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PT -symmetric quantum mechanics began with a study of the Hamiltonian H = p2 + x2(ix)ε. When ε � 0,
the eigenvalues of this non-Hermitian Hamiltonian are discrete, real, and positive. This portion of parameter space
is known as the region of unbroken PT symmetry. In the region of broken PT symmetry, ε < 0, only a finite
number of eigenvalues are real and the remaining eigenvalues appear as complex-conjugate pairs. The region of
unbroken PT symmetry has been studied but the region of broken PT symmetry has thus far been unexplored.
This paper presents a detailed numerical and analytical examination of the behavior of the eigenvalues for
−4 < ε < 0. In particular, it reports the discovery of an infinite-order exceptional point at ε = −1, a transition
from a discrete spectrum to a partially continuous spectrum at ε = −2, a transition at the Coulomb value ε = −3,
and the behavior of the eigenvalues as ε approaches the conformal limit ε = −4.
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I. INTRODUCTION

PT -symmetric quantum theory has its roots in a series of
papers that proposed a new perturbative approach to scalar
quantum field theory: Instead of a conventional expansion
in powers of a coupling constant, it was proposed that a
perturbation parameter δ be introduced that measures the
nonlinearity of the theory. Thus, to solve a gφ4 field theory one
studies a gφ2(φ2)δ theory and treats δ as a small parameter.
After developing a perturbation expansion in powers of δ, the
parameter δ is set to one to obtain the results for the gφ4 theory.
This perturbative calculation is impressively accurate and does
not require the coupling constant g to be small [1,2]. A crucial
technical feature of this idea is that φ2 and not φ be raised to
the power δ in order to avoid raising a negative number to a
noninteger power and thereby generating complex numbers as
an artifact of the procedure.

Subsequently, the δ expansion was used to solve an
array of nonlinear classical differential equations taken
from various areas of physics: The Thomas-Fermi equation
(nuclear charge density) y ′′(x) = [y(x)]3/2/

√
x is modified

to y ′′(x) = y(x)[y(x)/x]δ; the Lane-Emdon equation (stel-
lar structure) y ′′(x) + 2y ′(x)/x + [y(x)]n = 0 is modified
to y ′′(x) + 2y ′(x) + [y(x)]1+δ; the Blasius equation (fluid
dynamics) y ′′′(x) + y ′′(x)y(x) = 0 is modified to y ′′′(x) +
y ′′(x)[y(x)]δ = 0; and the Korteweg-de Vries equation (non-
linear waves) ut + uux + uxxx = 0 is modified to ut + uδux +
uxxx = 0. In each of these cases the quantity raised to the power
δ is positive and when δ = 0 the equation becomes linear. Just
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a few terms in the δ expansion give an accurate numerical
result [3].

The breakthrough of PT -symmetric quantum theory was
the surprising discovery that to avoid the appearance of
spurious complex numbers it is actually not necessary to raise
a positive quantity to the power δ so long as the quantity is
symmetric under combined space and time reflection. This fact
is highly nontrivial and was totally unexpected. For example,
a quantum-mechanical potential of the form x2(ix)ε does not
necessarily lead to complex eigenvalues because the quantity
ix is PT invariant. Indeed, the non-Hermitian PT -symmetric
Hamiltonian

H = p2 + x2(ix)ε (1)

has the property that its eigenvalues are entirely real, positive,
and discrete when ε � 0 (see Fig. 1). The reality of the
spectrum was noted in Refs. [4,5] and was attributed to thePT
symmetry of H . Dorey, Dunning, and Tateo proved that the
spectrum is real when ε > 0 [6,7]. Following the observation
that the eigenvalues of non-Hermitian PT -symmetric Hamil-
tonians could be real, many papers were published in which
various PT -symmetric model Hamiltonians were studied [8].

A particularly interesting feature of PT -symmetric Hamil-
tonians is that they often exhibit a transition from a parametric
region of unbroken PT symmetry in which all of the eigenval-
ues are real to a region of brokenPT symmetry in which some
of the eigenvalues are real and the rest of the eigenvalues occur
in complex-conjugate pairs. The PT transition occurs in both
the classical and the quantized versions of a PT -symmetric
Hamiltonian [5] and this transition has been observed in
numerous laboratory experiments that have been proposed and
performed [9–20].

There have been many studies of the real spectrum of H

in (1) but essentially nothing has been published regarding
the analytic behavior of the complex eigenvalues as functions
of ε in the region of broken PT symmetry. However, it is
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FIG. 1. Real eigenvalues of the Hamiltonian H = p2 + x2(ix)ε

plotted as functions of the parameter ε. When ε � 0 (the region of
unbroken PT symmetry), the spectrum is real, positive, and discrete.
However, as ε goes below 0 (ε < 0 is known as the region of broken
PT symmetry) the real eigenvalues begin to merge pairwise and
form complex-conjugate pairs. When −1 < ε < 0, there are only a
finite number of real positive eigenvalues and an infinite number
of complex-conjugate pairs of eigenvalues. When ε � −0.57793,
only one real eigenvalue survives and as ε approaches −1+, this real
eigenvalue becomes infinite. The behavior of the complex eigenvalues
in the region of broken PT symmetry is not shown in this graph and
has not been explored until now.

known that there is a sequence of negative-real values of ε

lying between −1 and 0 at which pairs of real eigenvalues
become degenerate and split into pairs of complex-conjugate
eigenvalues. These special values of ε are often called
exceptional points [21]. In general, eigenvalues usually have
square-root branch-point singularities at exceptional points.

Exceptional points in the complex plane, sometimes called
Bender-Wu singularities, explain the divergence of pertur-
bation expansions [22,23]. The appearance of exceptional
points is a generic phenomenon. In these early studies of
coupling-constant analyticity, it was shown that the energy
levels of a Hamiltonian, such as the Hamiltonian for the quan-
tum anharmonic oscillator H = p2 + x2 + gx4, are analytic
continuations of one another as functions of the complex
coupling constant g due to the phenomenon of level crossing
at the exceptional points. Thus, the energy levels of a quantum
system, which are discrete when g is real and positive,
are actually smooth analytic continuations of one another
in the complex-g plane [24]. A simple topological picture
of quantization emerges: The discrete energy levels of a
Hamiltonian for g > 0 are all branches of a multivalued
energy function E(g) and the distinct eigenvalues of this
Hamiltonian correspond with the sheets of the Riemann
surface on which E(g) is defined. Interestingly, it is possible to
vary the parameters of a Hamiltonian in laboratory experiments
and thus to observe experimentally the effect of encircling
exceptional points [16,25,26].

The purpose of this paper is to study the analytic continua-
tion of the real eigenvalues shown in Fig. 1 as ε moves down
the negative-ε axis. In Sec. II we discuss the Stokes wedges
that characterize the eigenvalue problem as ε goes below −1
and we show that there is an infinite-order exceptional point at
ε = −1 where there is an elaborate logarithmic spiral (a double
helix) of eigenvalues. The real part of each complex-conjugate
pair of eigenvalues that is formed at exceptional points between
ε = −1 and ε = 0 approaches +∞ like | ln(ε + 1)|2/3 as ε

approaches −1. In contrast, the imaginary parts of each pair
of eigenvalues vanish logarithmically at ε = −1. As ε goes
below −1, the real parts of the eigenvalues once again become
finite and the imaginary parts of the eigenvalues rise up from
0. As ε goes from just above to just below −1, the imaginary
parts of the eigenvalues appear to undergo discrete jumps but
in fact they vary continuously as functions of ε.

In Sec. III we give plots of the eigenvalues in the
region −2 < ε < −1 and perform an asymptotic analysis
of the eigenvalues near ε = −2. As ε approaches −2,
the entire spectrum becomes degenerate; the real parts of
all the eigenvalues approach −1 and the imaginary parts
coalesce to 0.

Section IV presents a numerical study of the eigenvalues in
the region −4 < ε < −2. We show that a transition occurs at
ε = −2 in which the eigenspectrum goes from being discrete
to becoming partially discrete and partially continuous. The
continuous part of the spectrum lies on complex-conjugate
pairs of curves in the complex-ε plane. Another transition oc-
curs at ε = −3 (thePT -symmetric Coulomb potential); below
ε = −3 some of the discrete eigenvalues become real. As ε ap-
proaches the conformal point ε = −4, the eigenvalues collapse
to the single value 0. Section V gives brief concluding remarks.

II. EIGENVALUE BEHAVIOR AS ε → −1

A. Stokes wedges

The time-independent Schrödinger eigenvalue problem for
the Hamiltonian H in (1) is characterized by the differential
equation

−y ′′(x) + x2(ix)εy(x) = Ey(x). (2)

The boundary conditions imposed on the eigenfunctions
require that y(x) → 0 exponentially rapidly as |x| → ∞ in a
pair of Stokes wedges in the complex-x plane. This subsection
explains the locations of these Stokes wedges.

As has been previously discussed at length, the potential
x2(ix)ε has a logarithmic singularity in the complex-x plane
when ε is not an integer. Thus, it is necessary to introduce a
branch cut. This branch cut is chosen to run from 0 to ∞ in
the complex-x plane along the positive-imaginary axis because
this choice respects thePT symmetry of the Hamiltonian. This
is because PT symmetry translates into left-right symmetry in
the complex-x plane (that is, mirror symmetry with respect to
the imaginary-x axis) [4,5]. The argument of x on the principal
sheet (sheet 0 of the Riemann surface) runs from −3π/2 to
π/2. On sheet 1, π/2 < arg x < 5π/2; on sheet −1, −7π/2 <

arg x < −3π/2; and so on.
As explained in Refs. [4,5], the Stokes wedges in which

the boundary conditions on y(x) are imposed are located in
the complex-x plane in a PT -symmetric fashion. If ε = 0,
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the Stokes wedges have angular opening π/2 and are centered
about the positive x and negative x axes on the principal sheet
of the Riemann surface. As ε increases from 0, the wedges
get narrower and rotate downwards; as ε decreases from 0,
the Stokes wedges get wider and rotate upwards. Wentzel-
Kramers-Brillouin (WKB) analysis provides precise formulas
for the location of the center line of the Stokes wedges,

θright wedge, center = − ε

8 + 2ε
π,

θleft wedge, center = −π + ε

8 + 2ε
π, (3)

the upper edges of the Stokes wedges,

θright wedge, upper edge = 2 − ε

8 + 2ε
π,

θleft wedge, upper edge = −π − 2 − ε

8 + 2ε
π, (4)

and the lower edges of the Stokes wedges,

θright wedge, lower edge = − 2 + ε

8 + 2ε
π,

θleft wedge, lower edge = −π + 2 + ε

8 + 2ε
π. (5)

The locations of the Stokes wedges for eight values of ε are
shown in Fig. 2. As ε decreases to −1, the opening angles of
the wedges increase to 120◦ and the upper edges of the wedges
touch. At the special value ε = −1 the logarithmic Riemann
surface collapses to a single sheet; the wedges fuse and are no
longer separated. As a result, there are no eigenvalues at all
(the spectrum is null) [27]. When ε goes below −1, the wedges
are again distinct and no longer touch; the left wedge rotates
in the negative direction and enters sheet −1 while the right
wedge rotates in the positive direction and enters sheet 1.

B. Numerical behavior of the eigenvalues as ε decreases below 0

Previous numerical studies of the (real) eigenvalues for
ε � 0 were done by using the shooting method. However,
when the eigenvalues become complex, the shooting method
is not effective and we have used the finite-element method
and several variational methods. We have checked that the
eigenvalues produced by these different methods all agree to
at least five decimal places.

Figure 1 may seem to suggest that the real eigenvalues
disappear pairwise at special isolated values of ε. However,
the eigenvalues do not actually disappear; rather, as each
pair of real eigenvalues fuse, these eigenvalues convert into a
complex-conjugate pair of eigenvalues. At this transformation
point, both the real and the imaginary parts of each pair of
eigenvalues vary continuously; the real parts remain nonzero
and the imaginary parts move away from zero as ε goes below
the transition point. A more complete plot of the eigenvalues in
Fig. 3 shows that the real parts of each pair of eigenvalues decay
slightly as ε decreases towards −1, while the imaginary parts
grow slowly in magnitude. However, just as ε reaches −1 the
real parts of the eigenvalues suddenly diverge logarithmically
to +∞ and the imaginary parts of the eigenvalues suddenly
vanish logarithmically. Below ε = −1 the real parts of the
eigenvalues rapidly descend from +∞ and the imaginary

FIG. 2. Stokes wedges associated with the eigenvalue problem
for the Hamiltonian H = p2 + x2(ix)ε for eight values of ε. The
locations of center lines, the upper edges, and the lower edges of
the Stokes wedges are given in (3)–(5). The left wedge is blue and the
right wedge is red. As ε decreases, the wedges get wider and rotate
upwards. At ε = −1 the two wedges touch and fuse into one wedge.
However, when ε goes below −1, the sheets are again distinct; the left
wedge rotates clockwise into sheet −1 and the right wedge rotates
anticlockwise into sheet 1.

parts of the eigenvalues rise up from 0. This behavior is
depicted in Fig. 3 and a detailed description of the region
−1.05 < ε < −0.95 is shown in Fig. 4.

C. Asymptotic study of the eigenvalues near ε = −1

Figure 3 shows that the eigenvalues are singular at ε = −1
and suggests that this singularity is more complicated than the
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FIG. 3. Eigenvalues of the Hamiltonian H = p2 + x2(ix)ε plot-
ted as functions of the parameter ε for −1.1 < ε < 0. This graph is a
continuation of the graph in Fig. 1. As ε decreases below 0 and enters
the region of broken PT symmetry, real eigenvalues (solid black
lines) become degenerate and then form complex-conjugate pairs.
The real parts of these pairs of eigenvalues (solid blue lines) initially
decrease as ε decreases but blow up suddenly as ε approaches −1.
The real parts then decrease as ε decreases below −1. The imaginary
parts of the eigenvalue pairs (dashed red lines) remain finite and
appear to suffer discontinuous jumps at ε = −1. However, a closer
look shows that these dashed lines rapidly decay to 0 near ε = −1
and then rapidly come back up to different values as ε passes through
−1. A blow-up of the region near ε = −1 is given in Fig. 4.

square-root branch-point singularities that occur at standard
exceptional points [28]. To identify the singularity we perform
a local asymptotic analysis about the point ε = −1. We begin
by letting ε = −1 + δ and we treat oδ as small (δ � 1). This
allows us to approximate the potential x2(ix)ε in (1) as

−ix[1 + δ ln(ix) + O(δ2)].

FIG. 4. Detailed view of Fig. 3 showing the behavior of the
eigenvalues of the Hamiltonian H = p2 + x2(ix)ε plotted as func-
tions of the parameter ε for −1.05 � ε � −0.95. There is one real
eigenvalue for ε > −1 (solid black line). The real parts of the complex
eigenvalues (blue solid lines) and the real eigenvalue diverge at
ε = −1. The complex eigenvalues occur in complex-conjugate pairs
and the imaginary parts of the eigenvalues rapidly go to 0 at ε = −1.
These behaviors are expressed quantitatively in (14).

We also expand the eigenfunctions in powers of δ:

ψ(x) = y0(x) + δy1(x) + O(δ2).

Because we are treating δ as small, the Stokes wedges
have an angular opening close to 2π/3 and are approximately
centered about the angles θL = −7π/6 and θR = π/6. We
construct solutions ψL(x) and ψR(x) in the left and right Stokes
wedges. We then patch together these eigenfunctions and their
first derivatives at the origin x = 0. The patching condition is

0 = ψR(x)ψ ′
L(x) − ψL(x)ψ ′

R(x)|x=0. (6)

To zeroth order in powers of δ the Schrödinger eigenvalue
equation Hψ(x) = Eψ(x) reads

y ′′
0 (x) + ixy0(x) + Ey0(x) = 0.

Substituting x = reiθL,R reduces this equation to an Airy
equation [29] for the zeroth-order eigenfunctions y0,(L,R)(x)
in the left and right wedges:

y ′′
0,(L,R)(r) − (r − Ee∓iπ/3)y0,(L,R)(r) = 0, (7)

where the derivatives are now taken with respect to r .
The boundary conditions on the eigenfunctions in each

wedge require that y0,(L,R)(r) → 0 as r → ∞, so the solutions
to (7) are Airy functions [29]:

y0,(L,R)(x) = CL,R(x)Ai(r − Ee∓iπ/3)

= CL,RAi(∓xe±iπ/6 + Ee±2iπ/3), (8)

where CL,R are multiplicative constants.
The right side of the patching condition (6) for the zeroth-

order solutions is calculated from the Wronskian identity for
Airy functions [29]:

ψ0,R(x)ψ ′
0,L(x) − ψ0,L(x)ψ ′

0,R(x)|x=0

= −CLCR[e−iπ/6Ai(Ee−2iπ/3)Ai ′(Ee2iπ/3)

+ eiπ/6Ai(Ee2iπ/3)Ai ′(Ee−2iπ/3)]

= −iCLCRW[Ai(Ee2iπ/3),Ai(Ee−2iπ/3)]

= 1
2π

CLCR 
= 0. (9)

When δ is exactly 0, the potential is linear in x and y0,(L,R)(x)
are the exact solutions to the Schrödinger equation. The above
calculation shows that these solutions cannot be patched, and
thus there are no eigenvalues at all when ε = −1 (δ = 0). This
conclusion is consistent with Fig. 3, which shows that the real
parts of all of the eigenvalues become infinite as ε approaches
−1. The fact that the spectrum is empty at ε = −1 is not a
new result; the absence of eigenvalues of a linear potential
was established in Ref. [27].

Next, we perform a first-order O(δ1) analysis. We set
y1(x) = Q(x)y0(x). (This substitution is motivated and ex-
plained in detail in Ref. [24].) The first-order Schrödinger
equation now reads

y ′′
1 (x) + ixy1(x) + ix ln(ix)y0(x) + Ey1(x) = 0.

We multiply this equation by the integrating factor y0(x) and
insert the leading-order approximation to the eigenfunctions
and obtain [

y2
0 (x)Q′(x)

]′ = −ix ln(ix)y2
0 (x).
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We then integrate this equation along the center ray of each
Stokes wedge:

Q′
L,R(x) = i

∫ ∓ exp(∓iπ/6)∞

0
dt t ln(it)

[
y0,(L,R)(t)

y0,(L,R)(x)

]2

= ie∓iπ/3
∫ ∞

0
ds s ln(∓se∓iπ/6)

×
[
y0,(L,R)(∓se∓iπ/6)

y0,(L,R)(x)

]2

= ie∓iπ/3
∫ ∞

0
ds s ln(se±2iπ/3)

×
[

Ai(s + Ee±2iπ/3)

Ai(∓xe±iπ/6 + Ee±2iπ/3)

]2

. (10)

Thus, to first order in δ with ψ(x) = y0(x)[1 + δQ(x)] the
patching condition (6) becomes

0 = [1 + δQR(0) + δQL(0)][y0,R(x)y ′
0,L(x)

− y0,L(x)y ′
0,R(x)]x=0

+ δy0,L(x)y0,R(x)[Q′
L(0) − Q′

R(0)]

= CLCR
{− 1

2π
+ δAi(Ee−2πi/3)Ai(Ee2πi/3)

× [Q′
L(0) − Q′

R(0)]
}
, (11)

where we have used the zeroth-order patching condition (6)
and the leading-order eigenfunction (8). Note that because the
Schrödinger equation is linear we are free to choose QL(0) +
QR(0) = 0.

For large E, we use the asymptotic expansion of the Airy
function [29]

Ai(x) ∼ 1

2
√

π
x−1/4 exp

(
−2

3
x3/2

)
(|x| → ∞,|arg x| < π ).

Thus, the patching condition for |E| → ∞ becomes

2

δ
∼ 1√

E
exp

(
4

3
E3/2

)
[Q′

R(0) − Q′
L(0)]. (12)

Note that because we are treating δ as small, the difference
Q′

R(0) − Q′
L(0) is approximately a positive real number. For

real E this difference is exactly real because Q′
R(0) and

−Q′
L(0) are complex conjugates.

We expand the right side of (12) to first order in β/α, where
α = Re E > 0 and β = Im E. This expansion is justified
because, as we can see in Fig. 3, the imaginary parts are
small compared with the real parts near ε = −1. The patching
condition (12) then becomes

2

δ
∼ α−1/2

(
1 + i

β

α

)−1/2

exp

[
4

3
α3/2

(
1 + i

β

α

)3/2]

= α−1/2

(
1 − i

β

2α

)
exp

(
4

3
α3/2

)
exp(−2iα1/2β)

+O

(
β2

α2

)
. (13)

Hence, when δ is positive, we obtain the condition

arg
2

δ
= arctan

(
− β

2α

)
− 2α1/2β = 2mπ,

where m is an integer. This result simplifies because the arctan-
gent term is small; to leading-order we obtain 2α1/2β = 2mπ .
Similarly, when δ < 0, we find that 2α1/2β = (2m + 1)π .

We conclude that for either sign of δ we obtain a simple
formula for the real part of the eigenvalues. Specifically, if
we combine the above three equations, then we obtain 2

|δ| ∼
α−1/2 exp ( 4

3α3/2). Hence, in the neighborhood of ε = −1 (that
is, when δ is near 0), the real parts of the eigenvalues are
logarithmically divergent while the imaginary parts of the
eigenvalues remain finite:

Re E ∼
(

−3

4
ln |δ|

)2/3

, Im E ∼ nπ

2
√

Re E
, (14)

where n is an even integer for δ > 0 and n is an odd integer for
δ < 0. Evidently, the imaginary parts of the eigenvalues vary
rapidly as ε passes through −1 because there is a logarithmic
singularity at ε = −1. A blow-up of the region −1.05 < ε <

1.05 is given in Fig. 4.
To visualize the behavior of the eigenvalues near ε = −1

more clearly, we have plotted the imaginary and real parts
of the eigenvalues in the complex -ε plane in the left and
right panels of Fig. 5. Observe that the imaginary parts of
the eigenvalues lie on a helix and that the real parts of the
eigenvalues lie on a double helix as ε winds around the
logarithmic singularity at ε = −1. This logarithmic singularity
is an infinite-order exceptional point, which one discovers only
very rarely in studies of the analytic structure of eigenvalue
problems.

III. EIGENVALUE BEHAVIOR AS ε → −2

In Fig. 6 we plot the first three complex-conjugate pairs
of eigenvalues in the range −2.0 � ε � −1.1. Note that the
eigenvalues Ek coalesce to the value −1 as ε approaches −2.
As ε decreases towards −2, the real part of Ek becomes more
negative as k increases, and the spectrum becomes inverted;
that is, the higher-lying real parts of the eigenvalues when ε

is near −1.2 (for example) decrease as ε decreases and they
cross when ε is near −1.3. This crossing region is shown in
detail in Fig. 7.

The objective of this section is to explain the behavior of the
eigenvalues as ε approaches −2 by performing a local analysis
near ε = −2. To do so we let

ε = −2 + δ

and treat δ as small (δ � 1) and positive. With this change of
parameter (2) becomes

−y ′′(x) − (ix)δy(x) = Ey(x). (15)

The boundary conditions on y(x), which we can deduce
from Fig. 2, are that the eigenfunctions y(x) must vanish
asymptotically at the ends of a path that originates at e−3πi/2∞
in the complex-x plane, goes down to the origin along the
imaginary axis, encircles the origin in the positive direction,
goes back up the imaginary axis, and terminates at eπi/2∞.
The eigenfunctions are required to vanish at the end points
e−3πi/2∞ and eπi/2∞.

We now make the crucial assumption that it is valid to
expand the potential term in (15) as a series in powers of δ. To
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FIG. 5. Behavior of the eigenvalues of the Hamiltonian H = p2 + x2(ix)ε as the parameter ε winds around the exceptional point at ε = −1
in a circle of radius 0.05 in the complex-ε plane. This singular point is an infinite-order exceptional point, and all of the complex eigenvalues
analytically continue into one another as one encircles the exceptional point. The lines are shaded blue when Re ε > −1 and red when
Im ε < −1. The behavior of the imaginary parts of the eigenvalues (left panel) are easier to visualize because they exhibit a simple logarithmic
spiral. The dot shows that the imaginary part of an eigenvalue (the eigenvalue shown in black in Figs. 3 and 4) vanishes (the eigenvalue is real)
when Re ε > −1. However, as we wind in one direction the imaginary parts of the eigenvalues increase in a helical fashion and as we wind
in the opposite direction the imaginary parts of the eigenvalues decrease in a helical fashion. As we pass the real-ε axis we pass through the
values plotted on the red dashed lines shown in Figs. 3 and 4. A shaded cylinder has been drawn to assist the eye in the following this helix.
The behavior of the real parts of the eigenvalues (right panel) is more complicated because the curves form a double helix. The two helices
intersect 4 times each time the singular point at ε = −1 is encircled, and they intersect at 90◦ intervals. If we begin at the dot, then we see that
the real parts of the eigenvalues increase as we rotate about ε = −1 in either direction. Each time ε crosses the real axis in the complex-ε plane
the curves pass through the values shown at the left and right edges of Fig. 4.

FIG. 6. First three complex-conjugate pairs of eigenvalues of
the Hamiltonian H = p2 + x2(ix)ε plotted as functions of ε for
−2 � ε � −1.1. This figure is a continuation of Fig. 3. Note that the
real parts of the eigenvalues coalesce to −1 and the imaginary parts
coalesce to 0 as ε approaches −2. The results of a WKB calculation
of these eigenvalues near ε = −2 is given in (29). Note that the real
parts of the eigenvalues cross near ε = −1.3, but they do not all cross
at the same point as can be seen in Fig. 7.

second order in δ, we then have

−y ′′(x) − δ ln(ix)y(x) − 1
2δ2[ln(ix)]2y(x) = (E + 1)y(x).

(16)

In this form, one can see that to every order in powers of δ

the potential terms in the Schrödinger equation are singular
at x = 0. As a consequence, the solution y(x) vanishes at
x = 0. (One can verify that y(0) = 0 by examining the WKB
approximation to y(x); the prefactor [V (x) − E]−1/4 vanishes
logarithmically.)

We then make the change of independent variable t = −ix.
In terms of t , (16) becomes

− y ′′(t) + δ ln(−t)y(t) + 1
2δ2[ln(−t)]2y(t) = −(E + 1)y(t).

(17)

This eigenvalue equation is posed on a contour on the real-t
axis that originates at t = +∞, goes down the positive-real
t axis, encircles the origin in the positive direction, and goes
back up to e2πi∞, and y(t) is required to vanish at the end
points of this contour. We then replace ln(−t) with ln(t) ± iπ :

−y ′′(t) + δ[ln(t) ± iπ ]y(t) + 1
2δ2[ln(t) ± iπ ]2y(t)

= −(E + 1)y(t). (18)
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FIG. 7. Detail of Fig. 6 showing the behavior of the real parts
of the first six eigenvalues of the Hamiltonian H = p2 + x2(ix)ε for
−1.4 � ε � −1.2. The real parts of the eigenvalues cross almost at
the same value of ε but the imaginary parts of the eigenvalues remain
well separated.

Next, we make the scale change

t = s/
√

δ.

This converts (18) into the Schrödinger equation

−y ′′(s) + ln(s)y(s) + δU (s)y(s) = Fy(s), (19)

where the energy term F is given by

F = −(E + 1)/δ + 1
2 ln(δ) ∓ iπ − 1

8δ[ln(δ)]2

+ 1
2δπ2 ± 1

2δiπ ln(δ) (20)

and the order δ term in the potential is given by

U (s) = 1
2 [ln(s)]2 − 1

2 ln(δ) ln(s) ± iπ ln(s). (21)

Our procedure will be as follows. First, we neglect the U (s)
term in (19) because δ is small and we use WKB theory to
solve the simpler Schrödinger equation

−y ′′
0 (s) + ln(s)y0(s) = F0y0(s). (22)

Second, we find the energy shift �F due to the U (s) term in
(19) by using first-order Rayleigh-Schrödinger theory [24]; to
wit, we calculate the expectation value of U (s) in the WKB
approximation to y0(s) in (22). Having found F = F0 + �F ,
we obtain the energy E from (20):

E = −1 − Fδ + 1
2δ ln(δ) ∓ iπδ − 1

8δ2[ln(δ)]2

+ 1
2π2δ2 ± 1

2 iπδ2 ln(δ). (23)

This approach gives a very good numerical approximation to
the energies shown in Fig. 6.

The standard WKB quantization formula for the eigenval-
ues F0 in a single-well potential V (s) (the two-turning-point
problem) is(

n + 1

2

)
π =

∫ s2

s1

ds
√

F0 − V (s) (n � 1). (24)

For (22) the potential V (s) is ln(s) and the boundary conditions
on y0(s) are given on the positive half line: y0(s) vanishes at

s = 0 and at s = +∞. In order to apply (24), we extend the
differential equation to the whole line −∞ < s < +∞ by
replacing ln(s) with ln(|s|) and consider only the odd-parity
solutions. Thus, we must replace the integer n in (24) with
2k + 1, where k = 0, 1, 2, . . .. The turning points are given
by s1 = −eF0 and s2 = eF0 . Hence, the WKB formula (24)
becomes

(
2k + 1 + 1

2

)
π =

∫ eF0

−eF0

ds
√

F0 − ln(|s|)

= 2
∫ eF0

0
ds

√
F0 − ln(s) (k � 1).

The substitution s = ueF0 simplifies this equation to

(
2k + 3

2

)
π = 2eF0

∫ 1

0
du

√
− ln(u)

and the further substitution v = − ln(u) reduces the integral to
a � function:∫ 1

0
du

√
− ln(u) =

∫ ∞

0
dv e−vv1/2 = �

(
3

2

)
= 1

2

√
π.

Thus, the WKB approximation to the eigenvalues F0 is

F0 = ln
[(

2k + 3
2

)√
π

]
, (25)

which is valid for large k.
Next, we calculate the order-δ correction �F to (25) due to

the potential U (s) in (19). To do so we calculate the expectation
value of U (s) in the WKB eigenfunction y0(s) of (22):

�F = δ

∫ ∞

0
ds U (s)[y0(s)]2

/∫ ∞

0
ds [y0(s)]2, (26)

where U (s) is given in (21).
Integrals of this type are discussed in detail in Chap. 9 of

Ref. [24]. To summarize the procedure, in the classically for-
bidden region beyond the turning point, y0(s) is exponentially
small, and the contribution to the integral from this region is
insignificant. In the classically allowed region, the square of
the eigenfunction has the general WKB form

[y0(s)]2 = C√
F0 − V (s)

sin2

[
φ +

∫ s

dr
√

F0 − V (r)

]
,

where C is a multiplicative constant and φ is a constant phase
shift.

Making the replacement sin2 θ = 1
2 − 1

2 cos(2θ ), we ob-
serve that because of the Riemann-Lebesgue lemma, the cosine
term oscillates to zero for large quantum number k, and we
may replace [y0(s)]2 in the integrals in (26) by the simple
function 1

2 [F0 − V (s)]−1/2. Thus, the shift in the eigenvalues
is given by

�F = δ

∫ eF0

0

ds ln(s)√
F0 − ln(s)

[
1

2
ln(s) − 1

2
ln(δ) ± iπ

]

/ ∫ eF0

0

ds√
F0 − ln(s)

. (27)
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TABLE I. Comparison of the real parts of the eigenvalues
of the differential equation (15) at δ = 0.01 with the asymptotic
approximation in (29). The rate at which the accuracy increases with
increasing k is similar to the increase in accuracy of the standard
WKB approximation to the eigenvalues of the quartic anharmonic
oscillator [24].

Numerical value of O(δ2) calculation Relative
k Re Ek at δ = 0.01 of Re Ek in (29) error

0 −1.0352 −1.0414 8.70 %
2 −1.0426 −1.0461 0.33 %
4 −1.0469 −1.0493 0.30 %
6 −1.0499 −1.0518 0.18 %
8 −1.0523 −1.0538 0.15 %
10 −1.0542 −1.0555 0.12 %
12 −1.0559 −1.0569 0.10 %

After making the previous changes of variable s = eF0u

followed by v = − ln(u), we obtain

�F = δ

∫ ∞

0
dv e−v(F0 − v)v−1/2

[
1

2
(F0 − v)

− 1

2
ln(δ) ± iπ

]/ ∫ ∞

0
dv e−vv−1/2,

which evaluates to

�F = 1
8δ

[
4F 2

0 − 4F0 + 3 − 4F0 ln(δ)

+ 2 ln(δ) ± iπ (8F0 − 4)
]
. (28)

Finally, we substitute F = F0 + �F in (23) to obtain the
eigenvalues Ek:

Ek = −1 + δ
[

1
2 ln(δ) − F0

] − 1
8δ2

{
[ln(δ)]2 + 2 ln(δ)

− 4 ln(δ)F0 + 3 − 4π2 − 4F0 + 4F 2
0

}
± i

{−δπ + 1
2δ2[π ln(δ) + π − 2F0]

}
, (29)

where F0 is given in (25).
To verify these results, in Tables I and II we compare our

numerical calculation of Re Ek and Im Ek with the asymptotic
prediction in (29).

TABLE II. Comparison of the imaginary parts of the eigenvalues
of the differential equation (15) at δ = 0.01 with the asymptotic
approximation in (29).

Numerical value of O(δ2) calculation Relative
k Im Ek at δ = 0.01 of Im Ek in (29) error

0 0.03397 0.03210 5.3%
2 0.03352 0.03220 3.8%
4 0.03339 0.03224 3.4%
6 0.03334 0.03226 3.2%
8 0.03332 0.03228 3.1%
10 0.03332 0.03229 3.0%
12 0.03333 0.03231 3.0%

IV. EIGENVALUE BEHAVIOR FOR −4 < ε < −2

This section reports our numerical calculations of the
eigenvalues for ε between −2 and −4. We rotate x in (2)
by 90◦ by making the transformation s = ix. In the s variable,
the eigenvalue equation (2) becomes

ψ ′′(s) − s2+εψ(s) = Eψ(s). (30)

In the x variable the center-of-wedge angles (3) are −π +
επ/(8 + 2ε) and −επ/(8 + 2ε) but in the s variable these
angles are simply ∓2π/(4 + ε). Thus, the integration contour
makes 2/(4 + ε) loops around the logarithmic branch point at
the origin in the complex-s plane.

For example, if ε = −3 (this is the complexPT -symmetric
version of the Coulomb potential for which H = p2 + i/x

[30]), then the contour loops around the origin exactly twice;
it goes from an angle −2π to the angle 2π . Looping contours
for other complex eigenvalue problems have been studied in
the past and have been called “toboggan contours” [31]. In
the PT -symmetric Coulomb case the contour is shown in
Fig. 8. Figure 9 shows the contours for the cases ε = −2.5 and
ε = −3.5.

To solve these eigenvalue problems with looping contours,
we introduce the change of variable

s(t) = 1

1 − t2
exp

2πit

4 + ε
, (31)

FIG. 8. Contour in the complex-s plane for the complex Coulomb potential ε = −3. The contour comes in from ∞ parallel to the
positive-real axis at an angle of −2π in the center of the left Stokes wedge (right panel). Next, it loops around the origin in the positive direction
(center panel). Finally, it goes back out to ∞ parallel to the positive-real axis at an angle of 2π in the center of the right Stokes wedge (left
panel). The total rotation about the origin is 4π .
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FIG. 9. Eigenvalue contours in the complex-s plane for the cases
ε = −2.5 and ε = −3.5.

which parametrizes the looping path in the complex-s plane
in terms of the real variable t . As t ranges from −1 to +1,
the path in the complex-s plane comes in from infinity in the
center of the left Stokes wedge, loops around the logarithmic
branch-point singularity at the origin, and goes back out to
infinity in the center of the right Stokes wedge. In terms of the
t variable the eigenvalue equation (30) has the form

ψ ′′(t)
[s ′(t)]2

− s ′′(t)
[s ′(t)]3

ψ ′(t) − [s(t)]2+εψ(t) = Eψ(t), (32)

where ψ(t) satisfies ψ(−1) = ψ(1) = 0.

FIG. 10. Eigenvalues of the Hamiltonian H = p2 + x2(ix)ε for
ε = −2.0001 and −2.001. (The right panels are magnifications of
the left panels.) The spectrum lies in the left-half complex plane
and is partly continuous and partly discrete. The eigenvalues in
the continuous part of the spectrum lie on a pair of complex-
conjugate curves that radiate away from −1 and as we calculate
more eigenvalues, the points on these curves become denser. The
discrete part of the spectrum consists of eigenvalues lying on two
complex-conjugate curves that are much closer to the negative-real
axis. There is an elaborate structure near ε = −1. As ε goes below −2,
the eigenvalues move away from −1; specifically, for ε = −2.0001
the distance from −1 to the nearest eigenvalue is about 0.0005 and
for ε = −2.001 the distance to the nearest eigenvalue is about 0.008.

FIG. 11. Discrete and continuous parts of the spectrum of
the PT -symmetric Hamiltonian H = p2 + x2(ix)ε for the case
ε = −2.6. The discrete eigenvalues (orange squares) occur in pairs in
the left-half complex plane. The continuous eigenvalues (blue dots)
lie on two complex-conjugate pairs of curves in the right-half complex
plane. As we decrease the cell size in the Arnoldi algorithm, the dots
become dense on these curves. The continuous curves of eigenvalues
originate slightly to the left of the origin.

To solve this eigenvalue problem we use the Arnoldi
algorithm, which has recently become available on Math-
ematica [32]. This algorithm finds low-lying eigenvalues,
whether they are real. We apply the Arnoldi algorithm to (32)
subject to the homogeneous Dirichlet boundary conditions
ψ(−1 + η) = ψ(1 − η) = 0 and let η → 0+. There are two
possible outcomes: (i) In this limit, some eigenvalues rapidly
approach limiting values; these eigenvalues belong to the
discrete part of the spectrum. (ii) Other eigenvalues become
dense on curves in the complex plane as η → 0+; these
eigenvalues belong to the continuous part of the spectrum.

A. ε slightly below −2

As soon as ε goes below −2, the eigenvalues explode away
from the value −1 (shown at the left side of Fig. 6). In Fig. 10
we plot about 100 eigenvalues for ε = −2.0001 and −2.001.
In each plot, we see both discrete and continuous eigenvalues.
The continuous eigenvalues lie on a complex-conjugate pair
of curves in the left-half plane; the discrete eigenvalues also
lie in the left-half plane but closer to the real axis.

B. Discrete and continuous eigenvalues

While the purpose of Fig. 10 is to show that the eigenvalues
explode away from −1 as ε goes below −2, it is also important
to show how to distinguish between discrete and continuous
eigenvalues. To illustrate this, we apply the Arnoldi algorithm
at ε = −2.6. Our results are given in Fig. 11 for η = 0.01. The
spectrum in this case differs qualitatively from the spectrum
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FIG. 12. Detail of Fig. 11 showing the elaborate structure of
the spectrum near the origin in the complex-eigenvalue plane for
ε = −2.6.

near ε = −2; there are now two pairs of curves of continuous
eigenvalues, and these curves are now in the right-half complex
plane. The discrete eigenvalues are still in the left-half complex
plane but further from the negative real axis. There is an
elaborate spectral structure near the origin, and this is shown

FIG. 13. Absolute values of the eigenfunctions ψ(t) for the
discrete eigenvalues −1.79 ± 4.31i for ε = −2.6. The eigenfunctions
satisfy homogeneous boundary conditions at ±(1 − η) for η = 0.01
and look like bound-state eigenfunctions in the sense that the
eigenfunctions decay to 0 exponentially fast at both boundary points.
The left and right panels are interchanged under t → −t , which
corresponds to a PT reflection.

FIG. 14. Absolute values of the eigenfunctions for the continuum
eigenvalues −0.01 ± 0.18i for ε = −2.6. These eigenvalues belong
to the continuous spectrum. The indication that they are part of
the continuous spectrum is that at one of the boundary points the
eigenfunctions suddenly drop to 0 rather than decaying exponentially
to 0. As in Fig. 13, the left and right panels are interchanged under
t → −t , which corresponds to a PT reflection.

in Fig. 12. (We do not investigate this structure in this paper
and reserve it for future research.)

We emphasize that when the Arnoldi algorithm is used to
study a spectrum, it can only return discrete values. Thus, one
must determine whether an Arnoldi eigenvalue belongs to a
discrete or a continuous part of the spectrum. To distinguish
between these two possibilities, we study the associated
eigenfunctions and observe how they obey the boundary
conditions. Plots of discrete and continuous eigenfunctions
associated with eigenvalues shown in Fig. 11 are given in
Figs. 13 and 14.

In Fig. 13 we plot the absolute values of the eigenfunctions
corresponding to the complex-conjugate pair of eigenvalues
E = −1.79 ± 4.31i for ε = −2.6. Observe that as t ap-
proaches the boundaries −1 and 1, the eigenfunctions decay
to 0 exponentially. We conclude from this that the eigenvalues
are discrete. This result can then be verified by taking finer cell
sizes in the Arnoldi algorithm. As the cell size decreases, the

FIG. 15. Eigenvalues for the Coulomb case ε = −3. There are
no discrete eigenvalues and the continuum eigenvalues lie on four
curves in the left-half complex plane.
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FIG. 16. Detail of the region around the origin in the complex
eigenvalue plane of Fig. 15 for ε = −3. For this figure we have
chosen η = 0.999 and have taken the very small cell size 0.00001.

numerical values of E are stable. In contrast, in Fig. 14 in which
the absolute values of the eigenfunctions corresponding to the
pair of eigenvalues E = −0.01 ± 0.18i are plotted, we see
that the eigenfunctions vanish exponentially at one end point
but vanish sharply at the other end point. We therefore identify

FIG. 17. Eigenspectrum for ε = −3.8. The continuous part of
the spectrum (blue dots) lies on two complex-conjugate pairs of
curves in the left-half plane and resembles that of the Coulomb case
(see Fig. 15). The discrete part of the spectrum (orange squares)
consists of complex-conjugate eigenvalues in the left-half plane and
real eigenvalues on the positive-real axis.

FIG. 18. Plot of the absolute value of the eigenfunction associated
with the discrete real eigenvalue E = 0.0804 for ε = −3.8.

these eigenvalues as belonging to the continuous spectrum.
Decreasing the Arnoldi cell size results in a denser set of
eigenvalues along the same curve.

C. Complex Coulomb potential ε = −3

For the Coulomb potential ε = −3, (30) becomes

ψ ′′(s) − 1

s
ψ(s) = Eψ(s),

which is a special case of the Whittaker equation

w′′(z) +
[
−1

4
+ κ

z
+

1
4 − μ2

z2

]
w(z) = 0

with μ2 = 1
4 [29]. The boundary conditions are unusual

(they differ from those in conventional atomic physics) in
that ψ(s) → 0 as |s| → ∞ with arg(s) = ±2π . Rather than
performing an analytic solution to the eigenvalue problem,
we simply present the numerical results, which are obtained
by solving (32) with ε = −3. Figure 15 displays about 100
eigenvalues, which lie on two pairs of complex-conjugate
curves in the left-half plane. These eigenvalues are part of
the continuous spectrum. A blow-up of the region around the
origin is shown in Fig. 16.

The Coulomb case ε = −3 is a transition point between
the regions ε > −3 and ε < −3. In the first region, the
discrete eigenvalues occur in complex-conjugate pairs and

TABLE III. First three real discrete eigenvalues as a function of
δ, where ε = −4 + δ. All the eigenvalues approach 0 as δ → 0. In
fact, Fig. 19 indicates that they approach zero in a linear fashion.

First real Second real Third real
δ eigenvalue eigenvalue eigenvalue

0.15 0.173 0.440 0.807
0.12 0.114 0.321 0.628
0.08 0.080 0.230 0.454
0.06 0.060 0.177 0.351
0.04 0.035 0.116 0.236
0.02 0.012 0.049 0.106
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FIG. 19. First three real eigenvalues of the Hamiltonian H =
p2 + x2(ix)ε plotted as functions of the parameter δ, where ε =
−4 + δ. The eigenvalues clearly approach 0 as δ → 0 and we see
strong evidence that the eigenvalues vanish linearly with δ.

there are no real discrete eigenvalues (as we see in Fig. 11).
In the region ε < −3, the discrete spectrum includes both
real and complex-conjugate pairs of eigenvalues in addition
to the continuous spectrum. Figure 17 illustrates the typical
distribution of eigenvalues in the latter region for the choice
ε = −3.8. In Fig. 18 we display the eigenfunction for the real
discrete eigenvalue E = 0.0804. Unlike the eigenfunctions in
Figs. 13 and 14, this eigenfunction is symmetric in t .

D. Conformal limit ε → −4

The limit ε → −4 is the conformal limit of the theory and
thus the behavior of the eigenvalues in this limit is interesting
to determine. It is difficult to study this limit because the
eigenvalue equation in the complex-s plane follows a contour
that loops around the origin many times when ε is near −4.
Indeed, the number of loops approaches ∞ as ε → −4 and, as
a consequence, we are less confident about the dependability of
the Arnoldi algorithm that we are using to obtain our numerical
results. Nevertheless, we have studied the spectrum for values
of ε that are slightly greater than −4 and examine the trend
as ε moves closer to −4. We find that in this limit the entire

spectrum collapses to the origin. It is not easy to demonstrate
this by studying the continuous part of the spectrum; these
points merely become denser in the vicinity of the origin.
However, the discrete eigenvalues move toward the origin as
ε → −4. In Table III we show the behavior of the first three
real eigenvalues as δ → 0, where ε = −4 + δ. These data are
plotted in Fig. 19. This figure suggests that the eigenvalues
vanish linearly with δ.

V. CONCLUSIONS

In this paper we have studied the eigenvalues of H in
(1) for −4 < ε < 0 and we have shown that there is a
rich analytic structure as a function of the parameter ε.
We have identified transition points at the integer values
ε = 0,−1,−2,−3. Just above ε = 0 the eigenvalues are
all real and positive but below ε = 0 the eigenvalues split
sequentially into complex-conjugate pairs and all of the
eigenvalues but one are complex below about ε = −0.58. At
ε = −1 the real parts of the eigenvalues approach ∞ but the
imaginary parts of the eigenvalues all vanish.

Below ε = −1 the eigenvalues are once again finite, but as
ε approaches −2 the entire spectrum coalesces to the value −1.
Below ε = −2 the eigenvalues explode away from the value
−1 and a new feature of the spectrum arises: The spectrum is
partly continuous and partly discrete. The continuous part of
the spectrum lies along complex-conjugate pairs of lines in the
complex plane that begin near the origin and run off to ∞. By
contrast, the eigenvalues belonging to the discrete part of the
spectrum have negative real parts.

At the Coulomb value ε = −3 the continuous parts of the
spectrum swing around to the negative complex plane and the
discrete eigenvalues disappear. Below the Coulomb transition
the discrete eigenvalues reappear and some of the discrete
eigenvalues are now real. As ε approaches the conformal point
−4, the spectrum appears to implode to the origin.
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