involving a volume grating extending from z = 0 to z = Z.
For an incident plane wave with wavevector k = (K0,

√
k2 −K2

0 ), the ampli-
tudes An(Z) of the nth emerging diffracted beam satisfy, in the paraxial approxi-
mation, the differential-difference equation

ik∂ZAn(Z) = [2n(nK +K0) − 1
4 iQ]An(Z)− 1

8 iQ[An+1(Z) +An−1(Z)] , (12)

with An(0) = δn,0. Nonhermiticity is embodied in the factors i on the righthand
side and has interesting physical effects.

Nonhermitian degeneracies powerfully influence the ‘rocking curves’, that is the
dependence of the An(Z) on the initial direction K0, especially near the Bragg
angle K0 = K where the form of the interference fringes is radically different from
the hermitian case. And instead of the total power decaying exponentially, there is
the alternating sum rule

∞∑
n=−∞

(−1)n|An(Z)|2 = exp
∣∣∣∣−QZ2k

∣∣∣∣ . (13)

A similar analysis [17] explores analogous phenomena in the (exactly-solvable
potential exp(iKx).

6 Crystal optics with absorption and chirality [18]

In a general electrically anisotropic material (‘crystal’), two plane waves can
travel in any direction s, with different speeds (refractive indices n±) and polariza-
tions, specified by the (always-transverse) vectors D±. These are the eigenvalues
and eigenvectors of the matrix m(s) consisting of the 2 × 2 part of the reciprocal
dielectric tensor perpendicular to s [19, 20]. In the general case where the crystal
is not only biaxially anisotropic but also absorbing (dichroic) and chiral (optically
active, or gyrotropic), systematic consideration of nonhermitian effects, as well as
ideas from singularity theory, provide a comprehensive description of this beautiful
area of classical physics.

If the biaxial crystal is transparent and non-chiral, m(s) is real symmetric
(case a). If the crystal is biaxial, transparent and chiral, m(s) is complex hermitian
(case b). If the crystal is biaxial absorbing and nonchiral, m(s) is complex symmet-
ric and therefore nonhermitian (case c). And in the most general case, where the
crystal is biaxial, absorbing and chiral, m(s) is a general nonsymmetric complex
nonhermitian matrix (case d).

For each case, in considering the refractive indices and polarizations as functions
in the 2-parameter direction space (s), it is helpful to concentrate on the singular-
ities, of which there are three types. First are the degeneracies, where n+ = n−.
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In case a, these are four diabolical points (i.e. directions) in antipodal pairs, corre-
sponding to the optic axes of a doubly refracting material, discovered by Hamilton
and responsible for conical refraction [19]. Adding absorption (case c), causes the
optic axes to split into two ‘singular axes’ [21], which are nonhermitian degenera-
cies: branch-point connections between the two eigensheets. In this case, the two
polarizations (identical because the eigenvectors are parallel) are circular, illustrat-
ing a known theorem [22, 23]. When chirality is incorporated (case d), the singular
axes approach each other, and the associated common polarization is elliptic rather
than circular; eventually, the singular axes annihilate in pairs, leaving two discon-
nected eigensheets. Without absorption, the passage from the nonchiral case a to
the transparent chiral case b causes the immediate destruction of the diabolical
points, consistent with the codimensions described in Section 2 (two for diabolical
points and three for general hermitian degeneracies).

The second type of singularity consists of points where the polarizations are
purely circular: C points, invented [24] for waves in position space but here occurring
in the momentum space of directions s. These do not occur in case a, for which all
polarizations are linear, but are present in cases (b–d). With absorption and not
chirality (case c), the C points coincide with the degeneracies, as already mentioned.
Adding chirality (cases d and b), the C points remain fixed as the singular axes
(now elliptically polarized) move away and annihilate: the C points are ghosts,
haunting the directions of the departed degeneracies. In general the C points are
different for the two polarizations.

The third type of singularity consists of lines in s space where the polarization
is purely linear: L lines. These occur for cases b–d, and separate s regions of right
and left handed elliptic polarization, containing the C points.

Propagating through a plate of crystal, the two polarizations get out of phase.
These phase shifts, which are functions of s, are revealed as interference fringes
when the plate is sandwiched between crossed polarizers (e.g. linear or circular),
and this provides a means (still to be systematically investigated experimentally)
for detecting the three types of singularity. A curious feature of these ‘polarization
sandwiches’ will now be described.

7 A nontrivial square root of zero toy [25]

A polarizing sheet is represented by a projection operator, in this case a 2 × 2
matrix of the form

Pu = |u〉〈u| , (14)

where the 2-vector |u〉 represents the state passed by the polarizer. In the sand-
wiches under consideration now, the ‘bread’ consists of crossed polarizer P− and
analyzer P+ (i.e., 〈+|−〉 = 0). The ‘filling’ consists of the crystal slab, whose action
on an incident polarization is represented by an evolution matrix A(s) constructed
from the dielectric matrix m(s) described in Section 6. The complete sandwich is
represented by the matrix

M(s) = P+A(s)P− , (15)
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and transforms incident to outgoing polarization states by

|ψout〉 = M(s)|ψin〉 . (16)

The sandwich matrices M(s) have several properties that are obvious physically
and amusing mathematically. The matrices are nonhermitian (because of the loss
represented by the polarizers), and degenerate, with two eigenvalues zero and the
common eigenstate |+〉. Unlike a polarizer, which passes its own eigenstate and
annihilates the orthogonal state, M(s) annihilates its own eigenstate. And it is easy
to see from (15) and (14) that

M(s)2 = 0 , (17)

so the sandwich matrices are nontrivial square roots of zero (the trivial square root
being the empty sandwich, for which M = 0).

One such sandwich, that is is very easy to construct [26], uses ordinary linear
polarizing sheets for the polarizer and analyzer, and a sheet of plastic overhead-
projector transparency foil (a biaxially anisotropic material) for the filling. The
result (17), for the sandwich matrix M(s), holds for all s near the forward direc-
tion, but the pattern that is seen on viewing any diffuse light (e.g. the sky) through
the sandwich (which need be no more than 2 cm square), held obliquely immedi-
ately in front of one eye, depends sensitively on s and reveals the eigenstructure of
the material matrix m(s) (Section 6). In particular, the degeneracy (diabolical in
this hermitian case) appears as a ‘bull’s-eye’: the centre of a system of brilliantly
coloured circular interference fringes, together with a black stripe through the cen-
tre that reflects the sign change (geometric phase) of the eigenvectors around the
conical intersection. A great deal of mathematics and physics is brought to life by
this toy: not only (17) and diabolical degeneracies and geometric phases, but also
wave interference and its many manifestations in crystal optics. Every physicist
should make one.

I thank Professor Miroslav Znojil for his kind hospitality at the meeting in Prague

when he encouraged me to write this review. My research is supported by the Royal

Society of London.
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