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Abstract
This paper proposes a very simple perturbative technique to calculate the low-
lying eigenvalues and eigenstates of a real one-dimensional parity-symmetric
quantum-mechanical potential. Although it is not essential, the potentials
studied here are assumed for simplicity to rise monotonically as x → ±∞ and
to have V 0min = . The technique is to solve the time-independent Schrödinger
eigenvalue problem as a perturbation series in which the perturbation para-
meter is the energy itself. Unlike nearly all perturbation series for physical
problems, for the ground state this perturbation expansion is convergent and
the perturbative results are numerically accurate. The perturbation series is
divergent for higher energy levels but can be easily evaluated by using
methods such as Padé summation.

Keywords: perturbation theory, Padé summation, Shanks transform
PACS numbers: 02.30.Mv, 03.65.Ge, 02.30.Hq

1. Introduction

This paper presents a very simple idea for calculating the low-lying energy levels and
associated eigenfunctions in quantum mechanics. We begin with the modest goal of calcu-
lating just the ground-state energy E(0) of a parity-symmetric potential V (x) by treating E(0) as
small and using E(0) itself as a perturbation parameter. Of course, the ground-state energy is
typically not small compared with 1, and thus one might expect that a perturbation expansion
in powers of E(0) would be so inaccurate as to be useless. However, for a broad class of
potentials the calculation of E(0) turns out to be surprisingly accurate. Moreover, the
approximants to E(0) emerge in a form that is ideally suited to Shanks extrapolation, and thus
the numerical accuracy of the calculation can be further improved. Even more surprising, if
the perturbation series for the ground-state energy is converted to Padé form, the poles and
zeros of the Padé approximants converge to the odd-parity and even-parity energy levels,
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respectively, and thus the method proposed here can be used to calculate all of the low-lying
energy levels of V (x).

The specific problem treated here is that of solving the dimensionless time-independent
Schrödinger eigenvalue problem

x V x x E x( ) ( ) ( ) ( ), (1)ψ ψ ψ− ″ + =

where x( )ψ vanishes as x → ±∞. For simplicity, we assume that the potential V (x) is an even
function of x, and to begin with, we limit our attention to the ground-state eigenfunction

x( )ψ , which is an even and nodeless function of x. We treat the energy E as being small and
seek a formal perturbation expansion for x( )ψ as a power series in E:

x E x( ) ( ). (2)
k

k
k

0

∑ψ ψ=
=

∞

Note that we have scaled the eigenvalue problem so that it is purely numerical; there are no
dimensionful parameters in the problem, and the eigenvalues E that we seek are
dimensionless numbers. We will see that for the ground-state energy E E(0)= this series is
convergent and also that the radius of convergence of the series is the energy E(1) of the first
excited state.

We substitute x( )ψ in (2) into (1) and collect powers of E. The result is the sequence of
differential equations

x V x x( ) ( ) ( ), (3)0 0ψ ψ=″

and

x V x x x k( ) ( ) ( ) ( ) ( 1). (4)k k k 1ψ ψ ψ− + = ⩾″ −

Of course, we cannot require that x( )0ψ satisfy the homogeneous boundary conditions
( ) 00ψ ±∞ = because 0 is not an eigenvalue. Instead, we work on the half-line x0 ⩽ < ∞

and impose the inhomogeneous boundary conditions (0) 10ψ = and ( ) 00ψ + ∞ = . The
solution x( )0ψ to (3) subject to these boundary conditions is unique.

We solve (4) for x( )kψ by using the method of reduction of order. We substitute

x x x( ) ( ) ( ), (5)k k0ψ ψ ϕ=

where x( ) 10ϕ = , and get

x x x x x x( ) ( ) 2 ( ) ( ) ( ) ( ). (6)k k k0 0 0 1ψ ϕ ψ ϕ ψ ϕ− − =″ ′ ′ −

Multiplying by x( )0ψ , the integrating factor for this equation, gives

x x x x[ ( ) ( )] ( ) ( ).k k0
2

0
2

1ψ ϕ ψ ϕ− ′ ′ = −

We integrate this equation from x to ∞ and use the properties that x( )0ψ vanishes
exponentially fast and that x( )kϕ has algebraic behavior as x → ∞ to discard the upper
boundary term containing ( )0ψ ∞ . (These properties are easily established by doing a large-x
WKB asymptotic analysis of (3) and (4)). We then obtain

x
x

s s s( )
1

( )
d ( ) ( ). (7)k

x
k

0
2 0

2
1∫ϕ

ψ
ψ ϕ=′

∞
−

There is no problem with dividing by x( )0ψ here; it does not vanish for finite x because V (x)
in (3) is positive, and thus x( )0ψ is concave.
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Without loss of generality, we are free to impose the boundary condition (0) 0kϕ = for
k 1⩾ . We then integrate (7) again to obtain

x
s

s
t t t( )

d

( )
d ( ) ( ). (8)k

x

s
k

0
0
2 0

2
1∫ ∫ϕ

ψ
ψ ϕ=

∞
−

This equation may be iterated repeatedly to find the expression for x( )kϕ as a k2 -fold integral
over x( )0

2ψ . The expression for x( )kϕ ′ is a k(2 1)− -fold integral.
The natural place to impose the boundary condition x( ) 0kϕ = is at x = 0 because we are

assuming that the potential V (x) is symmetric about x = 0. (It would be possible to impose this
boundary condition at some other point x 0≠ , but this would unnecessarily complicate the
ensuing formulas.) An immediate consequence of this boundary condition appears to be that

x( )ψ is normalized such that (0) (0) 10ψ ψ= = . However, we emphasize that this conclusion
is only valid so long as the perturbation series (2) converges; if E| | exceeds the radius of
convergence of the series (2), we can no longer assume that (0) 1ψ = . Indeed, when E is an
odd-parity eigenvalue of V (x), (0) 0ψ = .

To summarize, the explicit expression for x( )ψ in terms of the x( )kϕ is

x x E x( ) ( ) 1 ( ) , (9)
k

k
k0

1

∑ψ ψ ϕ= +
=

∞⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

and the derivative of x( )ψ is given by

x
x

x
x x E x( )

( )

( )
( ) ( ) ( ). (10)

k

k
k

0

0
0

1

∑ψ
ψ
ψ

ψ ψ ϕ′ = +
′

′
=

∞

From (10), we immediately deduce the equation

E
(0)

(0)
(0) (0), (11)

k

k
k0

1

∑ψ
ψ

ψ ϕ′ = +′ ′
=

∞

where on the right side of (11) we have used the relation (0) (0) 10ψ ψ= = , which holds in
the perturbative regime (that is, inside the radius of convergence of the power series in E).
Accordingly, we define the function f (E) by

f E( ) 1
(0)

(0) (0)
. (12)

0

ψ
ψ ψ

≡ − ′
′

We now wish to calculate the ground-state energy. The quantization condition that
determines the ground-state eigenvalue is simply that the slope of the eigenfunction (10)
vanish at x = 0: (0) 0ψ′ = . If this condition is satisfied, the ground-state eigenfunction is
determined for all x, negative as well as positive, by parity symmetry. Thus, an implicit
equation for the ground-state energy E(0) is f E( ) 1(0) = .

The function f (E) has a power series expansion of the general form

f E E a( ) . (13)
k

k
k

1

∑=
=

∞
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The first three terms in this series expansion for f (E) are explicitly

f E E s s E s s t
t

u u

E s s t
t

u u v
v

w w

( )
1

(0)
d ( ) d ( ) d

1

( )
d ( )

d ( ) d
1

( )
d ( ) d

1

( )
d ( ) . (14)

s

t

s

t

u

v

0
0

0
2 2

0
0
2

0 0
2 0

2

3

0
0
2

0 0
2 0

2

0 0
2 0

2

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫
ψ

ψ ψ
ψ

ψ

ψ
ψ

ψ
ψ

ψ

= − +

+ + …

′

∞ ∞ ∞

∞ ∞ ∞

⎡
⎣⎢

⎤
⎦⎥

It is clear from this expression that since (0)0ψ ′ is negative, the coefficients ak are positive for
all k. Because there are nested integrals, the form of the equation f E( ) 1= is reminiscent of a
Rayleigh–Schrödinger perturbation expansion [1] but the form of (14) is much simpler
because there is no explicit reference to the potential V (x). The entire dependence on the
potential is contained in the function x( )0ψ , which satisfies the differential-equation
boundary-value problem x V x x( ) ( ) ( )0 0ψ ψ=″ , (0) 10ψ = , ( ) 00ψ ∞ = .

The calculational scheme used here is the exact low-energy analog of the WKB
approximation, which is valid in the limit as E → ∞. The WKB formula for the Nth
eigenvalue (to all orders in WKB) is [2–4]

N x S x
1

2

1

2i
d ( ), (15)

n C
n0 2∮∑π+ ∼

=

∞⎜ ⎟⎛
⎝

⎞
⎠

where the contour C encircles the two turning points in the positive sense. The turning points
are the two real solutions to V x E( ) = , and Sn (x) obeys the recursion relation

S x E V x

S x
S x

S x

S x
S x

S x S x S x n

( ) ( ) ,

( )
( )

2 ( )
,

( )
1

2 ( )
( ) ( ) ( ) ( 2).n n

j

n

j n j

0

1
0

0

0
1

1

1

∑

= − −

= −

= − + ⩾

′

′ −
=

−

−
⎡
⎣⎢

⎤
⎦⎥

Note that the WKB series is normally thought of as a formal series in powers of the
‘small’ parameter ℏ. However, the true small parameter is in fact E1 . Indeed, evaluating the
integrals in the WKB series typically produces a series expansion in inverse (fractional)
powers of E. For example, for the anharmonic potential V x x( ) 4= , the WKB series
expansion reads

N E A E
1

2
, (16)

n n
n3 4

0 2
3 2∑π π+ ∼

=

∞ −⎜ ⎟⎛
⎝

⎞
⎠

where the numerical coefficients A2n are given by

A
R

A
R

A
R

A
R

A
R

3
,

1

4
,

11

1536
,

4697

30720
,

390065

3670016
,0 2 4 6 8= = − = = = − …

and ( ) ( )R 1

4

3

4
Γ Γ= . We emphasize that (15) and (16) are implicit representations for E,

and one must revert the series to find an explicit expression for EN as a series in powers of
N1 . A significant difference between the two series (14) and (15) is that while the WKB

series (15) is divergent, the series (14) is convergent. As we will see in section 2, the radius of
convergence of (14) is finite and larger than the ground-state energy E(0). In fact, the radius of
convergence is E(1), the energy of the first excited state; this is because (0)ψ in the
denominator in (12) vanishes when E E(1)= , the nearest singularity of f (E).

The series (14) determines more than just the ground-state energy. Since (0)ψ vanishes at
all of the odd-parity eigenvalues and (0)ψ′ vanishes at all of the even-parity eigenvalues, the

J. Phys. A: Math. Theor. 47 (2014) 395303 C M Bender and H F Jones

4



function f E( ) 1− , as we can see in (12), has simple poles at all the odd-parity eigenvalues
and simple zeros at all the even-parity eigenvalues. These distant poles and zeros are inac-
cessible to the perturbation expansion used here. However, they become accessible if the
function f (E) that the perturbation series represents is analytically continued outside its radius
of convergence. An approximate and highly accurate analytic continuation is achieved by
converting the truncated series for f (E) to a sequence of Padé approximants. In section 6 we
construct explicitly the diagonal Padé sequence for the illustrative potentials considered in
section 2 and obtain good numerical results.

This paper is organized as follows. In section 2 we consider potentials of the form
V x x( ) N= ∣ ∣ . To examine the accuracy of the procedure we consider the special cases of the
linear potential (N = 1), the harmonic oscillator (N = 2), and the square-well potential
(N = ∞). We also consider the nontrivial case of the anharmonic oscillator N = 4. In section 3
we show that the numerical approximants obtained in section 2 are in a form that is ideally
suited for Shanks extrapolation and that a significant improvement in the accuracy of the
numerical results can be achieved by performing this extrapolation procedure. Then, in
section 4 we show that even greater numerical accuracy can be achieved by using the
approximate eigenfunction to calculate the expectation value of the Hamiltonian. We extend
our analysis to the case of the  -symmetric potentials and discuss the potential V x x( ) i 3=
in detail in section 5. Next, in section 6 we calculate some higher energy eigenvalues by the
use of Padé approximants. Section 7 contains brief concluding remarks.

2. Potentials of the form V xð Þ ¼ x N
�
�

�
�

In this section we apply the technique described in section 1 to potentials of the form
V x x( ) N= ∣ ∣ . For all such potentials x( )0ψ can be given in closed form as an associated Bessel
function:

( )
x

N
x

x

N
( )

2 ( 2)
K

1 2
.

N

N
N

N

0

1 ( 2)

1
2

1 2 1
2

1 2
ψ

Γ
= +

+

− +

+
+

+⎛
⎝⎜

⎞
⎠⎟

We can see from the structure of (14) that the coefficients ak in (12) are all positive.
Therefore, the graph of the function f (E) passes through 0 at E = 0 and rises monotonically as
E increases. The value of E at which f (E) passes through 1 is the ground-state energy E(0) of
V (x). The graph of f (E) continues to rise until E reaches the first-energy level E(1), the radius
of convergence of the series. The function f (E) becomes infinite at E E(1)= .

To illustrate the calculation of E(0) we now consider in turn the cases N = ∞, N = 1,
N = 2, and N = 4. For N = ∞, the coefficients ak are rational numbers for all k, and for N = 1
and 2, the an are known exactly for all k in terms of transcendental functions. For N = 4,
however, ak must be calculated numerically as a k(2 1)− -fold multiple integral.

2.1. Square well potential N ¼ ∞

For the special case of the square-well potential V x( ) 0= ( x 1∣ ∣ < ), V x( ) = ∞ ( x 1∣ ∣ ⩾ ),
we can find the function f (E) in closed form by using (12):

f E E E( ) 1 cot , (17)= −
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which is valid for E E(1) 2π< = . To obtain this result we have used

x
E x

E
x x( )

sin [ (1 )]

sin
and ( ) 1 ,0ψ ψ= − = −

for x0 1⩽ ⩽ and E 2π< . Figure 1 shows that f (E) vanishes at E = 0 and rises
monotonically. It crosses 1 at E E 4(0) 2π= = , the exact value of the ground-state energy,
and becomes infinite at E E(1) 2π= = , the radius of convergence of the Taylor series
expansion of f (E). The first two partial sums of the Taylor series are also shown, and we can
see graphically that just a few terms in the Taylor series give an accurate approximation to
E(0). We can also see that the Taylor series converges monotonically upward to f (E).

We can expand f (E) in (17) as a power series in E and read off the coefficients ak:

f E
E E E E E E E

( )
3 45

2

945 4725

2

93555

1382

638512875

4

18243225
. (18)

2 3 4 5 6 7
= + + + + + + + ⋯

Truncating the series for f (E) after n terms and solving numerically for the positive root En of
f E( ) 1− gives a sequence of approximants En to the ground-state energy. The first six

Figure 1. Left panel: plot of the function f (E) in (17) for the case of the square-well
potential. The function f (E) crosses 1 at E E 4 2.46740(0) 2π= = = , the ground-state
energy, and it becomes infinite at E E 9.8696(1) 2π= = = , the radius of convergence
of the series. Right panel: same as the left panel but with the first term (dashed-dotted
line) and the first two terms (dashed line) in the power-series expansion of f (E) shown
as well. One can see from this graph that just a few terms in the series for f (E) give an
accurate numerical approximation to E (0).

Table 1. First six approximants En (n 1, 2, , 6= … ) to the exact value of the ground-
state energy E 4 2.46740(0) 2π= = . These approximants are obtained by truncating
the expansion of f E( ) 1− after n terms and finding the positive root En of the resulting
polynomial. The convergence to E (0) is geometric; the error in the nth approximant
decays to zero like 4 n− .

Order n En E En
(0)

1 3.0 1.21585
2 2.56231 1.03846
3 2.48906 1.00878
4 2.47267 1.00214
5 2.46871 1.00053
6 2.46773 1.00013
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approximants E E E, , ,1 2 6… are listed in table 1. This table shows that En converges
geometrically to the exact value E 2.46740(0) = of the ground-state energy; it is shown in
section 3 that for large n the difference between E(0) and En approaches 0 like 4 n− .

2.2. Harmonic oscillator N = 2

For the harmonic-oscillator potential V x x( ) 2= , the function f (E) is

f E
E

E
( ) 1

(1 4) (3 4 4)

(3 4) (1 4 4)
. (19)

Γ Γ
Γ Γ

= − −
−

We obtain this result from

( )
( ) ( )

x
x

x
x

E E( )
D 2

D (0)
, ( )

D 2

D (0)
3 ,

E

E

( 1) 2

( 1) 2
0

1 2

1 2

(1)ψ ψ= = < =
−

−

−

−

where zD ( )ν is the parabolic cylinder function [5]. The power-series expansion of this
function gives the coefficients ak:

f E E E E E

E E

( ) 0.78530 0.14956 0.04403 0.01409

0.00463 0.00153 , (20)

2 3 4

5 6

= + + +
+ + + ⋯

which come from evaluating polylogarithms. As figure 2 illustrates, f (E) vanishes at E = 0,
crosses 1 at the ground-state energy E 1(0) = and becomes infinite at E 3(1) = . Table 2 lists
the first six approximants En to E(0). In section 3 it is shown that the error vanishes
geometrically for large n like 3 n− .

2.3. Linear potential N = 1

For the linear potential V x x( ) = ∣ ∣, the function f (E) is

f E
E

E
( ) 1

Ai(0)Ai ( )

Ai (0)Ai( )
, (21)= − ′ −

′ −
which is derived by substituting x x E E( ) Ai( ) Ai( )ψ = − − into (12). The Taylor expansion
of this function gives the coefficients ak:

Figure 2. Left panel: plot of f (E) for the potential V x x( ) 2= of the quantum harmonic-
oscillator. Note that f E( ) 1= at E E 1(0)= = and becomes infinite when
E E 3(1)= = . Right panel: same as the left panel but with the first two partial sums
of the power series expansion for f (E) shown as well. Note that the partial sums
converge monotonically upward to f (E).
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f E E E E E

E E

( ) 0.72901 0.15440 0.05411 0.02131

0.00876 0.00368 , (22)

2 3 4

5 6

= + + +
+ + + ⋯

which series converges if E E(1)< . The function f (E) is plotted in figure 3; f (E) crosses 1 at
the ground-state energy E 1.01879297(0) = and becomes infinite at E 2.3381075(1) = . The
first six approximants En to the ground-state energy E(0) are listed in table 3. It is shown in
section 3 that the error in the nth approximant vanishes for large n like 2.295 n− .

2.4. Quartic potential (N = 4)

For the quartic potential it is not easy to calculate many terms in the Taylor series expansion
of f (E) because it requires the numerical evaluation of multiple integrals. However, the first
three terms in this series are

f E E E E( ) 0.763303 0.125262 0.030303 . (23)2 3= + + + ⋯

In table 4 we give the results of calculating the successive zeros of this series.

Figure 3. Left panel: plot of f (E) in (22) for the linear potential V x x( ) = ∣ ∣. Note that
f (E) passes through 1 at the ground-state energy E 1.01879297(0) = and becomes
infinite at E 2.3381075(1) = . Right panel: same as left panel but with the first three
partial sums in the power-series expansion for f (E) shown as well. Note that the
convergence to f (E) is monotone upward and that just a small number of terms in the
series gives an accurate value of E (0).

Table 2. First six approximants En to the ground-state energy E 1(0) = of the harmonic
oscillator. The error is of order 3 n− .

Order n En

1 1.27324
2 1.05949
3 1.01721
4 1.00543
5 1.00177
6 1.00059
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3. Shanks extrapolation

The Shanks transformation [6] is a technique for finding the limit L of a sequence A{ }n as
n → ∞. This technique relies on the assumption that the nth term in the sequence has the
asymptotic form

A L cr n( ), (24)n
n∼ + → ∞

where c and r are constants and r 1| | < . If the asymptotic approximation (24) is accurate, then
a simultaneous solution to the three

A L cr A L cr A L cr, , (25)n
n

n
n

n
n

1
1

1
1= + = + = ++

+
−

−

gives an accurate value for the limit L:

L
A A A

A A A2
. (26)n n n

n n n

1 1
2

1 1
=

−
+ −

+ −

+ −

Of course, a sequence typically has a more complicated form than the simple three-
parameter model in (24), and therefore the value of L in (26) is only approximate. Indeed, this
calculation produces a value of L that depends on n. However, if the three-parameter model
(24) is accurate, then the formula in (26) produces a new sequence

{ }( )A
A A A

A A A2
, (27)n

n n n

n n n

1 1
2

1 1
≡

−
+ −

+ −

+ −


that typically converges to the limit L faster than the sequence A{ }n as n → ∞. The new
sequence is called the Shanks transform of the original sequence A{ }n .

The ground-state energy E(0) is the positive solution to the equation f E1 ( )= , where
f (E) is given in (12). Let En be the positive root of the polynomial equation f E1 ( )n= ,
where fn(E) is the nth partial sum of f (E):

Table 3. First six approximants En to the ground-state energy of the linear oscillator
potential V x x( ) = ∣ ∣. The exact value of the ground-state energy is E 1.01879(0) = . The
error in the nth approximant is of order 2.295 n− .

Order n En E En
(0)

1 1.37172 1.34642
2 1.11052 1.09003
3 1.05136 1.03197
4 1.03168 1.01265
5 1.02415 1.00525
6 1.02107 1.00223

Table 4. First three approximants to the ground-state energy 1.060362 of the anhar-
monic oscillator potential V x x( ) 4= . These approximants are obtained by truncating
the series (23).

Order n En E En
(0)

1 1.31010 1.23552
2 1.10846 1.04536
3 1.07240 1.01136
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( )a E1 . (28)
k

n

k n
k

1

∑=
=

Also, En 1+ is the positive root of polynomial equation

( )a E1 . (29)
k

n

k n
k

1

1

1∑=
=

+

+

If we subtract (28) from (29), we obtain the equation

( ) ( )( )a E E a E0 . (30)
k

n

k n
k

n
k

n n
n

1

1 1 1
1∑= − +

=
+ + +

+⎡⎣ ⎤⎦
Our numerical studies of f (E), as described in section 2, show that for large n, En is

approximated very well by the simple Shanks formula

E E cr . (31)n
n(0)∼ +

Therefore, we can make the approximations

( ) ( )
( ) ( )( )

( )E E kcr E

E E kcr E

1 ,

1 . (32)

n
k k n

n
k k n

(0) (0)

1
(0) 1 (0)

∼ +

∼ ++
+

Furthermore, the power series representation for f (E) in (12) has a nonzero radius of
convergence, which we denote here by R. Thus, for large n, we can approximate the nth
coefficient an in the series by KR n− , where K is a constant. (In addition to this geometric
dependence there may also be an algebraic dependence on n, but such a dependence does not
affect this argument.) Thus, we can approximate the last term in (30) by

( )( )a E K E R . (33)n n
n n n

1 1
1 (0) 1 1∼+ +

+ + +

These approximations simplify the formula in (30) to

( ) ( )r cr f E K E R(1 ) . (34)n n n(0) (0) 1 1− ′ ∼
+ +

Thus, in the limit as n → ∞ we obtain equations for r and c:

r E R c
KE

R E f E
,

[ ] [ ]
. (35)(0)

(0)

(0) (0)
= =

− ′
Let us apply this analysis in turn to the square-well, harmonic-oscillator, linear, and

quartic potentials. For the square-well potential f (E) is given in (17), and we can see from this
formula that E 4(0) 2π= and that R E(1) 2π= = . Thus, (35) implies that r 1 4= . This
explains the observed rate of convergence of the approximants En in table 1. If we now
compute the Shanks transform E E[ ]n

(0) of the entries in the third column in table 1, we
obtain the new improved sequence of approximants 1.00281, 1.00022, 1.00002, 1.00000,
which is a dramatic improvement in accuracy. (Note that the six entries in table 1 can only
give rise to four terms in the Shanks transformed sequence because of the structure of (26)).

For the harmonic-oscillator potential f (E) is given in (19). Thus, E 1(0) = and
R E 3(1)= = . Thus, from (35) we see that r 1 3= . This explains the observed rate of
convergence of the approximants En in table 2. We compute the Shanks transform of the
entries in the second column in table 2 and we obtain the new improved sequence of
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approximants 1.00678, 1.00088, 1.00012, 1.00002, which again is a dramatic improvement in
accuracy.

Next, we consider the linear potential: f (E) given in (21). The value of r E E(0) (1)= is
1 2.29459, which explains the rate of convergence of the approximants in table 3. The Shanks
transform of the entries in the third column in produces the new and more accurate sequence
of approximants 1.01497, 1.00301, 1.00066, 1.00014.

Finally, we construct the Shanks transform of the three entries in the third column in
table 4 and obtain 1.00396. This is an improvement in accuracy by a factor of three.

4. Expectation value of H

Let us denote by x( )nΨ the truncation of the series (9) for x( )ψ at order n,

x x E x( ) ( ) 1 ( ) (36)n

k

n
k

k0
1

∑Ψ ψ ϕ= +
=

⎡
⎣⎢

⎤
⎦⎥

in which we replace E by En so that x( )nΨ satisfies the boundary condition (0) 0nΨ =′ . The
expectation value H n〈 〉 , of the operator H in the state x( )nΨ is given by

H x x x x x
1

d ( ) ( ) ( ) , (37)n n n
N

n
0

∫ Ψ Ψ Ψ= − +″
∞ ⎡⎣ ⎤⎦

where [ ]x xd ( )n0

2∫ Ψ= ∞ . Note that we have taken the integration ranges as (0, )∞ rather
than ( , )−∞ ∞ because x( )nΨ is constructed as an even function when E En= .

Using (3) and the recursion relations (6) for the ϕk we readily find that

H x E . (38)n n
N

n n 1Ψ Ψ Ψ Ψ≡ − + =″ −

This result reveals the extent to which Ψn fails to satisfy the Schrödinger equation, for which
the right side of this equation would be E nΨ . Using this equation, we get

[ ]
H E

x x x

x x

d ( ) ( )

d ( )
. (39)n n

n n

n

0 1

0
2

∫
∫

Ψ Ψ

Ψ
=

∞
−

∞

Because all the terms in the expansion of x( )ψ are positive, x x( ) ( )n n1Ψ Ψ<− . Thus, we see
that H En n〈 〉 < . But, the expectation value of H in any approximate eigenfunction must satisfy
the inequality H En exact〈 〉 > . Thus,

E H E . (40)n n exact> >

So, taking the expectation value of H in the state Ψn is guaranteed to produce a more accurate
approximation to E(0) than En. When the ϕk must be calculated as multiple integrals, the
maximal dimension of the integrals involved in calculating H n〈 〉 is n2 1+ , to be compared
with n2 1− for En. Thus, the maximal dimension, and hence the computational effort, is the
same for H n〈 〉 and En 1+ . However, we shall see that in every case H n〈 〉 is much more accurate
than En.

Let us now consider in turn the potentials studied in section 2 and compare H n〈 〉 with the
results given in tables 1–4. For the square well, case A, we have the results that
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H E

H E

H E

1.001292,

1.000061,

1.000003.

1 exact

2 exact

3 exact

=
=
=

For the quantum harmonic oscillator, case B, the results are

H

H

H

1.003921,

1.000343,

1.000035.

1

2

3

=
=
=

For the linear potential, case C, we have

H E

H E

H E

1.009813,

1.001427,

1.019041.

1 exact

2 exact

3 exact

=
=
=

Finally, for the anharmonic oscillator, case C, we have

H E

H E

1.00202,

1.00012.
1 exact

2 exact

=
=

These results become more accurate for larger values of the power N of the potential. This
may be because the wave functions fall off more rapidly with x as N increases, so the
expectation values are less sensitive to the difference in shape between Ψn and n 1Ψ – .

5. PT -symmetric potential ix3

Until now we have dealt with real symmetric potentials, V x V x( ) ( )− = , and have exploited
the symmetry of the ground-state eigenfunction. The approximate solutions have therefore
been required to satisfy the condition (0) 0nΨ =′ . However, our method readily extends to
complex  -symmetric potentials satisfying V x V x( ) ( )− = * . In particular, it has been
shown in a number of papers [7–9] that the potentials V x(i )N= − for N 2⩾ have a com-
pletely real energy spectrum. When N 2⩾ , the  symmetry is unbroken, that is, the phases
of the eigenfunctions can be chosen so that the eigenfunctions are  symmetric,

z z( ) ( )ψ ψ* − = . Here, we have written the argument as z because the  -symmetric
eigenvalue problem can, and for N 4⩾ must, be posed on a contour in the complex-z plane
lying within an appropriate Stokes wedge [7]. We choose the contour to pass through the
origin, and the corresponding condition on the truncated wave functions z( )nΨ in (36) is

z

z

z
Re

1

( )

d ( )

d
0. (41)

z 0ψ
ψ =

=

⎛
⎝⎜

⎞
⎠⎟

It is convenient to formulate the problem in the right-half plane on the Stokes line z xλ= ,
where e iλ = θ− and N(2 4)θ π= + . Then for N = 3 the Schrödinger equation on the Stokes
line reads

x
x x E x

d

d
( ) ( ). (42)

2

2
3 2ψ λ ψ− + =

⎛
⎝⎜

⎞
⎠⎟

The coefficients in the energy power-series expansion of x( )ψ are the same as those for the
potentialV x 3= ∣ ∣ . The only difference between the ix3 and the x 3∣ ∣ potentials is that now the
expansion is in powers of the complex quantity E2λ instead of E, where in this
case 10θ π= .
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In terms of x the eigenvalue condition at z = 0 becomes

x

x

x
Re

1 1

( )

d ( )

d
0. (43)

x 0λ ψ
ψ =

=

⎛
⎝⎜

⎞
⎠⎟

Thus,

E Ecos ( )
(0)

(0)
cos ( ) (0) cos (3 ) (0) ... 0. (44)0

0
1

2
2θ

ψ
ψ

θ ϕ θ ϕ+ + + =
′

′ ′

The principal difference from the Hermitian case is that the coefficient ak in (13) is
multiplied by the factor kcos (2 1)θ− , which is not positive definite. As a result, some of the
coefficients are negative, and other coefficients vanish. This means that convergence of En to
the exact ground-state energy E(0) is no longer monotonic. These features are exemplified by
the following numerical results:

E E

E E

E E E E

1.10366,

0.98258,

. (45)

1
(0)

2
(0)

3
(0)

2
(0)

=
=
=

The first-order result happens to be the same as for V x 3= ∣ ∣ because cos ( ) cosθ θ− = . The
second-order result is less than E(0), rather than approaching the exact value from above, and
the approximant is unchanged in third order because cos(5 ) 0θ = .

The reason for choosing the contour as we did is that the integrals over x that are used to
construct x( )kϕ and x( )kϕ ′ remain real, and in fact equal those for the Hermitian potential x 3∣ ∣ ,
thus making the evaluation of the coefficients no more difficult than in the Hermitian case.
The difference is that in calculating the expectation value of H according to (39), the truncated
wave functions Ψn and n 1Ψ – are complex because of the replacement of En by En

2λ in the
expansion (2). However, by taking the real parts the integrals can be decomposed into a
number of real integrals over the x( )kϕ . The results are

H E

H E

0.984,

0.997. (46)

1
(0)

2
(0)

=
=

Again, both H〈 〉1 and H〈 〉2 are less than the true value E(0) but closer than E2 and E3,
respectively. Recall that H n〈 〉 and En 1+ require about the same calculational effort.

In summary, we can see that while the results do converge to the ground-state energy, the
convergence is not as rapid as for the corresponding Hermitian potential V x N= ∣ ∣ . This is not
surprising considering the very similar variational results in [10], where high-dimensional
matrices were diagonalized to obtain the numerical approximations to the eigenvalues.

6. Padé calculation of higher energy levels

As explained in section 1, one can find the approximate poles and zeros of f E( ) 1−
by converting (14) to the diagonal sequence of Padé approximants. The poles give
approximations to the odd-parity eigenvalues, while the zeros give approximations to the
even-parity eigenvalues. In tables 5–7 we list the first four eigenvalues obtained from the
Padé approximants P1

1, P2
2, P3

3, and P4
4 for the potentials considered in subsections 2.1–2.3.

For the anharmonic oscillator potential V x x( ) 4= we have only calculated the series for
f (E) in (23) to third order in powers of E. If we use the diagonal Padé approximant P1

1, we
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obtain the estimate E 1.07827(0) = , which is accurate to about 2% and is a slight improve-
ment on the second entry in table 4. However, the Padé approximant P1

2 gives
E 1.06137(0) = , a significant improvement in numerical accuracy (one part in a thousand)
compared with the results in table 4. This Padé approximant also gives the value 4.13364 for
the first excited state, which differs from the exact value 3.79967 by about 9%.

7. Concluding remarks

In this paper we have shown how to construct a perturbative solution to the Schrödinger
eigenvalue equation x V x x E x V x( ) ( ) ( ) ( ) ( ( ))ψ ψ ψ− ″ + = real, even, monotonically
increasing as x → ±∞, V 0)min = as a formal series in powers of the eigenvalue E itself. We
have then used this expansion to obtain accurate numerical approximations to the ground-
state energy, and also to the higher energy levels by the use of various numerical methods
such as the Shanks transformation and Padé approximation. The surprise is that even though
the energy levels of the quantum theory are not small compared with 1, the perturbation
expansion is convergent if E E(1)< , the first energy level. Furthermore, the perturbation
expansion that we have constructed can also be applied to non-Hermitian  -symmetric

Table 5. Energies obtained from the first four diagonal Padé approximants for the
square-well potential V x( ) 0= ( x 1)∣ ∣ ⩽ , V x( ) = ∞ ( x 1∣ ∣ > ).

Energy P1
1 P2

2 P3
3 P4

4 Exact

E (0) 2.50000 2.46744 2.46740 2.46740 2.46740

E (1) — 9.94122 9.86993 9.86960 9.86960

E (2) — — 22.29341 22.20737 22.20661

E (3) — — — 39.56379 39.47842

Table 6. Energies obtained from the first four diagonal Padé approximants for the
harmonic oscillator potential V x x( ) 2= .

Energy P1
1 P2

2 P3
3 P4

4 Exact

E (0) 1.02478 1.00013 1.00000 1.00000 1

E (1) — 3.08260 3.00237 3.00003 3

E (2) — — 5.12647 5.00701 5

E (3) — — — 7.16012 7

Table 7. Energies obtained from the first four diagonal Padé approximants for the linear
potential V x x( ) = ∣ ∣.

Energy P1
1 P2

2 P3
3 P4

4 Exact

E (0) 1.06291 1.01948 1.01880 1.01879 1.01879

E (1) — 2.48513 2.34902 2.33863 2.33811

E (2) — — 3.44920 3.27292 3.24820

E (3) — — — 4.35282 4.08795
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potentials. Our general approach has been to solve the unperturbed problem
x V x x( ) ( ) ( ) 00 0ψ ψ− ″ + = for x 0⩾ and to use x( )0ψ as the building block for constructing

x( )ψ for x 0⩾ as a perturbative expansion in E. The approximate eigenvalues are then
obtained by the condition that x( )ψ can be extended by parity (or  symmetry) to nega-
tive x.

The method proposed in this paper is semi-analytical in the sense that going to high order
in perturbation theory requires the calculation of multidimensional integrals, which may have
to be evaluated numerically. It is important to emphasize, however, that this is a limitation
shared by all other approximation schemes such as Rayleigh–Schrödinger perturbation theory
(where a large number of matrix elements must be evaluated), weak-coupling and strong-
coupling perturbation theories (where the unperturbed eigenfunction may not be known
analytically), and WKB theory (which is difficult to perform beyond leading order). Our
method has the advantage that, unlike Rayleigh–Schrödinger perturbation theory, for
example, it applies to both weak and strong coupling.

While our method yields a convergent perturbation series, it is certainly true that
asymptotic (nonconvergent) series can also be extremely useful. However, there is a limit to
the accuracy that can be thus obtained directly from a divergent series; the accuracy of an
asymptotic series typically increases for a few terms, but then decreases rapidly. A con-
vergent series, on the other hand, can in principle be extended to obtain any desired
accuracy. Of course, one can use Borel summation to extract information from an
asymptotic series, but typically this requires a large number of terms. (For the anharmonic
oscillator with coupling constant g = 1 many terms are required to give just a few decimal
places accuracy.)

The overall numerical accuracy compares favorably with that of other semi-analytic
methods, such as perturbation theory and WKB. We are not aware of any other perturbative
convergent approximation schemes for the type of problem we have considered. Of course,
nonperturbative variational schemes to calculate the ground state of a Hermitian Hamiltonian
are convergent, but optimizing trial functions containing many variational parameters is
extremely cumbersome.

To summarize, in the present paper we have limited ourselves to providing an elemen-
tary, accurate, and general recipe for calculating the low-lying eigenvalues of real symmetric
(and complex  -symmetric) potentials using simple analytical and numerical tools. In
mathematical terms, the recipe essentially provides a method of calculating the truncated
Weierstrass products for (0)ψ′ and (0)ψ . Hence it may be interesting to explore further the
connection of the method to such topics as spectral zeta functions, functional determinants
and infinite products of eigenvalues [11]. In the future, we hope to extend the techniques
developed here to quantum theories in higher-dimensional space.
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