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Abstract. Semiclassical (WKB) techniques are commonly used to find the large-energy
behavior of the eigenvalues of linear time-independent Schrödinger equations. In this talk we
generalize the concept of an eigenvalue problem to nonlinear differential equations. The role
of an eigenfunction is now played by a separatrix curve, and the special initial condition that
gives rise to the separatrix curve is the eigenvalue. The Painlevé transcendents are examples of
nonlinear eigenvalue problems, and semiclassical techniques are devised to calculate the behavior
of the large eigenvalues. This behavior is found by reducing the Painlevé equation to the
linear Schrödinger equation associated with a non-Hermitian PT -symmetric Hamiltonian. The
concept of a nonlinear eigenvalue problem extends far beyond the Painlevé equations to huge
classes of nonlinear differential equations.

1. Introduction

This talk is focused on the notion of stability. We begin by reviewing the concept of PT -
symmetric quantum theory, and we show that PT -symmetric systems that appear unstable
may actually be stable because they are defined in a complex domain rather than a real domain.
Next, we explain that stability (and instability) plays a crucial role in a conventional Schrödinger
eigenvalue problem. (A small perturbation of an eigenvalue prevents the boundary conditions
from being satisfied.) We then introduce the idea of a nonlinear eigenvalue problem in the context
of an elementary example and show that the concepts of stability and eigenvalues are intimately
linked. Finally, we consider some sophisticated nonlinear eigenvalue problems for the Painlevé
transcendents and show that there is a connection between PT -symmetric Hamiltonians and
the Painlevé transcendents. Finally, we discuss eigenvalue problems that are posed for nonlinear
equations beyond the Painlevé class of differential equations.

2. Brief review of PT -symmetric quantum theory

In the DISCRETE2014 conference in London I presented a talk introducing the ideas of PT -
symmetric quantum theory [1]. In that talk I explained that in PT -symmetric quantum
theory the mathematical condition of Hermiticity, where the adjoint † represents combined
complex conjugation and matrix transposition, is replaced by the weaker and more physical
condition of PT symmetry (invariance under space-time reflection). Here, P is the space
reflection operator, P : x → −x, p → −p, and T is the time reversal operator T : x →
x, p → −p, i → −i. Invariance under PT reflection is a physical condition because P and T
are elements of the Lorentz group [2, 3]. Many laboratory studies of PT -symmetric models
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Figure 1. Real eigenvalues of the Hamilto-
nian H = p2 + x2(ix)ε plotted as functions
of the parameter ε. In the region of unbro-

ken PT symmetry ε ≥ 0 the spectrum is real,
positive, and discrete. However, in the re-
gion of broken PT symmetry ε < 0, the real
eigenvalues merge pairwise and form complex-
conjugate pairs. When −1 < ε < 0, there
are a finite number of real positive eigenvalues
and an infinite number of complex-conjugate
pairs of eigenvalues. When ε ≤ −0.57793,
there is just one real eigenvalue, and as ε →
−1+ this real eigenvalue becomes infinite.

have been published. These experiments have been performed in such diverse areas as optics
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], nuclear magnetic resonance [17], superconductivity
[18, 19], microwave cavities [20, 21], laser physics [22, 23], atomic diffusion [24], electronic and
mechanical systems [26, 27, 28, 29], optical graphene [30, 31], optical resonators [32, 33, 34],
Bose-Einstein condensates [35, 36, 37], and metamaterials [38, 39, 40, 41].

A heavily studied one-parameter family of PT -symmetric Hamiltonians is

H = p2 + x2(ix)ε, (1)

and the eigenvalues of this Hamiltonian are shown in Fig. 1. A proof that the eigenvalues of H
are real was first given by Dorey, Dunning, and Tateo [42, 43]. Two special cases of H in (1) are

H = p2 + ix3 and H = p2 − x4, (2)

which are obtained when ε = 1 and ε = 2. The latter Hamiltonian has an upside-down potential,
and thus appears to be unstable. Nevertheless, it has bound states at positive discrete energies
(see Fig. 1). The stability of this Hamiltonian has been established rigorously [44, 45].

A heuristic explanation for why an upside-down potential, such as that in (2), may be
stable is that a PT -symmetric quantum theory is an extension (an analytic continuation) of a
conventional quantum theory into the complex plane. [The Hamiltonian H in (1) is an analytic
continuation in ε of the conventional quantum-harmonic-oscillator Hamiltonian p2 + x2.] When
we use the term unbounded, we mean that the energy is unbounded below. However, the complex
numbers are not ordered, so the notions of > (greater than) and < (less than) do not apply.
Thus, it is not obvious which complex potentials have bound states and which do not. One must
distinguish between these two possibilities to determine if a system is stable.

The stability of a negative quartic potential has implications in quantum field theory. For
example, the double-scaling limit of a O(N)-symmetric quartic scalar field theory appears flawed
because an upside-down potential arises in that limit. However, this limit is perfectly acceptable
as a PT -symmetric theory [46, 47]. In quantum field theory the process of renormalization can
introduce instabilities by making the Hamiltonian non-Hermitian. For example, for the Lee
Model [48], Källén and Pauli showed that renormalization introduces non-Hermiticity, which
appears to make the scattering matrix nonunitary and leads to ghost states [49]. The techniques
of PT -symmetric quantum theory fully resolve these problems [50]. Similarly, renormalization
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introduces non-Hermiticity in the Standard Model, which appears to make the Higgs vacuum
state unstable. Again, PT -symmetry resolves this problem [51]. This stabilization effect works
at the classical level as well. An example of a classical instability is the runaway mode in the
electromagnetic self-force problem. PT -symmetric analysis resolves this problem [52].

The purpose of this paper is to examine the instabilities that arise in eigenvalue problems
associated with classical nonlinear differential equations, and in particular the Painlevé
transcendents. We will demonstrate that PT symmetry resolves these instabilities. Indeed,
we will show that there is a deep connection between the Painlevé transcendents and the class
of Hamiltonians in (1). To do so we will generalize the notion of an eigenvalue problem for a
linear differential equation to an eigenvalue problem for a nonlinear differential equation. In the
nonlinear context a separatrix plays the role of an eigenfunction and the initial conditions that
give rise to the separatrix play the role of the eigenvalues.

3. Instabilities associated with eigenvalue problems

In quantum mechanics the eigenvalue problems for the linear second-order time-independent
Schrödinger equation are well understood. This equation has the form

−y′′(x) + V (x)y(x) = Ey(x), (3)

where E is the eigenvalue. For a rising potential V (x) the eigenfunction y(x) is required to
satisfy homogeneous boundary conditions at ±∞: y(−∞) = 0, y(∞) = 0. Semiclassical
(WKB) techniques give accurate approximations to the large eigenvalues. The leading WKB
approximation to the nth eigenvalue En is given by the phase-integral condition

∫ xR

xL

dx
√

En − V (x) ∼
(

n+ 1
2

)

π (n� 1), (4)

where x = xL and x = xR are turning points that satisfy the equation V (x) = En. Typically,
the semiclassical (high-energy) approximation to En has the form En ∼ abn (n� 1), where a
and b are determined by the condition (4). For example, the semiclassical approximation to the
eigenvalues of the harmonic oscillator V (x) = x2 is En ∼ 2n (n � 1), and for the anharmonic

oscillator V (x) = x4 we get En ∼ [3Γ(3/4)
√
π/Γ(1/4)]

4/3
n4/3 (n� 1).

The solutions to the linear eigenvalue problem (3) have characteristic qualitative features.
If V (x) has a single minimum and rises as x → ±∞ (like the potentials x2 and x4), the
eigenfunctions exhibit distinct behaviors in each of five regions of x: When x > xR and when
x < xL, the eigenfunctions yn(x) decay exponentially as |x| → ∞; these are the classically

forbidden regions. However, when xL < x < xR, the eigenfunctions are oscillatory and yn(x)
has exactly n nodes; this is the classically allowed region. Near xL and xR, there is a transition
between exponentially decreasing and oscillatory behavior, which is universally described by the
Airy function Ai(x). Furthermore, the eigenfunctions exhibit unstable behavior: There is an
abrupt change in the character of the solution to (3) as E moves away from an eigenvalue; an
infinitesimal change in E away from an eigenvalue causes the eigenfunction to lose the property
of square integrability. This is the instability referred to earlier.

Nonlinear differential equations can have eigenfunction-like solutions whose behaviors are
strongly analogous to the behaviors of eigenfunctions for linear eigenvalue problems. This idea
was originally proposed and investigated in Ref. [53]. It was shown that a nonlinear differential

equation may have a discrete set of critical initial conditions that give rise to unstable separatrix

solutions. We treat these initial conditions as eigenvalues and the unstable separatrices that
come from these special initial conditions as the corresponding eigenfunctions. Our objective
here will be to find the large-n (semiclassical) asymptotic behavior of the nth eigenvalue by
using both numerical and analytic techniques.
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A simple-looking first-order nonlinear differential equation that exhibits eigenfunction and
eigenvalue behavior is

y′(x) = cos[πxy(x)] (5)

with the initial condition y(0) = E. The initial value E plays the role of an eigenvalue. Solutions
to this equation for various initial conditions E are plotted in Fig. 2.

Figure 2. Left panel: Numerical solutions y(x) to (5) for 0 ≤ x ≤ 6 with initial conditions
y(0) ranging from 0 to 4.2. The solutions initially oscillate but abruptly change their character
and decay smoothly and monotonically. In the decaying regime solutions merge into quantized
bundles and the bundles decay like 1/x as x → ∞. Right panel: Same as left panel except
that the separatrix (eigenfunction) solutions (dashed lines) to (5) are shown. The separatrix
solutions begin at the eigenvalues E1 = 1.6026, E2 = 2.3884, E3 = 2.9767, E4 = 3.4675,
and E5 = 3.8975. The separatrices are unstable; if y(0) lies infinitesimally below (above) the
eigenvalue, the solution rapidly diverges away from the separatrix and merges with the bundle
of solutions below (above) the separatrix.

Figure 2 shows that solutions to the initial-value problem (5) have n maxima before vanishing
like 1/t as t→∞. As the initial condition y(0) increases past the special critical value En, the
number of maxima changes from n to n+1. At these critical values the solution y(t) to (5) is an
unstable separatrix curve. We understand this instability as follows: If y(0) lies infinitesimally
below En, the solution merges with a bundle of stable solutions all having n maxima, and when
y(0) is infinitesimally above En, the solution merges with a bundle of stable solutions all having
n+ 1 maxima. The separatrix curves are displayed in Fig. 2 (right panel) as dashed curves.

The nonlinear eigenvalue problem illustrated in Fig. 2 is qualitatively similar to the linear
eigenvalue problem (3) for the time-independent Schrödinger equation. First, the separatrices
are unstable with respect to a small change in the eigenvalue En; if y(0) = En is increased or
decreased slightly, y(x) abruptly jumps from the asymptotic bundle of solutions on one side of the
separatrix to the asymptotic bundle on the other side of the separatrix. Also, the eigenfunctions
(separatrix curves) corresponding to the nth eigenvalue (the initial condition En) exhibit n
oscillations in the analog of a classically allowed region before decreasing monotonically to 0 in
the analog of a classically forbidden region. We can see in Fig 2 that this change from oscillatory
to decaying behavior occurs over a narrow region that is the analog of a turning-point region.

An exact formula for the nth eigenvalue En is unknown, and without such a formula our
objective is to determine the asymptotic behavior of the critical values En for large n. It was
shown in Ref. [53] that for large n the nonlinear-differential-equation problem (5) reduces to a
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linear one-dimensional random-walk problem. This random-walk problem was solved exactly
and it was thereby established analytically that the nth eigenvalue grows like anb for large n:

En ∼ 25/6√n (n→∞). (6)

Kerr found an alternative derivation of this remarkable semiclassical (high-energy) solution to
this asymptotics problem and verified (6) [54]. [The numerical constant a = 25/6 and the
exponent b = 1/2 are remarkable because there is no hint of such numbers in (5)!]

There is a huge class of second-order nonlinear differential-equation eigenvalue problems
having discrete eigenvalues. In Refs. [53, 55] it was shown that the first two Painlevé
transcendents lead to eigenvalue problems. (These are discussed in Sec. 4.) The Painlevé
equations have the special property that their solutions have movable (spontaneous) singularities
that are poles. There are no other kinds of movable singularities, such as branch points. Thus,
the solutions to these differential equations are meromorphic (defined on a one-sheeted Riemann
surface) and such solutions are readily studied by using numerical and asymptotic analysis.
The large-eigenvalue behaviors of these equations can be found asymtotically by linearizing the
eigenvalue problems. Specifically, for large n the nonlinear eigenvalues are approximated by the
eigenvalues of a linear Schrödinger eigenvalue problem and the Hamiltonian for this problem
belongs to the class of PT -symmetric non-Hermitian Hamiltonians (1) [2].

In Ref. [55] it was proposed that one could extend the study of nonlinear-differential-
equation eigenvalue problems beyond the Painlevé transcendents to more complicated differential
equations such as the Thomas-Fermi equation y′′(x) = [y(x)]3/2x1/2, and clearly the physical
solution to this equation, which satisfies the boundary conditions y(0) = 1 and y(+∞) = 0, is
an eigenfunction solution. Like the solutions to (5), y(x) vanishes algebraically (like 144x−3) as
x→∞. This is an unstable separatrix solution and the specific value of y′(0) that gives rise to
this solution is an eigenvalue. If y′(0) is larger than the critical value of y′(0), the function y(x)
becomes singular at some point x = a and blows up like 400a(x− a)−4 as x→ a; if y′(0) is less
than the critical value, the function y(x) crosses 0 and becomes complex. Unfortunately, the
movable singularity at x = a is a logarithmic branch-point singularity [to verify this one must
expand y(x) to sixteenth order in powers of (x− a)] and therefore the solutions to this equation
live on a Riemann surface having infinitely many sheets. Thus, for this equation it is not easy
to find additional separatrix solutions.

However, we have found infinite numbers of nonlinear differential equations whose movable
singularities are algebraic branch points, and these equations, which are discussed in Sec. 5,
are analytically tractable. The features of these new kinds of nonlinear differential-eigenvalue
problems are qualitatively similar to those of the Painlevé equations [56].

4. Instabilities associated with the Painlevé transcendents

The Painlevé transcendents are six second-order nonlinear differential equations whose movable
(spontaneous) singularities are poles (and not branch points, essential singularities, or other
kinds of singularities). Many papers and books have been written on these beautiful differential
equations [57, 58, 59, 60, 61, 62, 63, 64] and these equations arise often in mathematical physics
[65, 66, 67, 68, 69, 70, 71].

This section is focused mostly on the first and second Painlevé transcendents, referred to here
as PI and PII. The initial-value problem (IVP) for the PI differential equation is

y′′(t) = 6[y(t)]2 + t, y(0) = c, y′(0) = b (7)

and the IVP for PII (in which an arbitrary additive constant is set to 0) is

y′′(t) = 2[y(t)]3 + ty(t), y(0) = c, y′(0) = b. (8)
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For the fixed initial condition y(0) = 0 there is a discrete set of initial slopes y′(0) = bn that
give rise to unstable separatrix solutions. Similarly, for fixed initial slope y′(0) = 0, there is a
discrete set of initial values y(0) = cn that give rise to separatrix solutions. For Painlevé I the
large-n asymptotic behavior of the eigenvalues bn and cn is

bn ∼ BIn
3/5 (n→∞) and cn ∼ CIn

2/5 (n→∞). (9)

For Painlevé II the large-n asymptotic behavior of the eigenvalues bn and cn are

bn ∼ BIIn
2/3 (n→∞) and cn ∼ CIIn

1/3 (n→∞). (10)

We have determined the coefficients BI, CI, BII, and CII in these asymptotic behaviors
analytically and numerically. The analytical calculation of these constants for PI and PII is
done by reducing the nonlinear equations to the linear eigenvalue problems for the cubic and
quartic PT -symmetric Hamiltonians H = 1

2p
2 + 2ix3 and H = 1

2p
2 − 1

2x
4 [44] [see (2)].

Let us look at the PI equation. In Ref. [72] there is a brief asymptotic study of the first
Painlevé transcendent (7). One can easily show that there are two possible asymptotic behaviors
of the solution to this differential equation as t → −∞; the solutions can approach either
+

√

−t/6 or −
√

−t/6. If the solution y(t) approaches −
√

−t/6, the solution oscillates stably

about this curve with gradually decreasing amplitude. However, while the curve +
√

−t/6 is
another possible asymptotic behavior, this behavior is unstable and nearby solutions tend to

veer away from it. The eigenfunctions of PI are those solutions that do approach the curve
+

√

−t/6 as t → −∞. These separatrix solutions resemble the eigenfunctions of conventional
quantum mechanics in that they exhibit n oscillations before settling down to this asymptotic
behavior. However, because the PI equation is nonlinear, these oscillations are unbounded; the
nth eigenfunction passes through [n/2] double poles where it blows up, and only then does it
smoothly approach the curve +

√

−t/6. (The symbol [n/2] means greatest integer in n/2.)
To find the numerical solutions to the initial-value problem for the PI equation (7) for t < 0

we use Runge-Kutta to integrate down the negative-real axis. When we approach a double pole
and the solution becomes large and positive, we estimate the location of the pole and integrate
along a semicircle in the complex-t plane around the pole. We then continue integrating down
the negative-real axis. We begin by choosing the fixed initial value y(0) = 0 and allow the initial
slope y′(0) = b to have increasingly positive values. (We only present results for positive initial
slope; the behavior for negative initial slope is analogous.) We find that the particular choice
of y(0) is not crucial and that for any fixed y(0) the large-n leading asymptotic behavior of the
initial-slope eigenvalues bn is the same.

Above the critical value b1 = 1.851854034 (first eigenvalue) there is a continuous interval
of b for which y(t) first has a minimum and then has an infinite sequence of double poles
(Fig. 3, left panel). However, if b increases past the next critical value b2 = 3.004031103 (second
eigenvalue), the character of the solutions changes abruptly and y(t) oscillates stably about
−

√

−t/6 (Fig. 3, right panel). When b exceeds the critical value b3 = 3.905175320 (third
eigenvalue), the solutions again exhibit an infinite sequence of poles (Fig. 4, left panel). When
b increases past the fourth critical value b4 = 4.683412410 (fourth eigenvalue), the solutions
once again oscillate stably about −

√

−t/6 (Fig. 4, right panel). There is an infinite sequence
of critical points (eigenvalues) at which the PI solutions alternate between infinite sequences of
double poles and stable oscillation about −

√

−t/6.
The separatrix (eigenfunction) solutions that arise when y′(0) is an eigenvalue have a

completely different (and unstable) character from those in Figs. 3 and 4. These special
solutions exhibit a finite number [n/2] of double poles (analogous to the oscillatory behavior of
quantum-mechanical bound-state eigenfunctions in the classically allowed region of a potential
well) and then exhibit a turning-point-like transition in which the poles abruptly cease and y(t)
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Figure 3. Typical behavior of solutions to the first Painlevé transcendent y(t) for the initial
conditions y(0) = 0 and b = y′(0). Left panel:b = 2.504031103, which lies between the
eigenvalues b1 = 1.851854034 and b2 = 3.004031103. Right panel: b = 3.504031103, which
lies between the eigenvalues b2 = 3.004031103 and b3 = 3.905175320. The dashed curves are
y = ±

√

−t/6. In the left panel the solution y(t) has an infinite sequence of double poles and in
the right panel the solution oscillates stably about −

√

t/6.
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Figure 4. Solutions to the PI equation (7) for y(0) = 0 and b = y′(0). Left panel:
b = 4.583412410 (between the eigenvalues b3 = 3.905175320 and b4 = 4.6834124103). Right
panel: b = 4.783412410 (between the eigenvalues b4 = 4.683412410 and b5 = 5.383086722).

exponentially decays towards the limiting curve +
√

−t/6. The solutions arising from the first
and second critical points b1 and b2 are shown in Fig. 5, those arising from the third and fourth
critical points b3 and b4 are shown in Fig. 6, and those arising from the tenth and eleventh
critical points b10 and b11 are shown in Fig. 7. The critical points are analogous to eigenvalues
because they give rise to unstable separatrix solutions; if y′(0) changes by an infinitesimal amount
above or below a critical value, the character of the solutions changes abruptly and the solutions
exhibit the two possible kinds of generic behaviors shown in Figs. 3 and 4.

In Ref. [55] the constant BI was determined numerically to great accuracy by applying fifth-
order Richardson extrapolation to the first eleven eigenvalues. The value of BI in (9) was found
to an accuracy of one part in nine decimal places: BI = 2.09214674. The underlined digit lies
in the range from 3 to 5 and BI is accurate to one part in 2× 108.
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Figure 5. First two separatrix solutions (eigenfunctions) of Painlevé I with initial condition
y(0) = 0. Left panel: y′(0) = b1 = 1.851854034. Right panel: y′(0) = b2 = 3.004031103. The
dashed curves are y = ±

√

−t/6.
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Figure 6. Third and fourth eigenfunctions of Painlevé I with initial condition y(0) = 0. Left
panel: y′(0) = b3 = 3.905175320. Right panel: y′(0) = b4 = 4.683412410.

If the initial slope is held fixed at y′(0) = 0 and the initial value y(0) = c is allowed to
become increasingly negative, a new sequence of negative eigenvalues cn appears for which the
solutions resemble the eigenfunction separatrix solutions in Figs. 5–7. Fourth-order Richardson
extrapolation applied to the first 15 eigenvalues reveals that for large n the sequence of initial-
value eigenvalues cn is asymptotic to CIn

2/5, where the constant CI in (9) is CI = −1.0304844
(see Ref. [55]). The last digit is accurate to an error of ±1 so CI is determined to one part in 10

7.
We have done similar numerical studies for PII and PIV, but to save space we do not repeat
them here.

Asymptotic analysis may be used to derive analytic expressions for these numerical results.
We multiply the PI equation in (7) by y′(t) and integrate from t = 0 to t = x and get

H ≡ 1
2 [y

′(x)]2 − 2[y(x)]3 = 1
2 [y

′(0)]2 − 2[y(0)]3 + I(x), (11)

where I(x) =
∫ x
0 dt ty

′(t). The path of integration is the same as that used to calculate y(t)
numerically; the path follows the negative-real axis until it gets near a pole, at which point it
makes a semicircular loop in the complex-t plane to avoid the pole.
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Figure 7. Tenth and eleventh eigenfunctions of Painlevé I with initial condition y(0) = 0. Left
panel: y′(0) = b10 = 8.244932302. Right panel: y′(0) = b11 = 8.738330156. As n increases, the
eigenfunctions pass through more double poles before exhibiting a turning-point-like transition
and approaching the limiting curve +

√

−t/6 exponentially. This behavior is analogous to that
of the eigenfunctions of a time-independent Schrödinger equation for a particle in a potential
well; the higher-energy eigenfunctions exhibit many oscillations in the classically allowed region
before entering the classically forbidden region, where they decay exponentially.

We calculate I(x) for large-negative x in the classically allowed region (before the poles
abruptly cease at the turning point) and find that on the real-x axis, as n→∞, I(x) fluctuates
and becomes small compared with H. This is not surprising because I(x) receives many positive
and negative contributions from the poles. We can see from the definition of I(x) that I ′(x)
vanishes when y′(x) vanishes. Near the points where y′(x) vanishes, we verify numerically that
I(x) is small compared with −2[y(x)]3. Far from these points y(x) becomes large, but so does
I(x). However, −2[y(x)]3 blows up like a sixth-order pole and I(x) blows up like a second-order
pole. These asymptotic estimates are difficult to verify analytically, but numerical analysis
confirms these results. These estimates are valid when x is large and negative but only in the
classically allowed region and not as x→ −∞.

By examining I(x) as x → −∞, we can see a signal of an eigenvalue; as y′(0) = b
passes an eigenvalue, I(x) goes from having positive to negative (or negative to positive)
fluctuations, but at an eigenvalue I(x) is smooth and does not fluctuate. For large n we treat
the fluctuating quantity I(x) as small and we interpret H as a time-independent quantum-
mechanical Hamiltonian. [The isomonodromic properties of H when I(x) is not neglected were
studied in Ref. [62].]

To support these observations regarding the behavior of I(x) on the real axis, we have done
extremely detailed numerical studies of the distribution of poles and the behavior of PI in the
complex-x plane. This gives a much clearer picture of the behavior of I(x) for large x. We
find that along the lines x = re±iπ/4, where r is real, the function I(x) rapidly approaches
0 as r → ∞. This provides strong evidence that the large-n (semiclassical) behavior of the
eigenvalues is determined by solving the linear time-independent quantum-mechanical eigenvalue
problem Ĥψ = Eψ, where Ĥ = 1

2 p̂
2−2x̂3 along these lines in the complex-x plane. To find these

eigenvalues we simply rotate Ĥ into the complex plane by 45circ [73] and obtain the well-studied
PT -symmetric Hamiltonian [2, 3]

Ĥ = 1
2 p̂

2 + 2ix̂3. (12)

The large eigenvalues of this Hamiltonian are found by using the complex WKB techniques
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discussed in Ref. [2]. For the class of PT -symmetric Hamiltonians Ĥ = 1
2 p̂

2 + gx̂2 (ix̂)ε (ε ≥ 0),
the WKB approximation to the nth eigenvalue (n� 1) is given by

En ∼
1

2
(2g)2/(4+ε)





Γ
(

3
2 +

1
ε+2

)√
π n

sin
(

π
ε+2

)

Γ
(

1 + 1
ε+2

)





(2ε+4)/(ε+4)

. (13)

For H in (12) we take g = 2 and ε = 1 and obtain the asymptotic behavior

En ∼ 2
[√

3πΓ
(

11
6

)

n/Γ
(

1
3

)]6/5
(n→∞). (14)

The Hamiltonian Ĥ in (12) is time independent, so we evaluate H in (11) for fixed y(0) and
large y′(0) = bn and obtain the result

bn ∼
√

2En = BIn
3/5 (n→∞), (15)

which verifies (9). We read off the analytic value of the constant BI:

BI = 2
[√

3πΓ
(

11
6

)

/Γ
(

1
3

)]3/5
, (16)

which agrees with the numerical result in (9). Also, if we take the initial slope y′(0) to vanish
and take the initial condition y(0) = cn to be large, we obtain an analytic expression for CI,

CI = −
[√

3πΓ
(

11
6

)

/Γ
(

1
3

)]2/5
, (17)

which verifies (10). These analytic results are in precise agreement with our numerical work on
the large-n behavior of the eigenvalues.

To obtain analytic expressions for BII in (10) and CII in (10), we follow the same procedure
as for PI. We multiply the PII equation by y′(t) and integrate from t = 0 to t = x, where x is
in the turning-point region (where the simple poles stop). The result is

H ≡ 1
2 [y

′(x)]2 − 1
2 [y(x)]

4 = 1
2 [y

′(0)]2 − 1
2 [y(0)]

4 + I(x), (18)

where I(x) =
∫ x
0 dt ty(t)y

′(t). The path of integration follows the negative-real axis until it gets
near a simple pole, at which point it makes a loop in the complex-t plane to avoid the pole. As
before, along this path the integrand of I(x) oscillates and because of cancellations we neglect
I(x) when n is large.

We treat H as the PT -symmetric quantum-mechanical Hamiltonian

Ĥ = 1
2 p̂

2 − 1
2 x̂

4 (19)

and use (13) with g = 1/2 and ε = 2 to obtain

En ∼ 1
2

[

3n
√
2πΓ

(

3
4

)

/Γ
(

1
4

)]4/3
(20)

for the large eigenvalues of Ĥ. For the eigenvalues bn we use

√

2En ∼
[

3n
√
2πΓ

(

3
4

)

/Γ
(

1
4

)]2/3
(n→∞) (21)
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from which we identify the value of BII:

BII =
[

3
√
2πΓ

(

3
4

)

/Γ
(

1
4

)]2/3
. (22)

To calculate CII we note that the initial value y(0) is positive. If we neglect I(x) and
assume a vanishing initial slope, we see that the right side of (18) is negative. Thus, as we did
for the cubic Hamiltonian 1

2 p̂
2 − 2x̂3, we perform a complex rotation of the coupling constant

to convert the quartic Hamiltonian to Ĥ = 1
2 p̂

2 + 1
2 x̂

4. Here, we obtain the conventional
Hermitian quartic-anharmonic-oscillator Hamiltonian, which does not belong to the class of
PT -symmetric Hamiltonians Ĥ = 1

2 p̂
2 + gx̂2(ix̂)ε. The WKB approximation gives the large-

eigenvalue approximation

En ∼
[

3n
√
πΓ

(

3
4

)

/Γ
(

1
4

)]4/3
(n→∞) (23)

from which we read off the value of CII :

CII =
[

3
√
πΓ

(

3
4

)

/Γ
(

1
4

)]1/3
. (24)

To summarize, we have found the remarkable result that the large-eigenvalue behavior of PI,
PII, and PIV (not discussed here) are obtained by WKB analysis of (1) for ε = 1, 2, 4. (We are
planning further studies of PIII, PV, and PVI.) Finally, we note that the asymptotic analysis
performed in this section has recently been verified at a more rigorous level [74].

5. Instabilities beyond the Painlevé transcendents

Let us consider a new class of nonlinear-differential-equation eigenvalue problems of the form

y′′(x) =
2M + 2

(M − 1)2
[y(x)]M + x[y(x)]N , (25)

where M and N are integers. We refer to the members of this class as SP(M,N) (SP stands
for super-Painlevé). These equations are a natural generalization of the first two Painlevé
equations; PI in (4) is SP(2, 0) and PII in (5) is SP(3, 1). These equations give particularly
interesting nonlinear eigenvalue problems when N < M − 1.

This special class of equations appear to have algebraic but not logarithmic movable
singularities. To see why this is so recall that the solution to PI can become singular at
an arbitrary point x = A and the leading asymptotic approximation to such a solution is
y(x) ∼ (x − A)−2 (x → A). However, to show that the singularity at x = A is a pole it is
necessary to show that an expansion around x = A is a Laurent series. To do this we substitute

y(x) =
1

(x−A)2

[

1 +
∞
∑

n=1

an(x−A)n
]

(26)

into (4) and collect powers of (x−A). If we solve recursively for the coefficients an, we find that
the first five coefficients are a1 = 0, a2 = 0, a3 = 0, a4 = −A/10, and a5 = −1/6. However,
the key result is that a6 is undetermined and thus is arbitrary. Since the series expansion for
y(x) contains two arbitrary constants, A and a6, it follows that this series is the most general
solution to the PI equation. To complete the argument one must show that the series expansion
for y(x) converges when |x−A| is sufficiently small. This establishes that the expansion (26) is
a Laurent series and verifies that the solutions to PI are meromorphic.
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This analysis extends to the SP(M,N) equation, whose solutions can become singular at a
point x = A. These singular solutions have the leading asymptotic behavior

y(x) ∼ (x−A)−2/(M−1) (x→ A). (27)

For simplicity, we study solutions that remain real on both sides of this singularity, so we assume
that M is an even integer or (M − 1)/2 is an odd integer. We seek an asymptotic expansion of

y(x) about the point x = A of the form y(x) = (x − A)−2/(M−1)
[

1 +
∑

∞

n=1 an(x−A)1/(M−1)
]

.

(This expansion is actually valid for both even and oddM ; for odd M half of the terms vanish.)
We substitute this expansion into the SP(M,N) equation and compare like powers of x−A to
find the coefficients, we see that the an are uniquely determined up to n = 2(M + 1) for even
M and n = M + 1 for odd M ; at this value of n the coefficient an is arbitrary. Note that if
N ≥M − 1, the an term contains logarithmic terms.

As an example, we consider SP(4, 0). Here, the first seven coefficients vanish a1 = a2 = a3 =
a4 = a5 = a6 = a7 = 0 and the next two coefficients are a8 = −9A/22 and a9 = 0. Next, we
find that a10 is not determined and thus is arbitrary. The next few coefficients are a11 = 9/14,
a12 = a13 = a14 = a15 = 0, a16 = 405A2/4598, a17 = 0. From here on the coefficients depend on
the choice of a10: a18 = −45Aa10/154, a19 = −135A/847, a20 = 6a2

10/23, a21 = 45a10/154, and
so on. We have found the general solution because the series contains two arbitrary constants,
namely A and a10. We do not present a proof here, but numerical analysis shows that the
coefficients in the series have only geometric growth for large n, so the radius of convergence of
the series is nonzero. While the series (27) is not a Laurent series because it contains fractional
powers of (x−A), our analysis shows that the solutions to the class of equations SP(M,N) have
only algebraic singularities, and because M is chosen to be even, we may seek solutions that are
entirely real. In particular, we can seek eigenfunction (separatrix) solutions that are real.

Solutions to the SP(M,N) equation have one or two possible real asymptotic behaviors as

x → −∞: y(x) ∼ ±
[

−(M − 1)2x/(2M + 2)
]1/(M−N)

. (There are two possible asymptotic
curves when M − N is even but only one when M − N is odd.) As in the PI case, the upper
curve is unstable and the lower curve is stable. Thus, the discrete eigenfunction (separatrix)
solutions approach the upper curve. Here, we only consider here eigenfunction solutions for
which y(0) = 0. The eigenvalues En are the initial values of the slope y′(0) that give rise to
solutions that approach the upper curve. For example, for M = 4 and N = 2, the first eight
eigenvalues are 2.4240, 4.5364, 6.2471, 7.7792, 9.1960, 10.5292, 11.7973, 13.0127.

The analysis used for the Painlevé equations shows that if we neglect the function I(x), we
can replace the SP(M,N) equation by a simpler equation generated by the linear Hamiltonian

Ĥ = 1
2 p̂

2 + 2
(M−1)2

x̂M+1.

In this approximation the term containing the parameter N has dropped out. The WKB formula
(4) implies that for large n, the nth eigenvalue of Ĥ grows like n(2M+2)/(M+3) as n→∞. Thus,
the nth separatrix eigenvalue y′(0) grows like

y′(0) ∼ n(M+1)/(M+3) (n→∞). (28)

Our preliminary numerical studies show that (28) holds in some but not all cases. ForM = 4
we expect the large-n behavior n5/7 and for M = 6 we expect the behavior n7/9. For M = 4
and N = 2 and for M = 6 and N = 4 this is what we find. Specifically, when M = 4, there are
no eigenfunctions for N = 0, a full set of eigenfunctons qualitatively identical to those shown
in Figs. 5-7 for N = 1, and a half-set of eigenfunctions qualitatively identical to those shown in
the right panels of Figs. 5 and 6 and the left panel of Fig. 7 when N = 2. For the case N = 2
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the eigenvalues grow like n5/7. However, when N = 1, the eigenvalues grow slightly less rapidly;
the nth eigenvalue grows like anb, where a = 2.04 and b = 0.56.

When, M = 6, there is a half-set of eigenfunctions when N = 0 and no eigenfunctions when
N = 1. However, when N = 2, N = 3, and N = 4, there are full sets of eigenfunctions.
For the case N = 4 the eigenvalues grow like n7/9, but when N < 4, the eigenvalues grow
slightly less rapidly. Interestingly, it is the largest value of N that gives an eigenspectrum
whose asymptotic behavior is determined by a linear approximation in which the yN term in
the nonlinear equation can be neglected! Evidently, for smaller values of N , the yN term cannot
be neglected. Specifically, when N = 0, the nth eigenvalue grows like 2.43n0.41; when N = 2,
the nth eigenvalue grows like 2.55n0.54; when N = 3, the nth eigenvalue grows like 1.69n0.65.
However, when N = 4, the nth eigenvalue grows like 3.06n7/9.

We have demonstrated that there is a huge, rich, and remarkable class of nonlinear-
differential-equation eigenvalue problems for which there exists an infinite discrete set of
eigenvalues. These differential equations are generalizations of the Painlevé transcendents. In
full generality, the differential equations resulting from extending PI and PII have the form

y′′(x) =
2M + 2

(M − 1)2
[y(x)]M + xP (y) +Q(y),

where P (y) and Q(y) are polynomials in y(x) of degree less than M − 1. Clearly, there are
additional general classes of nonlinear eigenvalue problems beyond the Painlevé transcendents.
These new kinds of problems warrant much intensive further analysis.
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