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Abstract

The Hamiltonian H specifies the energy levels and time evolution of a quantum theory.
A standard axiom of quantum mechanics requires that H be Hermitian because Hermiticity
guarantees that the energy spectrum is real and that time evolution is unitary (probability-
preserving). This paper describes an alternative formulation of quantum mechanics in which
the mathematical axiom of Hermiticity (transpose + complex conjugate) is replaced by the
physically transparent condition of space–time reflection (PT ) symmetry. If H has an
unbroken PT symmetry, then the spectrum is real. Examples of PT -symmetric non-Hermitian
quantum-mechanical Hamiltonians areH = p̂2 +ix̂3 andH = p̂2−x̂4. Amazingly, the energy
levels of these Hamiltonians are all real and positive!

Does a PT -symmetric Hamiltonian H specify a physical quantum theory in which the
norms of states are positive and time evolution is unitary? The answer is that if H has an
unbroken PT symmetry, then it has another symmetry represented by a linear operator C. In
terms of C, one can construct a time-independent inner product with a positive-definite norm.
Thus, PT -symmetric Hamiltonians describe a new class of complex quantum theories having
positive probabilities and unitary time evolution.

The Lee model provides an excellent example of a PT -symmetric Hamiltonian. The
renormalized Lee-model Hamiltonian has a negative-norm ‘ghost’ state because renormaliza-
tion causes the Hamiltonian to become non-Hermitian. For the past 50 years there have been
many attempts to find a physical interpretation for the ghost, but all such attempts failed. The
correct interpretation of the ghost is simply that the non-Hermitian Lee-model Hamiltonian is
PT -symmetric. The C operator for the Lee model is calculated exactly and in closed form and
the ghost is shown to be a physical state having a positive norm. The ideas of PT symmetry
are illustrated by using many quantum-mechanical and quantum-field-theoretic models.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction—new kinds of quantum theories

The theory of quantum mechanics is nearly one hundred years old and because there have been
so many experimental verifications of its theoretical predictions, it has become an accepted
component of modern science. In an introductory course on quantum physics, one learns the
fundamental axioms that define and characterize the theory. All but one of these axioms are
physical requirements. For example, the energy spectrum is required to be real because all
measurements of the energy of a system yield real results. Another axiom requires that the
energy spectrum be bounded below so that the system has a stable lowest-energy state. Yet
another axiom requires that the time evolution of a quantum system be unitary (probability-
conserving) because the expected result of a probability measurement of a state cannot grow or
decay in time. A quantum theory of elementary particles must also satisfy the physical axioms
of Lorentz covariance and causality. However, there is one axiom that stands out because it is
mathematical rather than physical in character, and this is the requirement that the Hamiltonian
H , which is the operator that expresses the dynamics of the quantum system, be Hermitian.

The requirement thatH be Hermitian dates back to the early days of quantum mechanics.
The Hermiticity of H is expressed by the equation

H = H †, (1)

where the Dirac Hermitian conjugation symbol † represents the combined operations of
matrix transposition and complex conjugation. The mathematical symmetry condition (1)
is physically obscure but very convenient because it implies that the eigenvalues ofH are real
and that the time-evolution operator e−iHt is unitary.

Hamiltonians that are non-Hermitian have traditionally been used to describe dissipative
processes, such as the phenomenon of radioactive decay. However, these non-Hermitian
Hamiltonians are only approximate, phenomenological descriptions of physical processes.
They cannot be regarded as fundamental because they violate the requirement of unitarity. A
non-Hermitian Hamiltonian whose purpose is to describe a particle that undergoes radioactive
decay predicts that the probability of finding the particle gradually decreases in time. Of course,
a particle cannot just disappear because this would violate the conservation of probability;
rather, the particle transforms into other particles. Thus, a non-Hermitian Hamiltonian
that describes radioactive decay can at best be a simplified, phenomenological, and non-
fundamental description of the decay process because it ignores the precise nature of the
decay products. In his book on quantum field theory Barton gives the standard reasons for
why a non-Hermitian Hamiltonian cannot provide a fundamental description of nature [1]:
‘A non-Hermitian Hamiltonian is unacceptable partly because it may lead to complex energy
eigenvalues, but chiefly because it implies a non-unitary S matrix, which fails to conserve
probability and makes a hash of the physical interpretation.’

The purpose of this paper is to describe at an elementary level the breakthroughs that have
been made in the past decade which show that while the symmetry condition (1) is sufficient
to guarantee that the energy spectrum is real and that time evolution is unitary, the condition of
Dirac Hermiticity is not necessary. It is possible to describe natural processes by means of non-
Hermitian Hamiltonians. We will show that the Hermiticity requirement (1) may be replaced
by the analogous but physically transparent condition of space–time reflection symmetry (PT
symmetry)

H = HPT (2)

without violating any of the physical axioms of quantum mechanics. If H satisfies (2), it is
said to be PT symmetric. This paper is an update of an earlier, shorter and more elementary
review paper [2].
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The notation used in this paper is as follows: the space-reflection operator, or parity
operator, is represented by the symbol P . The effect of P on the quantum-mechanical
coordinate operator x̂ and the momentum operator p̂ is to change their signs:

P x̂P = −x̂ and Pp̂P = −p̂. (3)

Note that P is a linear operator and that it leaves invariant the fundamental commutation
relation (the Heisenberg algebra) of quantum mechanics,

x̂p̂ − p̂x̂ = ih̄ 1, (4)

where 1 is the identity matrix. The time-reversal operator is represented by the symbol T .
This operator leaves x̂ invariant but changes the sign of p̂:

T x̂T = x̂ and T p̂T = −p̂. (5)

Like the parity operator P , the time-reversal operator T leaves the commutation relation (4)
invariant, but this requires that T reverse the sign of the complex number i:

T iT = −i. (6)

Equation (6) demonstrates that T is not a linear operator; T is said to be antilinear. Also,
since P and T are reflection operators, their squares are the unit operator:

P2 = T 2 = 1. (7)

Finally, the P and T operators commute:

PT − T P = 0. (8)

In terms of the P and T operators, we define the PT -reflected Hamiltonian HPT in (2) as
HPT ≡ (PT )H(PT ). Thus, if a Hamiltonian is PT symmetric [that is, if it satisfies (2)],
then the PT operator commutes with H :

H(PT )− (PT )H = 0. (9)

A PT -symmetric Hamiltonian need not be Hermitian; that is, it need not satisfy the
Hermiticity symmetry condition (1). Thus, it is possible to have a fully consistent quantum
theory whose dynamics is described by a non-Hermitian Hamiltonian. Some examples of such
non-Hermitian PT -symmetric Hamiltonians are

H = p̂2 + ix̂3, (10)

and

H = p̂2 − x̂4. (11)

It is amazing indeed that the eigenvalues of these strange-looking Hamiltonians are all real and
positive and that these two Hamiltonians specify a unitary time evolution even though they are
non-Hermitian.

The Hamiltonians in (10) and (11) are special cases of the general parametric family of
PT -symmetric Hamiltonians

H = p̂2 + x̂2(ix̂)ε, (12)

where the parameter ε is real. These Hamiltonians are all PT symmetric because they satisfy
the condition in (2). It was shown in 1998 that when ε � 0 all of the eigenvalues of these
Hamiltonians are entirely real and positive, but when ε < 0 there are complex eigenvalues [3].
We say that ε � 0 is the parametric region of unbroken PT symmetry and that ε < 0 is the
parametric region of broken PT symmetry. (See figure 1.)
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Figure 1. Energy levels of the Hamiltonian H = p̂2 + x̂2(ix̂)ε as a function of the real parameter
ε. There are three regions: when ε � 0, the spectrum is real and positive and the energy levels rise
with increasing ε. The lower bound of this region, ε = 0, corresponds to the harmonic oscillator,
whose energy levels are En = 2n+ 1. When −1 < ε < 0, there are a finite number of real positive
eigenvalues and an infinite number of complex-conjugate pairs of eigenvalues. As ε decreases from
0 to −1, the number of real eigenvalues decreases; when ε � −0.57793, the only real eigenvalue
is the ground-state energy. As ε approaches −1+, the ground-state energy diverges. For ε � −1
there are no real eigenvalues. When ε � 0, the PT symmetry is unbroken, but when ε < 0 the
PT symmetry is broken.

One can think of the non-Hermitian Hamiltonians in (12) as complex extensions of the
harmonic-oscillator Hamiltonian H = p̂2 + x̂2. Indeed, the quantum theories defined by H
are complex extensions of the conventional quantum theory of the harmonic oscillator into
the complex domain. The general constructive principle that we are using in (12) is to start
with a Hamiltonian that is both Hermitian and PT symmetric. One then introduces a real
parameter ε in such a way that as ε increases from 0 the Hamiltonian is no longer Hermitian
but its PT symmetry is maintained. One need not start with the harmonic oscillator. One
can, for example, begin with any of the Hermitian Hamiltonians H = p̂2 + x̂2N , where
N = 1, 2, 3, . . ., and introduce the parameter ε as follows: H = p̂2 + x̂2N(ix̂)ε . (The
Hamiltonian in (12) is just the special case N = 1.) The properties of these Hamiltonians are
discussed in [4].

We emphasize that these new kinds of Hamiltonians define valid and consistent quantum
theories in which the mathematical condition of Dirac HermiticityH = H † has been replaced
by the physical condition of PT symmetry, H = HPT . The condition in (2) that the
Hamiltonian is PT symmetric is a physical condition because P and T are elements of the
homogeneous Lorentz group of spatial rotations and Lorentz boosts. The real Lorentz group
consists of four disconnected parts [5]. (i) The first part, called the proper orthochronous
Lorentz group, is a subgroup of the Lorentz group whose elements are continuously connected
to the identity. (ii) The second part consists of all of the elements of the proper orthochronous
Lorentz group multiplied by the parity operator P . (iii) The third part consists of all of the
elements of the proper orthochronous Lorentz group multiplied by the time-reversal operator T .
(iv) The fourth part consists of all of the elements of the proper orthochronous Lorentz group
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multiplied by PT . Note that parts (ii)–(iv) are not subgroups of the Lorentz group because they
do not contain the identity element. These four parts of the Lorentz group are disconnected
because there is no continuous path in group space from one part to another.

When we say that Lorentz invariance is a physical requirement of a theory, what we
really mean is that the theory must be invariant under Lorentz transformations belonging to
the proper, orthochronous Lorentz group. We know that the physical world is not invariant
under the full homogeneous Lorentz group because it has been demonstrated experimentally
that there exist weak processes that do not respect parity symmetry and other weak processes
that do not respect time-reversal symmetry.

One can extend the real Lorentz group to the complex Lorentz group [5]. (To perform
this extension it is necessary to make the crucial assumption that the eigenvalues of the
Hamiltonian are real and bounded below.) The complex Lorentz group consists of two and
not four disconnected parts. In the complex Lorentz group there exists a continuous path
in group space from the elements of the real proper, orthochronous Lorentz group to the
elements of part (iv) of the real Lorentz group. There also exists a continuous path in group
space from the elements of part (ii) to the elements of part (iii) of the real Lorentz group.
Thus, while we know that the world is not invariant under P reflection or under T reflection,
we are proposing here to consider the possibility suggested by complex group analysis that
a fundamental discrete symmetry of the world is PT symmetry, or space–time reflection
symmetry.

The most important consequence of the discovery that non-Hermitian PT -symmetric
Hamiltonians can define acceptable theories of quantum mechanics is that we now can
construct many new kinds of Hamiltonians that only a decade ago would have been rejected
as being unphysical because they violate the axiom of Hermiticity. In this paper we will
examine some of these new Hamiltonians and discuss the properties and possible physical
implications of the theories defined by these Hamiltonians. So far, there have been no
experiments that prove clearly and definitively that quantum systems defined by non-Hermitian
PT -symmetric Hamiltonians do exist in nature. However, one should keep an open mind
regarding the kinds of theories that one is willing to consider. Indeed, Gell-Mann’s ‘totalitarian
principle’ states that among all possible physical theories ‘Everything which is not forbidden
is compulsory.’

1.1. Presentation and scope of this paper

Like many research areas in science, the study of non-Hermitian Hamiltonians having real
spectra began in a haphazard and diffuse fashion. There are numerous early examples of
isolated and disconnected discoveries of such non-Hermitian Hamiltonians. For example,
in 1980 Caliceti et al, who were studying Borel summation of divergent perturbation series
arising from classes of anharmonic oscillators, were astonished to find that the eigenvalues
of an oscillator having an imaginary cubic selfinteraction term are real [6]. In the summer of
1993, when I was visiting CEN Saclay, I learned that Bessis and Zinn-Justin had noticed on the
basis of numerical work that some of the eigenvalues of the cubic Hamiltonian in (10) seemed
to be real, and they wondered if the spectrum might be entirely real [7]. (Their interest in the
Hamiltonian (10) was piqued by the Lee-Yang edge singularity.) In 1982 Andrianov, who was
doing perturbative studies of −x4 potentials, found evidence that such theories might have real
eigenvalues [8]. In 1992 Hollowood [9] and Scholtz et al [10] discovered in their own areas of
research surprising examples of non-Hermitian Hamiltonians having real spectra. The latter
paper gave a comprehensive mathematical analysis of quasi-Hermitian operators having real
eigenvalues.
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The field of PT -symmetric quantum mechanics was established in 1998 with the discovery
by Bender and Boettcher that the numerical conjectures of Bessis and Zinn-Justin were not
only valid, but were just one instance of a huge class of non-Hermitian Schrödinger eigenvalue
problems whose spectra are entirely real and positive [3]. Bender and Boettcher showed that
the reality of the spectra was due to a symmetry principle, namely the condition of an unbroken
space–time reflection symmetry, and they argued that this symmetry principle could replace
the usual requirement of Dirac Hermiticity.

This discovery by Bender and Boettcher relies on two essential mathematical ingredients.
First, Bender and Boettcher used the techniques of analytic continuation of eigenvalue
problems. These fundamental techniques were developed and used heavily in the early
work of Bender and Wu on divergent perturbation series [11, 12] and were later used
by Bender and Turbiner [13]. These techniques are crucial because they show how to
analytically continue the boundary conditions of an eigenvalue problem as a function of
a parameter in the Hamiltonian. Second, Bender and Boettcher used the delta-expansion
techniques that had been discovered and developed by Bender et al [14] as a way to
avoid divergent perturbation series. The delta expansion is a powerful perturbation-theory
technique in which the small perturbation parameter is a measure of the nonlinearity of
the problem. As a result, many crucial properties of the problem are exactly preserved as
this parameter varies. In the case of PT -symmetric quantum mechanics, it is the reality
of the eigenvalues that is exactly maintained as the perturbation parameter ε in (12) is
varied.

Many researchers have contributed immensely to the development of PT -symmetric
quantum mechanics by discovering new examples and models, proving theorems and
performing numerical and asymptotic analysis. In the past few years a large and active
research community has developed and there have been half a dozen international conferences
on the subject of PT symmetry, pseudo-Hermiticity and non-Hermitian Hamiltonians. The
proceedings of these conferences provide a complete source of references [15–20]. By now,
there have been so many contributions to the field that it is impossible to describe them all in
this one paper.

The purpose of this paper is to give an elementary introduction to this exciting and active
field of research. In writing this paper, my hope is that the rate of new discoveries and the
development of the field will continue at such a rapid pace that this review will soon become
obsolete.

1.2. Organization of this paper

In section 2 we show that PT -symmetric Hamiltonians are complex extensions of Hermitian
Hamiltonians and we discuss the key property of PT -symmetric Hamiltonians, namely, that
their energy eigenvalues are real and bounded below. We discuss techniques for calculating
eigenvalues. In section 3 we discuss classical PT -symmetric Hamiltonians and show how
to continue ordinary classical mechanics into the complex domain. The crucial theoretical
questions of conservation of probability and unitary time evolution are addressed in section 4.
In section 5 we illustrate the theory of PT -symmetric quantum mechanics by using a simple
2×2 matrix Hamiltonian. Then in section 6 we explain how to calculate the C operator, which
is the central pillar of PT symmetry and which is needed to construct the Hilbert space for
the theory. In the following two sections we discuss the many applications of PT -symmetric
quantum theory. We discuss quantum-mechanical applications in section 7 and quantum-
field-theoretic applications in section 8. Finally, in section 9 we make some brief concluding
remarks.
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2. Determining the eigenvalues of a PT -symmetric Hamiltonian

In this section we show how to calculate the eigenvalues of a PT -symmetric Hamiltonian.
We begin by pointing out that the Hamiltonian operator defines and determines the physical
properties of a quantum theory in three important ways.

(i) The Hamiltonian determines the energy levels of the quantum theory. To find these energy
levels one must solve the time-independent Schrödinger eigenvalue problem

Hψ = Eψ. (13)

This equation usually takes the form of a differential equation that must be solved subject to
boundary conditions on the eigenfunctionψ . In the case of a PT -symmetric Hamiltonian
it is crucial that the boundary conditions be imposed properly. We emphasize that for a
quantum theory to be physically acceptable the energy eigenvalues of the Hamiltonian
must be real and bounded below.

(ii) The Hamiltonian specifies the time evolution of the states and operators of the quantum
theory. To determine the time evolution of a stateψ(t) in the Schrödinger picture we must
solve the time-dependent Schrödinger equation

i
∂

∂t
ψ(t) = Hψ(t). (14)

The solution to this first-order differential equation is straightforward because H is
assumed to be independent of time:

ψ(t) = e−iHtψ(0). (15)

We call e−iHt the time-evolution operator. In conventional quantum mechanics the time-
evolution operator is unitary because the Hamiltonian H is Hermitian. As a result, the
norm of the stateψ(t) remains constant in time. The constancy of the norm is an essential
feature of a quantum system because the norm of a state is a probability, and this probability
must remain constant in time. If this probability were to grow or decay in time, we would
say that the theory violates unitarity. In PT -symmetric quantum mechanics H is not
Dirac Hermitian, but the norms of states are still time independent.

(iii) The Hamiltonian incorporates the symmetries of the theory. As an example, suppose that
the HamiltonianH commutes with the parity operator P . We then say that the Hamiltonian
is parity invariant. Since P is a linear operator, we know that the eigenstates of the
Hamiltonian (the solutions to (13)) will also be eigenstates of P . Thus, the eigenstates of
H will have a definite parity; they will be either even or odd under space reflection. (Of
course, a general state, which is a linear combination of the eigenstates of H , need not
have definite parity.)

2.1. Broken and unbroken PT symmetry

For the case of a PT -symmetric Hamiltonian, the PT operator commutes with the Hamiltonian
H (see (9)). However, PT symmetry is more subtle than parity symmetry because the PT
operator is not linear. Because PT is not linear, the eigenstates of H may or may not be
eigenstates of PT .

Let us see what may go wrong if we assume that an eigenstate ψ of the Hamiltonian H
is also an eigenstate of the PT operator. Call the eigenvalue λ and express the eigenvalue
condition as

PT ψ = λψ. (16)
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Multiply (16) by PT on the left and use the property that (PT )2 = 1 (see (7) and (8)):

ψ = (PT )λ(PT )2ψ. (17)

Since T is antilinear [see (6)], we get

ψ = λ∗λψ = |λ|2ψ. (18)

Thus, |λ|2 = 1 and the eigenvalue λ of the PT operator is a pure phase:

λ = eiα. (19)

Next, multiply the eigenvalue equation (13) by PT on the left and again use the property
that (PT )2 = 1:

(PT )Hψ = (PT )E(PT )2ψ. (20)

Using the eigenvalue equation (16) and recalling that PT commutes with H , we get

Hλψ = (PT )E(PT )λψ. (21)

Finally, we again use the property that T is antilinear to obtain

Eλψ = E∗λψ. (22)

Since λ is non-zero (see (19)), we conclude that the eigenvalue E is real: E = E∗.
In general, this conclusion is false, as figure 1 clearly demonstrates. When ε < 0, some

of the eigenvalues have disappeared because they are complex. On the other hand, for the
restricted region ε � 0 this conclusion is correct; all of the eigenvalues are indeed real.
We are then led to make the following definition: if every eigenfunction of a PT -symmetric
Hamiltonian is also an eigenfunction of the PT operator, we say that the PT symmetry of H
is unbroken. Conversely, if some of the eigenfunctions of a PT -symmetric Hamiltonian are
not simultaneously eigenfunctions of the PT operator, we say that the PT symmetry of H is
broken.

The correct way to interpret (22) is that if a Hamiltonian has an unbroken PT symmetry,
then all of its eigenvalues are real. Thus, to establish that the eigenvalues of a particular
PT -symmetric Hamiltonian are real, it is necessary to prove that the PT symmetry of H is
unbroken. This is difficult to show, and it took several years after the discovery of the family
of PT -symmetric Hamiltonians in (12) before a complete and rigorous proof was finally
constructed by Dorey et al in 2001 [21, 22].2 Many others have contributed to the rigorous
mathematical development of the theory of PT symmetry. These include Shin [27], Pham [28],
Delabaere [29], Trinh [30], Weigert [31, 33], Davies [34], Ralston [35] and Scholtz and
Geyer [36]. Mostafazadeh generalized PT symmetry to pseudo-Hermiticity (see section 4.5).
See also [37].

2.2. Boundary conditions for the Schrödinger eigenvalue problem

Our objective in this section is to show how to calculate the eigenvalues of the Schrödinger
eigenvalue problem (13). The most direct approach is to write (13) as a differential equation
in coordinate space. The principal conceptual difficulty that we face in solving this differential
equation is in identifying and understanding the boundary conditions on the coordinate-space
eigenfunctions.

2 The proof by Dorey et al draws from many areas of theoretical and mathematical physics and uses spectral
determinants, the Bethe ansatz, the Baxter T –Q relation, the monodromy group, and an array of techniques used
in conformal quantum field theory. This proof is too technical to be described in this paper, but it is a significant
advance because it establishes a correspondence between ordinary differential equations and integrable models. This
correspondence is known as the ODE-IM correspondence [23–26].
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To write (13) in coordinate space, we make the standard transcriptions

x̂ → x and p̂ → −i
d

dx
, (23)

except that we treat the variable x as complex. The Schrödinger eigenvalue problem (13) then
takes the form

− ψ ′′(x) + x2(ix)εψ(x) = Eψ(x). (24)

Although we cannot solve this equation exactly for arbitrary ε, we can easily find the
possible asymptotic behaviours of its solutions by using the WKB approximation. In general,
for any differential equation of the form −y ′′(x) + V (x)y(x) = 0, where V (x) is a function
that grows as |x| → ∞, we know that the exponential component of the asymptotic behaviour
of y(x) for large |x| has the form

y(x) ∼ exp

[
±
∫ x

ds
√
V (s)

]
. (25)

To identify the appropriate boundary conditions to impose on ψ(x), we consider first the
Hermitian case ε = 0 (the harmonic oscillator). From (25) we can see immediately that the
possible asymptotic behaviours of solutions are ψ(x) ∼ exp

(± 1
2x

2
)
. The usual requirement

that the eigenfunction be square-integrable implies that we must choose the negative sign in
the exponent, and therefore the eigenfunctions are Gaussian-like for large |x|. This result
extends into the complex-x plane: If the eigenfunctions vanish exponentially on the real-x
axis for large |x|, they must also vanish in two wedges of opening angle 1

2π in the complex
plane centered about the positive-real and negative-real axes. These wedges are called Stokes
wedges [32].

What happens as ε increases from 0? As soon as ε > 0 (ε non-integer), a logarithmic
branch point appears at the origin x = 0. Without loss of generality, we may choose the
branch cut to run up the imaginary axis from x = 0 to x = i∞. In this cut plane the solutions
to the differential equation (24) are single-valued. From the asymptotic behaviour of ψ(x)
in (25), we deduce that the Stokes wedges rotate downward into the complex-x plane and that
the opening angles of the wedges decrease as ε increases.

There are many wedges in whichψ(x) → 0 as |x| → ∞. Thus, there are many eigenvalue
problems associated with the differential equation (24). We choose to continue the eigenvalue
differential equation (24) smoothly away from the location of the harmonic-oscillator wedges
at ε = 0. (A detailed description of how to extend eigenvalue equations into the complex
plane may be found in [13].) For ε > 0 the centre lines of the left and right wedges lie at the
angles

θleft = −π +
ε

ε + 4

π

2
and θright = − ε

ε + 4

π

2
. (26)

The opening angle of each of these wedges is 	 = 2π/(ε + 4). The differential equation (24)
may be integrated along any path in the complex-x plane as long as the ends of the path
approach complex infinity inside the left wedge and the right wedge. Note that these wedges
contain the real-x axis when −1 < ε < 2. However, as soon as ε is larger than 2, the wedges
rotate below the real-x axis. These wedges are shown in figure 2.

Notice that the wedges in figure 2 are mirror images of one another if they are reflected
through the imaginary-x axis. This left–right symmetry is the coordinate-space realization of
PT symmetry. If we choose any point x in the complex-x plane and perform a parity reflection,
then x → −x. Time reversal replaces i by −i as we saw in (6), and so T replaces −x by its
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Im(x)

Re(x)

Figure 2. Stokes wedges in the complex-x plane containing the contour on which the eigenvalue
problem for the differential equation (24) for ε = 2.2 is posed. In these wedges ψ(x) vanishes
exponentially as |x| → ∞. The eigenfunction ψ(x) vanishes most rapidly at the centres of the
wedges.

complex conjugate −x∗. Thus, in the coordinate representation PT symmetry is left–right
symmetry.

2.3. The flaw in Dyson’s argument

The quantum theories that we are considering in this paper are obtained by extending real
quantum mechanics into the complex domain, as explained in section 2.2. The notion of
analytically continuing a Hamiltonian into the complex plane was first discussed in 1952
by Dyson, who argued heuristically that perturbation theory for quantum electrodynamics
diverges [38]. Dyson’s argument consists of rotating the electric charge e into the complex-
e plane: e → ie. Applied to the standard quantum anharmonic-oscillator Hamiltonian
H = p̂2 + gx̂4, Dyson’s argument goes as follows: rotate the parameter g anticlockwise
in the complex-g plane from positive g to −g. Now, the potential term in the Hamiltonian
is no longer bounded below, so the resulting theory has no ground state. Hence, the ground-
state energy E0(g) has an abrupt transition at g = 0, which implies that E0(g) must have a
singularity at g = 0.

Following Dyson’s reasoning, one would think that the spectrum of the Hamiltonian (11),
which is obtained by setting ε = 2 in (12), would not be bounded below, and one might
conclude that this Hamiltonian is mathematically and physically unacceptable. However,
this heuristic argument is flawed. While the ground-state energy of the quantum anharmonic
oscillator does indeed have a singularity at g = 0, the spectrum of the Hamiltonian (11) that
is obtained by analytically continuing a parameter in the Hamiltonian remains ambiguous
until the boundary conditions satisfied by the eigenfunctions are specified. The term ‘bounded
below’ is inappropriate if it relies on an ordering relation applied to a complex potential because
ordering relations cannot be used for complex numbers. The concern that the spectrum of H
in (11) is not bounded below is unfounded because PT -symmetric boundary conditions on
the Schrödinger equation (24) prohibit the occurrence of negative eigenvalues.

The eigenvalues ofH in (11) depend crucially on the history of how this negative-coupling-
constant Hamiltonian constant is obtained. There are two different ways to obtain H in (11):
First, one can substitute g = |g|eiθ into H = p̂2 + gx̂4 and rotate from θ = 0 to θ = π .
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Under this rotation, the ground-state energy E0(g) becomes complex. Clearly, E0(g) is real
and positive when g > 0 and complex when g < 0.3 Second, one can obtain (11) as a limit of
the Hamiltonian H in (12) as ε : 0 → 2. The spectrum of this complex Hamiltonian is real,
positive and discrete, as is shown in figure 1.

How can the Hamiltonian (11) possess two such astonishingly different spectra? The
answer lies in the boundary conditions satisfied by the eigenfunctions ψ(x). In the first case,
in which θ = arg g is rotated in the complex-g plane from 0 toπ ,ψ(x) vanishes in the complex-
x plane as |x| → ∞ inside the wedges −π/3 < arg x < 0 and −4π/3 < arg x < −π . These
wedges are not PT -symmetric reflections of one another. In the second case, in which the
exponent ε ranges from 0 to 2, ψ(x) vanishes in the complex-x plane as |x| → ∞ inside
the PT -symmetric pair of wedges −π/3 < arg x < 0 and −π < arg x < −2π/3. We
emphasize that in this second case the boundary conditions hold in wedges that are symmetric
with respect to the imaginary axis; these boundary conditions enforce the PT symmetry ofH
and are responsible for the reality of the energy spectrum.

Illustrative example: The harmonic oscillator Hamiltonian

H = p̂2 + ω2x̂2 (ω > 0) (27)

is an elementary model that illustrates the dependence of the eigenvalues on
the boundary conditions imposed on the eigenfunctions. Let us assume that the
eigenfunctions ofH vanish on the real-x axis as x → ±∞. The eigenfunctions have
the form of a Gaussian exp

(− 1
2ωx

2
)

multiplied by a Hermite polynomial. Thus, the
Stokes wedges are centred about the positive-real-x axis and have angular opening
1
2π . The eigenvalues En are given exactly by the formula

En = (n + 1
2

)
ω (n = 0, 1, 2, 3, . . .). (28)

Now suppose that the parameter ω is rotated by 180◦ into the complex-ω plane from
the positive axis to the negative axis so that ω is replaced by −ω. This causes the
Stokes wedges in the complex-x plane to rotate by 90◦ so that the eigenfunctions now
vanish exponentially on the imaginary-x axis rather than on the real-x axis. Also, as
a consequence of this rotation, the eigenvalues change sign:

En = − (n + 1
2

)
ω (n = 0, 1, 2, 3, . . .). (29)

Notice that under the rotation that replaces ω by −ω the Hamiltonian remains
invariant, and yet the signs of the eigenvalues are reversed! This shows that the
eigenspectrum depends crucially on the boundary conditions that are imposed on the
eigenfunctions.

Apart from the eigenvalues, there is yet another striking difference between the two theories
corresponding to H in (11). The expectation value of the operator x̂ in the ground-state
eigenfunction ψ0(x) is given by

〈0|x|0〉
〈0|0〉 ≡

∫
C

dx xψ2
0 (x)∫

C
dx ψ2

0 (x)
, (30)

where C is a complex contour that lies in the asymptotic wedges described above. The value
of 〈0|x|0〉/〈0|0〉 for H in (11) depends on the limiting process by which we obtain H . If we

3 Rotating from θ = 0 to θ = −π , we obtain the same Hamiltonian as in (11), but the spectrum is the complex
conjugate of the spectrum obtained when we rotate from θ = 0 to θ = π .
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substitute g = g0eiθ into the Hamiltonian H = p̂2 + gx̂4 and rotate g from θ = 0 to θ = π ,
we find by an elementary symmetry argument that this expectation value vanishes for all g on
the semicircle in the complex-g plane. The expectation value vanishes because this rotation
in the complex-g plane preserves parity symmetry (x → −x). However, if we define H in
(11) by using the Hamiltonian in (12) and by allowing ε to range from 0 to 2, we find that this
expectation value is non-zero. In fact, this expectation value is non-vanishing for all ε > 0. On
this alternate path PT symmetry (reflection about the imaginary axis, x → −x∗) is preserved,
but parity symmetry is permanently broken. (We suggest in section 8.4 that, as a consequence
of broken parity symmetry, one might be able to describe the dynamics of the Higgs sector by
using a PT -symmetric −gϕ4 quantum field theory.)

2.4. Using WKB phase-integral techniques to calculate eigenvalues

Now that we have identified the boundary conditions to be imposed on the eigenfunctions
of the PT -symmetric Hamiltonian (12), we can use a variety of techniques to calculate the
eigenvalues of this Hamiltonian. Not surprisingly, it is impossible to solve the differential-
equation eigenvalue problem (24) analytically and in closed form except in two special cases,
namely, for ε = 0 (the harmonic oscillator) and for ε → ∞ (the PT -symmetric version of the
square-well potential, whose solution is given in [39]). Thus, it is necessary to use approximate
analytic or numerical methods.

The simplest analytic approach uses WKB theory, which gives an excellent approximation
to the eigenvalues when ε > 0. The WKB calculation is interesting because it must be
performed in the complex plane rather than on the real-x axis. The turning points x± are those
roots of E = x2(ix)ε that analytically continue off the real axis as ε increases from 0. These
turning points,

x− = E
1
ε+2 eiπ( 3

2 − 1
ε+2 ), x+ = E

1
ε+2 e−iπ( 1

2 − 1
ε+2 ), (31)

lie in the lower-half (upper-half) x plane in figure 2 when ε > 0 (ε < 0).
The leading-order WKB phase-integral quantization condition is given by

(n + 1/2)π =
∫ x+

x−
dx
√
E − x2(ix)ε. (32)

When ε > 0 this path lies entirely in the lower-half x plane, and when ε = 0 (the case of the
harmonic oscillator) the path lies on the real axis. However, when ε < 0 the path lies in the
upper-half x plane and crosses the cut on the positive imaginary-x axis. In this case there is
no continuous path joining the turning points. Hence, WKB fails when ε < 0.

When ε � 0, we deform the phase-integral contour so that it follows the rays from x− to
0 and from 0 to x+:(

n + 1
2

)
π = 2 sin

( π

ε + 2

)
E

1
ε+2 +

1
2

∫ 1

0
ds
√

1 − sε+2. (33)

We then solve for En:

En ∼



�

(
3

2
+

1

ε + 2

)√
π

(
n +

1

2

)

sin
( π

ε + 2

)
�

(
1 +

1

ε + 2

)



2ε+4
ε+4

(n → ∞). (34)

This formula gives a very accurate approximation to the eigenvalues plotted in figure 1 and
it shows, at least in the WKB approximation, that the energy eigenvalues of H in (12) are
real and positive (see table 1). We can, in addition, perform a higher-order WKB calculation
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Table 1. Comparison of the exact eigenvalues (obtained with Runge–Kutta) and the WKB result
in (34).

ε n Eexact EWKB ε n Eexact EWKB

1 0 1.156 267 072 1.0943 2 0 1.477 149 753 1.3765
1 4.109 228 752 4.0895 1 6.003 386 082 5.9558
2 7.562 273 854 7.5489 2 11.802 433 593 11.7690
3 11.314 421 818 11.3043 3 18.458 818 694 18.4321
4 15.291 553 748 15.2832 4 25.791 792 423 25.7692
5 19.451 529 125 19.4444 5 33.694 279 298 33.6746
6 23.766 740 439 23.7606 6 42.093 814 569 42.0761
7 28.217 524 934 28.2120 7 50.937 278 826 50.9214
8 32.789 082 922 32.7841 8 60.185 767 651 60.1696
9 37.469 824 697 37.4653 9 69.795 703 031 69.7884

p

0
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15

E
ne

rg
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Figure 3. Energy levels of the Hamiltonian H = p2 + |x|P as a function of the real parameter P .
This figure is similar to figure 1, but the eigenvalues do not pinch off and go into the complex plane
because the Hamiltonian is Hermitian. (The spectrum becomes dense at P = 0.)

by replacing the phase integral by a closed contour that encircles the path joining the turning
points (see [4, 32]).

It is interesting that the spectrum of the real |x|ε+2 potential strongly resembles that of
the x2(ix)ε potential. The leading-order WKB quantization condition (accurate for ε > −2)
is like that in (34) except that the factor of sin

(
π
ε+2

)
is absent. However, as ε → ∞, the

spectrum of |x|ε+2 approaches that of the square-well potential [En = (n + 1)2π2/4], while
the energies of the complex x2(ix)ε potential diverge, as figure 1 indicates. The energies of
the |x|P potential are shown in figure 3. Additional work on the WKB approximation applied
to PT -symmetric potentials can be found in [40, 41].

2.5. Numerical calculation of eigenvalues

There are several highly accurate numerical techniques for computing the energy spectrum that
is displayed in figure 1. The simplest and most direct method is to integrate the Schrödinger
differential equation (24) using a Runga–Kutta approach. To do so, we convert this complex
differential equation to a system of coupled, real, second-order equations. The convergence
is most rapid when we integrate along paths located at the centers of the Stokes wedges and
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follow these paths out to ∞. We then patch the two solutions in each Stokes wedge together at
the origin. This procedure, which is described in detail in [3], gives highly accurate numerical
results.

An alternative is to perform a variational calculation in which we determine the energy
levels by finding the stationary points of the functional

〈H 〉(a, b, c) ≡
∫
C

dx ψ(x)Hψ(x)∫
C

dx ψ2(x)
, (35)

where

ψ(x) = (ix)c exp
[
a(ix)b

]
(36)

is a three-parameter class of PT -invariant trial wave functions [42]. The integration contour
C used to define 〈H 〉(a, b, c) must lie inside the wedges in the complex-x plane in which
the wave function falls off exponentially at infinity (see figure 2). Rather than having a local
minimum, the functional has a saddle point in (a, b, c)-space. At this saddle point the numerical
prediction for the ground-state energy is extremely accurate for a wide range of ε. This method
also determines approximate eigenfunctions and eigenvalues of the excited states of these non-
Hermitian Hamiltonians. Handy used the numerical technique of solving the coupled moment
problem [43]. This technique, which produces accurate results for the eigenvalues, is the
exact quantum-mechanical analog of solving the Schwinger-Dyson equations in quantum field
theory.

2.6. The remarkable case of a PT -symmetric −x4 potential

The PT -symmetric −x4 Hamiltonian in (11), which is obtained by setting ε = 2 in (12),
is particularly interesting because it is possible to obtain the energy spectrum by using real
analysis alone; that is, one can focus on real x only and avoid having to perform analysis in the
complex-x plane. One way to proceed is to deform the integration contour shown in figure 2 to
the upper edges of the wedges so that it lies entirely on the real-x axis. If this is done carefully,
the exact eigenvalues for this potential can be obtained by solving the Schrödinger equation
(24) subject to the boundary conditions that the potential be reflectionless [44]. That is, an
incoming incident wave from the left gives rise to an outgoing transmitted wave on the right,
but no reflected wave on the left. (This observation may have consequences in cosmological
models, as explained in section 8.7.)

Another way to proceed is to show that the eigenvalues of the non-Hermitian −x4

Hamiltonian are identical with the eigenvalues of a conventional Hermitian Hamiltonian having
a positive x4 potential. A number of authors have observed and discussed this equivalence
[8, 45–47]. Here, we use elementary differential-equation methods [48] to prove that the
spectrum of the non-Hermitian PT -symmetric Hamiltonian

H = 1

2m
p̂2 − gx̂4 (g > 0) (37)

is identical to the spectrum of the Hermitian Hamiltonian

H̃ = 1

2m
p̂2 + 4gx̂4 − h̄

√
2g

m
x̂ (g > 0). (38)

(We have included the dimensional constants m, g, and h̄ because they help to elucidate the
physical significance of the spectral equivalence of these two very different Hamiltonians.) To
show that H in (37) and H̃ in (38) are equivalent, we examine the corresponding Schrödinger
eigenvalue equations

− h̄2

2m
ψ ′′(x)− gx4ψ(x) = Eψ(x) (39)
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Figure 4. Stokes wedges in the lower-half complex-x plane for the Schrödinger equation (39)
arising from the HamiltonianH in (37). The eigenfunctions ofH decay exponentially as |x| → ∞
inside these wedges. Also shown is the contour in (41).

and

− h̄2

2m
�′′(x) +

(
−h̄
√

2g

m
x + 4gx4

)
�(x) = E�(x). (40)

We begin by moving the complex integration contour for the Schrödinger equation (39)
to the real axis. To do so, we parameterize the integration contour using

x = −2iL
√

1 + iy/L, (41)

where

L = λ
[
h̄2/(mg)

]1/6
(42)

and y is a real parameter that ranges from −∞ to ∞. A graph of the contour in (41) is shown
in figure 4. The transformed differential equation then reads

− h̄2

2m

(
1 +

iy

L

)
φ′′(y)− ih̄2

4Lm
φ′(y)− 16gL4

(
1 +

iy

L

)2

φ(y) = Eφ(y). (43)

Next, we perform a Fourier transform defined by

f̃ (p) ≡
∫ ∞

−∞
dy e−iyp/h̄f (y). (44)

By this definition the Fourier transforms of a derivative and a product are given by

f ′(y) → ipf̃ (p)/h̄ and yf (y) → ih̄f̃ ′(p). (45)

Thus, the transformed version of (43) reads

1

2m

(
1 − h̄

L

d

dp

)
p2φ̃(p) +

h̄

4Lm
pφ̃(p)− 16gL4

(
1 − h̄

L

d

dp

)2

φ̃(p) = Eφ̃(p). (46)

We expand and simplify the differential equation in (46) and get

− 16gL2h̄2φ̃′′(p) +

(
− h̄p2

2mL
+ 32gL3h̄

)
φ̃′(p) +

(
p2

2m
− 3ph̄

4mL
− 16gL4

)
φ̃(p) = Eφ̃(p).

(47)

Next, we eliminate the one-derivative term in the differential equation (47) to convert it
to the form of a Schrödinger equation. To do so, we substitute

φ̃(p) = eF(p)�(p), (48)
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where

F(p) = L

h̄
p − 1

192gmL3h̄
p3. (49)

The resulting equation is

− 16gL2h̄2�′′(p) +

(
p4

256gm2L4
− h̄p

4mL

)
�(p) = E�(p). (50)

Last, we rescale (50) by substituting

p = xL
√

32mg (51)

and we obtain the Schrödinger differential equation (40). This completes the proof and verifies
that the eigenvalues of the two Hamiltonians (37) and (38) have identical eigenvalues. This
demonstration of equivalence is exact; no approximations were made in this argument4.

2.7. Parity anomaly

The proof in section 2.6 that the Hamiltonians in (37) and (38) are equivalent helps to clarify
some of the physical content of the non-Hermitian PT -symmetric Hamiltonian (37). The
interpretation of the result in (40) is that the linear term in the potential of the equivalent
quartic Hermitian Hamiltonian in (38) is a parity anomaly. In general, an anomaly is a purely
quantum (non-classical) effect that vanishes in the classical limit h̄ → 0. There is no classical
analog of an anomaly because Planck’s constant h̄ does not appear in classical mechanics.

We refer to the linear term in (38) as a parity anomaly for the following reason: even
though the PT -symmetric Hamiltonian (37) is symmetric under the parity reflections defined
in (3),H does not respect parity symmetry. The violation of parity symmetry is subtle because
it is contained in the boundary conditions that the eigenfunctions of the associated Schrödinger
equation must satisfy. Since these boundary conditions are given at |x| = ∞, the violation of
parity symmetry is not detectable in any finite domain in the complex-x plane. Classical motion
is a local phenomenon. Therefore, a classical particle that is moving under the influence of this
Hamiltonian (see section 3) will act as if it is subject to parity-symmetric forces; the classical
particle cannot feel the influences of quantum boundary conditions imposed at |x| = ∞. In
contrast, a quantum wave function is inherently non-local because it must obey boundary
conditions that are imposed at |x| = ∞. Thus, only a quantum particle ‘knows’ about the
violation of parity symmetry. To establish the equivalence between the Hamiltonians in (37)
and (38) it was necessary to perform a Fourier transform (see (46)). This transformation maps
the point at x = ∞ to the point at p = 0, and this explains the presence of the linear parity-
violating term in the potential of H̃ in (38). The violation of parity is now a visible local effect
in the Hamiltonian H̃ . However, this violation of parity is proportional to h̄ and evaporates in
the classical limit h̄ → 0.

The Hamiltonian (38) is Hermitian in the usual Dirac sense and its energy spectrum is
bounded below. This Hamiltonian is also PT -symmetric because at every stage in the sequence
of differential-equation transformations in section 2.6, PT symmetry is preserved. However,
the variable x that gives rise to the parity anomaly in (40) is not a coordinate variable. Its
behaviour is that of a momentum variable because x changes sign under time reversal.

The violation of parity symmetry at the quantum level has important physical implications.
It is the lack of parity symmetry which implies that the one-point Green’s function in the

4 A simple and exact transformation like the one presented in this section for mapping a PT -symmetric non-Hermitian
Hamiltonian to a Hermitian Hamiltonian has been found only for the isolated case ε = 2 in (12). (A more complicated
spectral equivalence exists for the special case ε = 4 (see [21, 22]).)
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corresponding quantum field theory does not vanish. A possible consequence of this is that
the elusive Higgs particle, which is a fundamental ingredient in the standard model of particle
physics, is a quantum anomaly. In the following section, we show that the parity anomaly has
a major impact on the spectrum of bound states in a quantum theory.

2.8. Physical consequence of the parity anomaly: appearance of bound states in a
PT -symmetric quartic potential

A direct physical consequence of the parity anomaly is the appearance of bound states. To
elucidate the connection between the parity anomaly and bound states, we generalize the
Hamiltonian (37) to include a harmonic (x̂2) term in the potential:

H = 1

2m
p̂2 +

µ2

2
x̂2 − gx̂4. (52)

The same differential-equation analysis used in section 2.6 straightforwardly yields the
equivalent Hermitian Hamiltonian [45, 46]

H̃ = p̂2

2m
− h̄

√
2g

m
x̂ + 4g

(
x̂2 − µ2

8g

)2

. (53)

Note that for these more general Hamiltonians the linear anomaly term remains unchanged
from that in (38).

It was shown in an earlier paper [49] that the Hamiltonian (52) exhibits bound states. In
particle physics a bound state is a state having a negative binding energy. Bound states in the
context of quantum mechanics are defined as follows: let the energy levels of the Hamiltonian
beEn (n = 0, 1, 2, . . .). The renormalized mass is the mass gap; that is,M = E1 −E0. Higher
excitations must be measured relative to the vacuum energy: En − E0 (n = 2, 3, 4, . . .). We
say that the nth higher excitation is a bound state if the binding energy

Bn ≡ En − E0 − nM (54)

is negative. If Bn is positive, then we regard the state as unbound because this state can decay
into n 1-particle states of mass M in the presence of an external field.

In [49] it was shown numerically that for small positive values of g the first few states of
H in (52) are bound. As g increases, the number of bound states decreases until, when g/µ3

is larger than the critical value 0.0465, there are no bound states at all5.
Because H in (52) has the same spectrum as the Hermitian Hamiltonian in (53), it is

easy to explain the appearance of bound states and to show that the bound states are a direct
consequence of the linear anomaly term. To probe the influence of the anomaly, we generalize
(53) by inserting a dimensionless parameter ε that measures the strength of the anomaly term:

H̃ = 1
2 p̂

2 − ε
√

2g x̂ + 4g

(
x̂2 − 1

8g

)2

, (55)

where for simplicity we have set m = µ = h̄ = 1.
If we set ε = 0, there is no anomaly term and the potential is a symmetric double well.

The mass gap for a double well is exponentially small because it is a result of the tunnelling
between the wells and thus the renormalized mass M is very small. Therefore, Bn in (54) is
positive and there are no bound states. In figure 5 we display the double-well potential and
the first several states of the system for the case g = 0.046 and ε = 0. There is a very small
splitting between the lowest two states.

5 In [49] a heuristic argument was given to explain why there is such a critical value. This argument is heuristic
because the non-Hermitian Hamiltonian is evaluated for x in the complex plane. As explained in section 2.3, when x
is complex, one cannot use order relationships such as > or <, which only apply to real numbers.
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Figure 5. Potential of the Hermitian Hamiltonian (55) plotted as a function of the real variable x
for the case ε = 0 and g = 0.046. The energy levels are indicated by horizontal lines. Because
ε = 0, there is no anomaly and the double-well potential is symmetric. Therefore, the mass gap is
very small and thus there are no bound states.
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Figure 6. Asymmetric potential well plotted as a function of the real variable x for the Hermitian
Hamiltonian (55) with ε = 1 and g = 0.046. The energy levels are indicated by horizontal lines.
There is one bound state. The occurrence of bound states is due to the anomaly.

If ε = 1, the double-well potential is asymmetric and the two lowest states are not
approximately degenerate. Therefore, bound states can occur near the bottom of the potential
well. Higher-energy states eventually become unbound because, as we know from WKB
theory, in a quartic well the nth energy level grows like n4/3 for large n. As g becomes large,
the number of bound states becomes smaller because the depth of the double well decreases.
For large enough g there are no bound states. In figure 6 we display the potential for ε = 1
and for g = 0.046; for this g there is one bound state.

Another way to display the bound states is to plot the value of the binding energy Bn
as a function of n. For example, in figure 7 we display the bound states for ε = 1 and
g = 0.008 333. Note that for these values there are 23 bound states. Observe also that the
binding energy Bn is a smooth function of n.

It is worth noting that the bound-state spectrum depends so sensitively on the strength
of the anomaly term in the Hamiltonian (55). If ε is slightly less than 1, the first few states
become unbound, as shown in figure 8. In this figure g = 0.008 333 and ε = 0.9. If ε
is slightly greater than 1, the binding energy Bn is not a smooth function of n for small n.
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Figure 7. Binding energies Bn = En −E0 − nM plotted as a function of n for g = 0.008 333 and
ε = 1. A negative value of Bn indicates a bound state. Observe that there are 23 bound states for
these parameter values. Note that Bn is a smooth function of n.
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Figure 8. Binding energies Bn plotted as a function of n for g = 0.008 333 and ε = 0.9. The first
five states have now become unbound and Bn is not a smooth function of n for n � 6. The next 12
states are bound, and in this region Bn is a smooth function of n. Comparison of this figure with
figure 7 shows that the bound-state spectrum is exquisitely sensitive to the strength of the linear
anomaly term.
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Figure 9. Binding energies Bn plotted as a function of n for g = 0.008 333 and ε = 1.1. Note that
there are 30 bound states and that Bn is not a smooth function of n when n is small.

In figure 9 we plot Bn as a function of n for g = 0.008 333 and ε = 1.1. Note that
for these values of the parameters there are 30 bound states. Figures 7–9 are strikingly
different, which demonstrates the extreme sensitivity of the bound-state spectrum to the
anomaly term.
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3. PT -symmetric classical mechanics—the strange dynamics of a classical particle
subject to complex forces

In this section we describe the properties of the PT -symmetric classical-mechanical theory
that underlies the quantum-mechanical theory described by the Hamiltonian (12). We describe
the motion of a particle that feels complex forces and responds by moving about in the complex
plane. Several papers have been published in this area [4, 50–55] and we summarize here some
of the surprising discoveries.

One objective here is to explain heuristically how an upside-down potential like that in (11)
can have positive-energy quantum-mechanical eigenstates. One might think (incorrectly!) that
since a classical particle would slide down the positive-real axis to infinity, the corresponding
quantum states would be unstable and the spectrum of the quantum system would be unbounded
below. In fact, when ε � 0 (the region of unbroken PT symmetry), all but a set of measure
zero of the possible classical paths are confined and periodic, and thus the classical particle
does not slide off to infinity. When ε < 0 (the region of broken PT symmetry), the classical
trajectories do indeed run off to infinity, and we can begin to understand why the energy levels
of the corresponding quantum system are complex.

The equation of motion of a classical particle described by H in (12) follows from
Hamilton’s equations:

dx

dt
= ∂H

∂p
= 2p,

dp

dt
= −∂H

∂x
= i(2 + ε)(ix)1+ε . (56)

Combining these two equations gives

d2x

dt2
= 2i(2 + ε)(ix)1+ε, (57)

which is the complex version of Newton’s second law, F = ma.
We can integrate (57) to give

1

2

dx

dt
= ±

√
E + (ix)2+ε, (58)

where E is the energy of the classical particle (the time-independent value of H ). We treat
time t as a real variable that parametrizes the complex path x(t) of this particle. Equation
(58) is a complex generalization of the concept that the velocity is the time derivative of the
position (v = dx

dt ). Here, t is real, but v and x are complex.
We now describe and classify the solutions to equation (58). Because the corresponding

quantum theory possesses PT invariance, we restrict our attention to real values of E. Given
this restriction, we can rescale x and t by real numbers so that without loss of generality
equation (58) reduces to

dx

dt
= ±

√
1 + (ix)2+ε . (59)

3.1. The case ε = 0

The classical solutions to equation (59) have elaborate topologies, so we begin by considering
some special values of ε. For the simplest case, ε = 0, there are two turning points and these
lie on the real axis at ±1. To solve equation (59) we must specify the initial condition x(0). An
obvious choice for x(0) is a turning point. If the path begins at ±1, there is a unique trajectory
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Figure 10. Classical trajectories in the complex-x plane for the harmonic-oscillator Hamiltonian
H = p2 + x2. These trajectories are the complex paths of a particle whose energy is E = 1.
The trajectories are nested ellipses with foci located at the turning points at x = ±1. The real
line segment (degenerate ellipse) connecting the turning points is the conventional real periodic
classical solution to the harmonic oscillator. All paths are closed orbits having the same period 2π .

in the complex-x plane that solves (59). This trajectory lies on the real axis and oscillates
between the turning points. This is the usual sinusoidal harmonic motion.

Choosing the energy determines the locations of the turning points, and choosing the
initial position of the particle determines the initial velocity (up to a plus or minus sign) as
well. So if the path of the particle begins anywhere on the real axis between the turning points,
the initial velocity is fixed up to a sign and the trajectory of the particle still oscillates between
the turning points.

In conventional classical mechanics the only possible initial positions for the particle are
on the real-x axis between the turning points because the velocity is real; all other points on
the real axis belong to the so-called classically forbidden region. However, because we are
analytically continuing classical mechanics into the complex plane, we can choose any point
x(0) in the complex plane as an initial position. For all complex initial positions outside the
conventional classically allowed region the classical trajectory is an ellipse whose foci are the
turning points. The ellipses are nested because no trajectories may cross. These ellipses are
shown in figure 10.

The exact harmonic-oscillator (ε = 0) solution to (59) is

x(t) = cos[arccos x(0)± t], (60)

where the sign of t determines the direction (clockwise or anticlockwise) in which the particle
traces out the ellipse. For any ellipse the period is 2π . The period is the same for all
trajectories because we can join the square-root branch points by a single finite branch cut
lying along the real axis from x = −1 to x = 1. The complex path integral that determines the
period can then be shrunk (by Cauchy’s theorem) to the usual real integral joining the turning
points.

Note that all of the elliptical orbits in figure 10 are symmetric with respect to parity P
(reflections through the origin) and time reversal T (reflections about the real axis) as well as
to PT (reflections about the imaginary axis). Furthermore, P and T individually preserve the
directions in which the ellipses are traversed.
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Figure 11. Classical trajectories in the complex-x plane for a particle of energy E = 1 described
by the Hamiltonian H = p2 + ix3. An oscillatory trajectory connects the turning points x±. This
trajectory is enclosed by a set of closed, nested paths that fill the finite complex-x plane except for
points on the imaginary axis at or above the turning point x0 = i. Trajectories that originate on the
imaginary axis above x = i either move off to i∞ or else approach x0, stop, turn around and then
move up the imaginary axis to i∞.

3.2. The case ε = 1

When ε = 1, there are three turning points. These turning points solve the equation ix3 = 1.
Two lie below the real axis and are symmetric with respect to the imaginary axis:

x− = e−5iπ/6 and x+ = e−iπ/6. (61)

Under PT reflection x− and x+ are interchanged. The third turning point lies on the imaginary
axis at x0 = i.

Like the case ε = 0, the trajectory of a particle that begins at the turning point x− follows
a path in the complex-x plane to the turning point at x+. Then, the particle retraces its path
back to the turning point at x−, and it continues to oscillate between these two turning points.
This path is shown in figure 11. The period of this motion is 2

√
3π�

(
4
3

)
/�
(

5
6

)
. A particle

beginning at the third turning point x0 exhibits a completely distinct motion: it travels up the
imaginary axis and reaches i∞ in a finite time

√
π�
(

4
3

)
/�
(

5
6

)
. This motion is not periodic.

Paths originating from all other points in the finite complex-x plane follow closed periodic
orbits. No two orbits may intersect; rather they are all nested, like the ellipses for the case
ε = 0. All of these orbits encircle the turning points x± and, by virtue of Cauchy’s theorem,
have the same period 2

√
3π�

(
4
3

)
/�
(

5
6

)
as the oscillatory path connecting x±. Because these

orbits must avoid crossing the trajectory that runs up the positive imaginary axis from the
turning point at x0 = i, they are pinched in the region just below x0, as shown in figure 11.

3.3. The case ε = 2

When ε = 2, there are four turning points, two below the real axis and symmetric with respect
to the imaginary axis, x1 = e−3iπ/4 and x2 = e−iπ/4, and two more located above the real axis
and symmetric with respect to the imaginary axis, x3 = eiπ/4 and x4 = e3iπ/4. These turning
points are solutions to the equation −x4 = 1. Classical trajectories that oscillate between the
pair x1 and x2 and the pair x3 and x4 are shown in figure 12. The period of these oscillations is
2
√

2π�
(

5
4

)
/�
(

3
4

)
. Trajectories that begin elsewhere in the complex-x plane are also shown
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Figure 12. Classical trajectories in the complex-x plane for a particle described by the Hamiltonian
H = p2 − x4 and having energy E = 1. There are two oscillatory trajectories connecting the
pairs of turning points x1 and x2 in the lower-half x-plane and x3 and x4 in the upper-half x-plane.
(A trajectory joining any other pair of turning points is forbidden because it would violate the PT
(left–right) symmetry.) The oscillatory trajectories are surrounded by closed orbits of the same
period. In contrast to these periodic orbits, there is a special class of trajectories having unbounded
path length and running along the real-x axis.

in figure 10. By virtue of Cauchy’s theorem all these nested non-intersecting trajectories have
the same period. All classical motion is periodic except for the special trajectories that begin
on the real axis. A particle that begins on the real-x axis runs off to ±∞; its trajectory is
non-periodic.

3.4. Broken and unbroken classical PT symmetry

We can now understand heuristically why the energies of the corresponding PT -symmetric
quantum systems are real. In each of figures 10, 11 and 12 we can see that all of the orbits
are localized and periodic. We may regard the pictured classical motions as representing
particles confined to and orbiting around complex atoms! We can then use Bohr–Sommerfeld
quantization to determine the discrete energies of the system:∮

C

dx p =
∮
C

dx
√
E − x2(ix)ε = (n + 1

2

)
π, (62)

where C represents the orbit of a classical particle in the complex-x plane. By Cauchy’s
theorem, any closed orbit leads to the same result for the energy En, and because of PT
symmetry the integral above gives a real value for the energy.

The key difference between classical paths for ε > 0 and for ε < 0 is that in the former
case the paths (except for isolated examples) are closed orbits and in the latter case the paths
are open orbits. In figure 13 we consider the case ε = −0.2 and display two paths that begin
on the negative imaginary axis. Because ε is non-integer, there is a branch cut and the classical
particle travels on a Riemann surface rather than on a single sheet of the complex plane. In
this figure one path evolves forwards in time and the other path evolves backwards in time.
Each path spirals outward and eventually moves off to infinity. Note that the pair of paths
forms a PT -symmetric structure. We remark that the paths do not cross because they are on
different sheets of the Riemann surface. The function (ix)−0.2 requires a branch cut, and we
take this branch cut to lie along the positive imaginary axis. The forward-evolving path leaves
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Figure 13. Classical trajectories in the complex-x plane for the Hamiltonian in (21) with ε = −0.2.
These trajectories begin on the negative imaginary axis very close to the origin. One trajectory
evolves forwards in time and the other goes backwards in time. The trajectories are open orbits
and show the particle spiraling off to infinity. The trajectories begin on the principal sheet of the
Riemann surface; as they cross the branch cut on the positive imaginary axis, they visit the higher
and lower sheets of the surface. The trajectories do not cross because they lie on different Riemann
sheets.

the principal sheet (sheet 0) of the Riemann surface and crosses the branch cut in the positive
sense and continues on sheet 1. The reverse path crosses the branch cut in the negative sense
and continues on sheet −1. Figure 13 shows the projection of the classical orbit onto the
principal sheet.

Figure 13 shows why the energies of the quantum system in the broken PT -symmetric
region ε < 0 are not real. The answer is simply that the trajectories are not closed orbits;
the trajectories are open orbits, and all classical particles drift off to x = ∞. As explained
after (32), if we attempt to quantize the system for the case ε < 0 using the Bohr–Sommerfeld
integral in (62), the integral does not exist because the integration contour is not closed.

3.5. Noninteger values of ε

As ε increases from 0, the turning points at x = 1 (and at x = −1), as shown in figure 10 rotate
downwards and clockwise (anticlockwise) into the complex-x plane. These turning points are
solutions to the equation 1 + (ix)2+ε = 0. When ε is non-integer, this equation has many
solutions that all lie on the unit circle and have the form

x = exp

(
iπ

4N − ε

4 + 2ε

)
(N integer). (63)

These turning points occur in PT -symmetric pairs (pairs that are symmetric when reflected
through the imaginary axis) corresponding to theN values (N = −1, N = 0), (N = −2, N =
1), (N = −3, N = 2), (N = −4, N = 3) and so on. We label these pairs by the integer K
(K = 0, 1, 2, 3, . . .) so that the Kth pair corresponds to (N = −K − 1, N = K). The
pair of turning points on the real-x axis for ε = 0 deforms continuously into the K = 0 pair
of turning points when ε > 0. When ε is rational, there are a finite number of turning points
in the complex-x Riemann surface. For example, when ε = 12

5 , there are five sheets in the
Riemann surface and 11 pairs of turning points. The K = 0 pair of turning points is labelled
N = −1 and N = 0, the K = 1 pair is labelled N = −2 and N = 1, and so on. The last
(K = 10) pair of turning points is labelled N = −11 and N = 10. These turning points are
shown in figure 14.



Making sense of non-Hermitian Hamiltonians 973

Figure 14. Locations of the turning points for ε = 12
5 . There are 11 PT -symmetric pairs of

turning points, with each pair being mirror images under reflection through the imaginary-x axis
on the principal sheet. All 22 turning points lie on the unit circle on a five-sheeted Riemann surface,
where the sheets are joined by cuts on the positive imaginary axis.

As ε increases from 0, the elliptical complex trajectories in figure 10 for the harmonic
oscillator begin to distort but the trajectories remain closed and periodic except for special
singular trajectories that run off to complex infinity, as we see in figure 11. These singular
trajectories only occur when ε is an integer. Nearly all of the orbits that one finds are PT
symmetric (left–right symmetric), and until very recently it was thought that all closed periodic
orbits are PT symmetric. This is, in fact, not so [53]. Closed non-PT -symmetric orbits exist,
and these orbits are crucial for understanding the behaviour of the periods of the complex orbits
as ε varies.

In figure 15 we display a PT -symmetric orbit of immense topological intricacy that visits
many sheets of the Riemann surface. This figure shows a classical trajectory corresponding to
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Figure 15. A classical trajectory in the complex-x plane for the complex Hamiltonian H =
p2x2(ix)π−2. This complicated trajectory begins at x(0) = −7.1i and visits 11 sheets of the
Riemann surface. Its period is approximately T = 255.3. This figure displays the projection of
the trajectory onto the principal sheet of the Riemann surface. This trajectory does not cross itself.

Figure 16. An enlargement of the classical trajectory x(t) in figure 15 showing the detail near
the origin in the complex-x plane. We emphasize that this classical path never crosses itself; the
apparent self-intersections are paths that lie on different sheets of the Riemann surface.

ε = π − 2. The trajectory starts at x(0) = −7.1i and visits 11 sheets of the Riemann surface.
Its period is T = 255.3. The structure of this orbit near the origin is so complicated that we
provide a magnified version in figure 16.

The period of any classical orbit depends on the specific pairs of turning points that are
enclosed by the orbit and on the number of times that the orbit encircles each pair. As shown
in [51], any given orbit can be deformed to a simpler orbit of exactly the same period. This
simpler orbit connects two turning points and oscillates between them rather than encircling
them. For the elementary case of orbits that enclose only theK = 0 pair of turning points, the
formula for the period of the closed orbit is

T0(ε) = 2
√
π

�

(
3 + ε

2 + ε

)

�

(
4 + ε

4 + 2ε

) cos
( επ

4 + 2ε

)
(ε � 0). (64)

The derivation of (64) goes as follows: the period T0 is given by a closed contour integral along
the trajectory in the complex-x plane. This trajectory encloses the square-root branch cut that
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joins the K = 0 pair of turning points. This contour can be deformed into a pair of rays that
run from one turning point to the origin and then from the origin to the other turning point. The
integral along each ray is easily evaluated as a beta function, which is then written in terms of
gamma functions.

When the classical orbit encloses more than just the K = 0 pair of turning points, the
formula for the period of the orbit becomes more complicated [51]. In general, there are
contributions to the period integral from many enclosed pairs of turning points. We label each
such pair by the integer j . The formula for the period of the topological class of classical
orbits whose central orbit terminates on the Kth pair of turning points is

TK(ε) = 2
√
π

�

(
3 + ε

2 + ε

)

�

(
4 + ε

4 + 2ε

) ∞∑
j=0

aj (K, ε)

∣∣∣∣cos

(
(2j + 1)επ

4 + 2ε

)∣∣∣∣ . (65)

In this formula the cosines originate from the angular positions of the turning points in (63).
The coefficients aj (K, ε) are all non-negative integers. The j th coefficient is non-zero only
if the classical path encloses the j th pair of turning points. Each coefficient is an even integer
except for the j = K coefficient, which is an odd integer. The coefficients aj (K, ε) satisfy

∞∑
j=0

aj (K, ε) = k, (66)

where k is the number of times that the central classical path crosses the imaginary axis.
Equation (66) truncates the summation in (65) to a finite number of terms.

The period T0 in (64) of orbits connecting the K = 0 turning points is a smoothly
decreasing function of ε. However, for classical orbits connecting the Kth (K > 0) pair
of turning points, the classical orbits exhibit fine structure that is exquisitely sensitive to the
value of ε. Small variations in ε can cause huge changes in the topology and in the periods
of the closed orbits. Depending on ε, there are orbits having short periods as well as orbits
having long and possibly arbitrarily long periods.

3.6. Classical orbits having spontaneously broken PT symmetry

There is a general pattern that holds for all K . For classical orbits that oscillate between the
Kth pair of turning points, there are three regions of ε. The domain of region I is 0 � ε � 1

K
,

the domain of region II is 1
K
< ε < 4K and the domain of region III is 4K < ε. In regions I

and III the period is a small and smoothly decreasing function of ε. However, in region II the
period is a rapidly varying and noisy function of ε. We illustrate this behaviour for the case
K = 1 and K = 2 in figures 17 and 18.

The abrupt changes in the topology and the periods of the orbits for ε in region II are
associated with the appearance of orbits having spontaneously broken PT symmetry. In region
II there are short patches where the period is relatively small and is a slowly varying function of
ε. These patches are bounded by special values of ε for which the period of the orbit suddenly
becomes extremely long. Numerical studies of the orbits connecting the Kth pair of turning
points indicate that these special values of ε are always rational [55]. Furthermore, at these
special rational values of ε, the closed orbits are not PT -symmetric (left–right symmetric).
Such orbits exhibit spontaneously broken PT symmetry. Some special values of ε at which
spontaneously broken PT -symmetric orbits occur are indicated in figures 17 and 18 by short
vertical lines below the horizontal axis. These special values of ε have the form p

q
, where p is

a multiple of 4 and q is odd.
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Figure 17. Period of a classical trajectory beginning at the N = 1 turning point in the complex-x
plane. The period is plotted as a function of ε. The period decreases smoothly for 0 � ε < 1
(region I). However, when 1 � ε � 4 (region II), the period becomes a rapidly varying and noisy
function of ε. For ε > 4 (region III) the period is once again a smoothly decaying function of ε.
Region II contains short subintervals where the period is a small and smoothly varying function
of ε. At the edges of these subintervals the period suddenly becomes extremely long. Detailed
numerical analysis shows that the edges of the subintervals lie at special rational values of ε. Some
of these special rational values of ε are indicated by vertical line segments that cross the horizontal
axis. At these rational values the orbit does not reach the N = −2 turning point and the PT
symmetry of the classical orbit is spontaneously broken.

Figure 18. Period of a classical trajectory joining (except when PT symmetry is broken) the
K = 2 pair of turning points. The period is plotted as a function of ε. As in theK = 1 case shown
in figure 17, there are three regions. When 0 � ε � 1

2 (region I), the period is a smooth decreasing
function of ε; when 1

2 < ε � 8 (region II), the period is a rapidly varying and choppy function of
ε; when 8 < ε (region III), the period is again a smooth and decreasing function of ε.
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Figure 19. A horseshoe-shaped non-PT -symmetric orbit. This orbit is not symmetric with respect
to the imaginary axis, but it is symmetric with respect to the real axis. The orbit terminates at a
complex-conjugate pair of turning points. For this orbit ε = 4

5 .

A broken-PT -symmetric orbit is a failed PT -symmetric orbit. Figure 19 displays a
spontaneously broken-PT -symmetric orbit for ε = 4

5 . The orbit starts at the N = 2 turning
point, but it never reaches the PT -symmetric turning point N = −3. Rather, the orbit
terminates when it runs into and is reflected back from the complex conjugate N = 4 turning
point (see (63)). The period of the orbit is short (T = 4.63). While this orbit is not PT
(left–right) symmetric, it does possess complex-conjugate (up–down) symmetry. In general,
for a non-PT -symmetric orbit to exist, it must join or encircle a pair of complex-conjugate
turning points.

If we change ε slightly, PT symmetry is restored and one can only find orbits that are PT
symmetric. For example, if we take ε = 0.805, we obtain the complicated orbit in figure 20.
The period of this orbit is large (T = 173.36).

Broken-PT -symmetric orbits need not be simple looking, like the orbit shown in figure 19.
Indeed, they can have an elaborate topology. As an example we plot in figure 21 the complicated
orbit that arises when ε = 16

9 . This orbit is a failedK = 3 PT -symmetric orbit that originates
at the N = −4 turning point, but never reaches the PT -symmetric N = 3 turning point.
Instead, it is reflected back by the complex-conjugate N = −14 turning point.

This study of classical orbits provides a heuristic explanation of the quantum transition
from a broken to an unbroken PT symmetry as ε increases past 0. The quantum transition
corresponds to a change from open to closed classical orbits. Furthermore, we can now see
why the quantum theory in the unbroken region is unitary. At the classical level, particles are
bound in a complex atom and cannot escape to infinity; at the quantum level the probability
is conserved and does not leak away as time evolves. Quantum mechanics is obtained by
summing over all possible classical trajectories, and in the case of PT -symmetric classical
mechanics we have seen some bizarre classical trajectories. To understand how summing
over such trajectories produces PT -symmetric quantum mechanics will require much more
research.
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Figure 20. PT -symmetric orbit for ε = 0.805. This orbit connects the K = 2 pair of turning
points.

Figure 21. Non-PT -symmetric orbit for ε = 16
9 . This topologically complicated orbit originates

at the N = −4 turning point but does not reach the PT -symmetric N = 3 turning point. Instead,
it is reflected back at the complex-conjugate N = −14 turning point. The period of this orbit is
T = 186.14.
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4. PT -symmetric quantum mechanics

Establishing that the eigenvalues of many PT -symmetric Hamiltonians are real and positive
raises an obvious question: does a non-Hermitian Hamiltonian such as H in (12) define a
physical theory of quantum mechanics or is the reality and positivity of the spectrum merely
an intriguing mathematical curiosity exhibited by some special classes of complex eigenvalue
problems? Recall that a physical quantum theory must (i) have an energy spectrum that is
bounded below; (ii) possess a Hilbert space of state vectors that is endowed with an inner
product having a positive norm and (iii) have unitary time evolution. The simplest condition
on the HamiltonianH that guarantees that the quantum theory satisfies these three requirements
is that H be real and symmetric. However, this condition is overly restrictive. One can allow
H to be complex as long as it is Dirac Hermitian: H † = H . In this section we explain why
we can replace the condition of Hermiticity by the condition that H have an unbroken PT
symmetry and still satisfy the above requirements for a physical quantum theory6.

4.1. Recipe for a quantum-mechanical theory defined by a Hermitian Hamiltonian

For purposes of comparison, we summarize in this section the standard textbook procedure that
one follows in analysing a theory defined by a conventional Hermitian quantum-mechanical
Hamiltonian. In the following section we repeat these procedures for a non-Hermitian
Hamiltonian.

(a) Eigenfunctions and eigenvalues of H . Given the Hamiltonian H one can write down the
time-independent Schrödinger equation associated with H and calculate the eigenvalues
En and eigenfunctionsψn(x). Usually, this calculation is difficult to perform analytically,
so it must be done numerically.

(b) Orthogonality of eigenfunctions. Because H is Hermitian, the eigenfunctions of H will
be orthogonal with respect to the standard Hermitian inner product:

(ψ, φ) ≡
∫

dx [ψ(x)]∗φ(x). (67)

Orthogonality means that the inner product of two eigenfunctions ψm(x) and ψn(x)
associated with different eigenvalues Em �= En vanishes:

(ψm, φn) = 0. (68)

(We do not discuss here the technical problems associated with degenerate spectra.)
(c) Orthonormality of eigenfunctions. Since the Hamiltonian is Hermitian, the norm of any

vector is guaranteed to be positive. This means that we can normalize the eigenfunctions
of H so that the norm of every eigenfunction is unity:

(ψn, ψn) = 1. (69)

(d) Completeness of eigenfunctions. It is a deep theorem of the theory of linear operators
on Hilbert spaces that the eigenfunctions of a Hermitian Hamiltonian are complete. This
means that any (finite-norm) vector χ in the Hilbert space can be expressed as a linear
combination of the eigenfunctions of H :

χ =
∞∑
n=0

anψn. (70)

6 All the PT -symmetric Hamiltonians considered in this paper are symmetric under matrix transposition. This
matrix symmetry condition is not necessary, but it has the simplifying advantage that the we do not need to have a
biorthogonal set of basis states. We can consider PT -symmetric Hamiltonians that are not symmetric under matrix
transposition, but only at the cost of introducing a biorthogonal basis [33, 56].
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The formal statement of completeness in coordinate space is the reconstruction of the unit
operator (the delta function) as a sum over the eigenfunctions:

∞∑
n=0

[ψn(x)]
∗ψn(y) = δ(x − y). (71)

(e) Reconstruction of the Hamiltonian H and Green’s function G, and calculation of the
spectral Zeta function. The Hamiltonian matrix in coordinate space has the form

∞∑
n=0

[ψn(x)]
∗ψn(y)En = H(x, y) (72)

and Green’s function is given by
∞∑
n=0

[ψn(x)]
∗ψn(y)

1

En
= G(x, y). (73)

Green’s function is the matrix inverse of the Hamiltonian in the sense that∫
dy H(x, y)G(y, z) = δ(x − z). (74)

The formula for Green’s function in (73) allows us to calculate the sum of the reciprocals
of the energy eigenvalues. We simply set x = y in (73), integrate with respect to x, and
use the normalization condition in (69) to obtain the result that∫

dx G(x, x) =
∞∑
n=0

1

En
. (75)

The summation on the right side of (75) is called the spectral zeta function. This sum is
convergent if the energy levels En rise faster than linearly with n. Thus, the spectral zeta
function for the harmonic oscillator is divergent, but it exists for the |x|ε+2 and x2(ix)ε

potentials if ε > 0.
(f) Time evolution and unitarity. For a Hermitian Hamiltonian the time-evolution operator

e−iHt (see (15)) is unitary, and it automatically preserves the inner product:

(χ(t), χ(t)) = (χ(0)eiHt , e−iHtχ(t)) = (χ(0), χ(0)). (76)

(g) Observables. An observable is represented by a linear Hermitian operator. The outcome
of a measurement is one of the real eigenvalues of this operator.

(h) Miscellany. One can study a number of additional topics, such as the classical and
semiclassical limits of the quantum theory, probability density and currents, perturbative
and non-perturbative calculations and so on. We do not address these issues in depth in
this paper.

4.2. Recipe for PT -symmetric quantum mechanics

Let us follow the recipe outlined in section 4.1 for the case of a non-Hermitian PT -symmetric
Hamiltonian having an unbroken PT symmetry. For definiteness, we will imagine that the
non-Hermitian Hamiltonian has the form in (12). The novelty here is that we do not know a
priori the definition of the inner product, as we do in the case of ordinary Hermitian quantum
mechanics. We will have to discover the correct inner product in the course of our analysis. The
inner product is determined by the Hamiltonian itself, so PT -symmetric quantum mechanics
is a kind of ‘bootstrap’ theory. The Hamiltonian operator chooses its own Hilbert space (and
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associated inner product) in which it prefers to live!

(a) Eigenfunctions and eigenvalues of H . In section 2 we discussed various techniques for
determining the coordinate-space eigenfunctions and eigenvalues of a non-Hermitian
Hamiltonian. We assume here that we have found the eigenvalues En by using either
analytical or numerical methods and that these eigenvalues are all real. (This is equivalent
to assuming that the PT symmetry of H is unbroken; that is, all eigenfunctions ψn(x)
of H are also eigenfunctions of PT .) The zeros of PT -symmetric eigenfunctions have
interesting complex interlacing properties [57–59].

(b) Orthogonality of eigenfunctions. To test the orthogonality of the eigenfunctions, we must
specify an inner product. (A pair of vectors can be orthogonal with respect to one inner
product and not orthogonal with respect to another inner product.) Since we do not yet
know what inner product to use, one might try to guess an inner product. Arguing by
analogy, one might think that since the inner product in (67) is appropriate for Hermitian
Hamiltonians(H = H †), a good choice for an inner product associated with a PT -
symmetric Hamiltonian (H = HPT ) might be

(ψ, φ) ≡
∫
C

dx [ψ(x)]PT φ(x) =
∫
C

dx [ψ(−x)]∗φ(x), (77)

where C is a contour in the Stokes wedges shown in figure 2. With this inner-
product definition one can show by a trivial integration-by-parts argument using the time-
independent Schrödinger equation (24) that pairs of eigenfunctions of H associated with
different eigenvalues are orthogonal. However, this guess for an inner product is not
acceptable for formulating a valid quantum theory because the norm of a state is not
necessarily positive.

(c) The CPT inner product. To construct an inner product with a positive norm for a complex
non-Hermitian Hamiltonian having an unbroken PT symmetry, we will construct a new
linear operator C that commutes with both H and PT . Because C commutes with
the Hamiltonian, it represents a symmetry of H . We use the symbol C to represent
this symmetry because, as we will see, the properties of C are similar to those of the
charge conjugation operator in particle physics. The inner product with respect to CPT
conjugation is defined as

〈ψ |χ〉CPT =
∫

dx ψCPT (x)χ(x), (78)

whereψCPT (x) = ∫ dy C(x, y)ψ∗(−y). We will show that this inner product satisfies the
requirements for the quantum theory defined byH to have a Hilbert space with a positive
norm and to be a unitary theory of quantum mechanics. We will represent the C operator
as a sum over the eigenfunctions of H , but before doing so we must first show how to
normalize these eigenfunctions.

(d) PT -symmetric normalization of the eigenfunctions and the strange statement of
completeness. We showed in (19) that the eigenfunctions ψn(x) of H are also
eigenfunctions of the PT operator with eigenvalue λ = eiα , where λ and α depend
on n. Thus, we can construct PT -normalized eigenfunctions φn(x) defined by

φn(x) ≡ e−iα/2ψn(x). (79)

By this construction, φn(x) is still an eigenfunction of H and it is also an eigenfunction
of PT with eigenvalue 1. One can also show both numerically and analytically that the
algebraic sign of the PT norm in (77) of φn(x) is (−1)n for all n and for all values of
ε > 0 [60]. Thus, we define the eigenfunctions so that their PT norms are exactly (−1)n:∫

C

dx [φn(x)]
PT φn(x) =

∫
C

dx [φn(−x)]∗φn(x) = (−1)n, (80)
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where the contour C lies in the Stokes wedges shown in figure 2. In terms of these
PT -normalized eigenfunctions there is a simple but unusual statement of completeness:

∞∑
n=0

(−1)nφn(x)φn(y) = δ(x − y). (81)

This unusual statement of completeness has been verified both numerically and
analytically to great precision for all ε > 0 [61, 62] and a mathematical proof has been
given [33]. It is easy to verify using (80) that the left side of (81) satisfies the integration
rule for delta functions:

∫
dy δ(x − y)δ(y − z) = δ(x − z).

Example: PT -symmetric normalization of harmonic-oscillator eigenfunctions.
For the harmonic-oscillator Hamiltonian H = p̂2 + x̂2, the eigenfunctions are
Gaussians multiplied by Hermite polynomials: ψ0(x) = exp

(− 1
2x

2
)
, ψ1(x) =

x exp
(− 1

2x
2
)
,ψ2(x) = (2x2 −1) exp

(− 1
2x

2
)
,ψ3(x) = (2x3 −3x) exp

(− 1
2x

2
)
,

and so on. To normalize these eigenfunctions so that they are also eigenfunctions
of the PT operator with eigenvalue 1, we choose

φ0(x) = a0 exp
(− 1

2x
2
)
,

φ1(x) = a1ix exp
(− 1

2x
2
)
,

ψ2(x) = a2(2x
2 − 1) exp

(− 1
2x

2
)
,

ψ3(x) = a3i(2x3 − 3x) exp
(− 1

2x
2
)
, (82)

and so on, where the real numbers an are chosen so that the integral in (80)
evaluates to (−1)n for all n. It is easy to verify that if the eigenfunctions φn(x)
are substituted into (81) and the summation is performed, then the result is the
Dirac delta function on the right side of (81).

(e) Coordinate-space representation of H and G and the spectral Zeta function. From the
statement of completeness in (81) we can construct coordinate-space representations of
the linear operators. For example, since the coordinate-space representation of the parity
operator is P(x, y) = δ(x + y), we have

P(x, y) =
∞∑
n=0

(−1)nφn(x)φn(−y). (83)

We can also construct the coordinate-space representations of the Hamiltonian and Green’s
function,

H(x, y) =
∞∑
n=0

(−1)nEnφn(x)φn(y),

G(x, y) =
∞∑
n=0

(−1)n
1

En
φn(x)φn(y), (84)

and using (80) it is straightforward to show that G is the functional inverse of H :∫
dy H(x, y)G(y, z) = δ(x − z). For the class of PT -symmetric Hamiltonians in (12)

this equation takes the form of a differential equation satisfied by G(x, y):(
− d2

dx2
+ x2(ix)ε

)
G(x, y) = δ(x − y). (85)
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Equation (85) can be solved in terms of associated Bessel functions in each of two regions,
x > y and x < y. The solutions can then be patched together at x = y to obtain a closed-
form expression for G(x, y) [61, 62]. One then uses (75) to find an exact formula for the
spectral zeta function for all values of ε:

∑
n

1

En
=


1 +

cos

(
3επ

2ε + 8

)
sin
( π

4 + ε

)

cos
( επ

4 + 2ε

)
sin

(
3π

4 + ε

)


�

(
1

4 + ε

)
�

(
2

4 + ε

)
�
( ε

4 + ε

)

(4 + ε)
4+2ε
4+ε �

(
1 + ε

4 + ε

)
�

(
2 + ε

4 + ε

) . (86)

(f) Construction of the C operator. The situation here in which half of the energy eigenstates
have positive norm and half have negative norm (see (80)) is analogous to the problem
that Dirac encountered in formulating the spinor wave equation in relativistic quantum
theory [63]. Following Dirac, we attack the problem of an indefinite norm by finding an
interpretation of the negative-norm states. For any HamiltonianH having an unbroken PT
symmetry there exists an additional symmetry ofH connected with the fact that there are
equal numbers of positive- and negative-norm states. The linear operator C that embodies
this symmetry can be represented in coordinate space as a sum over the PT -normalized
eigenfunctions of the PT -symmetric Hamiltonian in (12):

C(x, y) =
∞∑
n=0

φn(x)φn(y). (87)

Notice that this equation is identical to the statement of completeness in (81) except that
the factor of (−1)n is absent. We can use (80) and (81) to verify that the square of C is
unity (C2 = 1):∫

dy C(x, y)C(y, z) = δ(x − z). (88)

Thus, the eigenvalues of C are ±1. Also, C commutes withH . Therefore, since C is linear,
the eigenstates of H have definite values of C. Specifically,

Cφn(x) =
∫

dy C(x, y)φn(y)

=
∞∑
m=0

φm(x)

∫
dy φm(y)φn(y) = (−1)nφn(x). (89)

This new operator C resembles the charge-conjugation operator in quantum field theory.
However, the precise meaning of C is that it represents the measurement of the sign of the
PT norm in (80) of an eigenstate.
The operators P and C are distinct square roots of the unity operator δ(x − y). That is,
P2 = C2 = 1, but P �= C because P is real, while C is complex. The parity operator
in coordinate space is explicitly real (P(x, y) = δ(x + y)), while the operator C(x, y) is
complex because it is a sum of products of complex functions. The two operators P and
C do not commute. However, C does commute with PT .

(g) Positive norm and unitarity in PT -symmetric quantum mechanics. Having constructed
the operator C, we can now use the new CPT inner product defined in (78). Like the
PT inner product, this new inner product is phase independent. Also, because the time-
evolution operator (as in ordinary quantum mechanics) is e−iHt and becauseH commutes
with PT and with CPT , both the PT inner product and the CPT inner product remain
time independent as the states evolve. However, unlike the PT inner product, the CPT
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inner product is positive definite because C contributes a factor of −1 when it acts on states
with negative PT norm. In terms of the CPT conjugate, the completeness condition reads

∞∑
n=0

φn(x)[CPT φn(y)] = δ(x − y). (90)

4.3. Comparison of Hermitian and PT -symmetric quantum theories

We have shown in sections 4.1 and 4.2 how to construct quantum theories based on Hermitian
and on non-Hermitian Hamiltonians. In the formulation of a conventional quantum theory
defined by a Hermitian Hamiltonian, the Hilbert space of physical states is specified even
before the Hamiltonian is known. The inner product (67) in this vector space is defined with
respect to Dirac Hermitian conjugation (complex conjugate and transpose). The Hamiltonian
is then chosen and the eigenvectors and eigenvalues of the Hamiltonian are determined. In
contrast, the inner product for a quantum theory defined by a non-Hermitian PT -symmetric
Hamiltonian depends on the Hamiltonian itself and thus is determined dynamically. One must
solve for the eigenstates ofH before knowing the Hilbert space and the associated inner product
of the theory because the C operator is defined and constructed in terms of the eigenstates of
the Hamiltonian. The Hilbert space, which consists of all complex linear combinations of the
eigenstates of H , and the CPT inner product are determined by these eigenstates.

The operator C does not exist as a distinct entity in ordinary Hermitian quantum mechanics.
Indeed, if we allow the parameter ε in (12) to tend to 0, the operator C in this limit becomes
identical to P and the CPT operator becomes T , which performs complex conjugation. Hence,
the inner product defined with respect to CPT conjugation reduces to the inner product of
conventional quantum mechanics and (81) reduces to the usual statement of completeness∑

n φn(x)φ
∗
n(y) = δ(x − y).

The CPT inner product is independent of the choice of integration contourC as long asC
lies inside the asymptotic wedges associated with the boundary conditions for the eigenvalue
problem. In ordinary quantum mechanics, where the positive-definite inner product has the
form

∫
dx f ∗(x)g(x), the integral must be taken along the real axis and the path of integration

cannot be deformed into the complex plane because the integrand is not analytic. The PT inner
product shares with the CPT inner-product the advantage of analyticity and path independence,
but it suffers from non-positivity. It is surprising that we can construct a positive-definite metric
by using CPT conjugation without disturbing the path independence of the inner-product
integral.

Time evolution is expressed by the operator e−iHt whether the theory is determined by a
PT -symmetric Hamiltonian or just an ordinary Hermitian Hamiltonian. To establish unitarity
we must show that as a state vector evolves, its norm does not change in time. If ψ0(x) is any
given initial vector belonging to the Hilbert space spanned by the energy eigenstates, then it
evolves into the state ψt(x) at time t according to ψt(x) = e−iHtψ0(x). With respect to the
CPT inner product the norm ofψt(x) does not change in time becauseH commutes with CPT .

4.4. Observables

How do we represent an observable in PT -symmetric quantum mechanics? Recall that in
ordinary quantum mechanics the condition for a linear operator A to be an observable is that
A = A†. This condition guarantees that the expectation value ofA in a state is real. Operators
in the Heisenberg picture evolve in time according toA(t) = eiHtA(0)e−iHt , so this Hermiticity
condition is maintained in time. In PT -symmetric quantum mechanics the equivalent condition
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is that at time t = 0 the operator A must obey the condition AT = CPT A CPT , where AT is
the transpose of A [60]. If this condition holds at t = 0, then it will continue to hold for all
time because we have assumed thatH is symmetric (H = H T). This condition also guarantees
that the expectation value of A in any state is real7.

The operator C itself satisfies this requirement, so it is an observable. The Hamiltonian
is also an observable. However, the x̂ and p̂ operators are not observables. Indeed, the
expectation value of x̂ in the ground state is a negative imaginary number. Thus, there is no
position operator in PT -symmetric quantum mechanics. In this sense PT -symmetric quantum
mechanics is similar to fermionic quantum field theories. In such theories the fermion field
corresponds to the x̂ operator. The fermion field is complex and does not have a classical
limit. One cannot measure the position of an electron; one can only measure the position of
the charge or the energy of the electron!

One can see why the expectation of the x operator in PT -symmetric quantum mechanics
is a negative imaginary number by examining a classical trajectory like that shown in figure 15.
Note that this classical trajectory has left–right (PT ) symmetry, but not up–down symmetry.
Also, the classical paths favour (spend more time in) the lower-half complex-x plane. Thus,
the average classical position is a negative imaginary number. Just as the classical particle
moves about in the complex plane, the quantum probability current flows about in the complex
plane. It may be that the correct interpretation is to view PT -symmetric quantum mechanics
as describing the interaction of extended, rather than point-like objects.

4.5. Pseudo-Hermiticity, quasi-Hermiticity and PT symmetry

The thesis of this paper—replacing the mathematical condition of Hermiticity by the more
physical condition of PT symmetry—can be placed in a more general mathematical context
known as pseudo-Hermiticity. A linear operatorA is pseudo-Hermitian if there is a Hermitian
operator η such that

A† = ηAη. (91)

The operator η is often called an intertwining operator. The condition in (91) reduces to
ordinary Hermiticity when the intertwining operator η is the identity 1 and reduces to PT
symmetry when η = P . The concept of pseudo-Hermiticity was introduced in the 1940s by
Dirac and Pauli and later discussed by Lee, Wick and Sudarshan, who were trying to resolve the
problems that arise in quantizing electrodynamics and other quantum field theories in which
negative-norm states appear as a consequence of renormalization [67–71]. These problems
are illustrated very clearly by the Lee model, which is discussed in section 8.3.

The related notion of quasi-Hermiticity was discussed in detail in 1992 by Scholtz
et al [10]. This deep paper is relevant to PT symmetry because it was the first to show how
to construct a similarity transformation that maps Hermitian operators onto the corresponding
quasi-Hermitian operators and also the first to consider the corresponding transformations of
infinite-dimensional Hilbert-space inner products.

Mostafazadeh first pointed out that because the parity operator P is Hermitian, it may be
used as an intertwining operator. The class of Hamiltonians H in (12) is pseudo-Hermitian
because the parity operator P changes the sign of x̂ while Dirac Hermitian conjugation changes
the sign of i [65, 72–74]:

H † = PHP. (92)

7 The requirement given here for A to be an observable involves matrix transposition. This condition is more
restrictive than is necessary and it has been generalized by Mostafazadeh. See [64–66]. Note that if the matrix
transpose symmetry condition on the Hamiltonian is removed we must introduce a biorthogonal basis. See [33,56].
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For other references on the generalization of PT symmetry to pseudo-Hermiticity
see [75].

5. Illustrative 2 × 2 matrix example of a PT -symmetric Hamiltonian

It is always useful to study exactly solvable models when one is trying to understand a formal
procedure like that discussed in section 4. One exactly solvable model, which has been used
in many papers on PT symmetry, is due to Swanson [76]. This model is exactly solvable
because it is quadratic in x̂ and p̂. In this section we use an even simpler model to illustrate the
construction of a quantum theory described by a PT -symmetric Hamiltonian. We consider
the elementary 2 × 2 Hamiltonian matrix

H =
(
reiθ s

s re−iθ

)
, (93)

where the three parameters r , s and θ are real [77]. The Hamiltonian in (93) is not Hermitian,
but it is easy to see that it is PT symmetric, where we define the parity operator as

P =
(

0 1
1 0

)
(94)

and we define the operator T to perform complex conjugation.
As a first step in analysing the Hamiltonian (93), we calculate its two eigenvalues:

E± = r cos θ ± (s2 − r2 sin2 θ)1/2. (95)

There are clearly two parametric regions to consider, one for which the square root in (95) is
real and the other for which it is imaginary. When s2 < r2 sin2 θ , the energy eigenvalues form
a complex-conjugate pair. This is the region of broken PT symmetry. On the other hand,
when s2 � r2 sin2 θ , the eigenvalues ε± = r cos θ ± (s2 − r2 sin2 θ)1/2 are real. This is the
region of unbroken PT symmetry. In the unbroken region the simultaneous eigenstates of the
operators H and PT are

|E+〉 = 1√
2 cosα

(
eiα/2

e−iα/2

)
and |E−〉 = i√

2 cosα

(
e−iα/2

−eiα/2

)
, (96)

where

sin α = r

s
sin θ. (97)

The PT inner product gives

(E±, E±) = ±1 and (E±, E∓) = 0, (98)

where (u, v) = (PT u) · v. With respect to the PT inner product, the vector space spanned by
the energy eigenstates has a metric of signature (+,−). If the condition s2 > r2 sin2 θ for an
unbroken PT symmetry is violated, the states (96) are no longer eigenstates of PT because
α becomes imaginary. When PT symmetry is broken, the PT norm of the energy eigenstate
vanishes.

Next, we construct the operator C using (87):

C = 1

cosα

(
i sin α 1

1 −i sin α

)
. (99)

Note that C is distinct from H and P and it has the key property that

C|E±〉 = ±|E±〉. (100)
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The operator C commutes with H and satisfies C2 = 1. The eigenvalues of C are precisely the
signs of the PT norms of the corresponding eigenstates. Using the operator C we construct
the new inner-product structure 〈u|v〉 = (CPT u) · v. This inner product is positive definite
because 〈E±|E±〉 = 1. Thus, the two-dimensional Hilbert space spanned by |E±〉, with inner
product 〈·|·〉, has signature (+,+).

Finally, we prove that the CPT norm of any vector is positive. For the arbitrary vector
ψ = ( a

b

)
, where a and b are any complex numbers, we see that

T ψ =
(
a∗

b∗

)
, PT ψ =

(
b∗

a∗

)
,

CPT ψ = 1

cosα

(
a∗ + ib∗ sin α

b∗ − ia∗ sin α

)
. (101)

Thus, 〈ψ |ψ〉 = (CPT ψ) ·ψ = 1
cosα [a∗a + b∗b + i(b∗b− a∗a) sin α]. Now let a = x + iy and

b = u + iv, where x, y, u and v are real. Then

〈ψ |ψ〉 = 1

cosα

(
x2 + v2 + 2xv sin α + y2 + u2 − 2yu sin α

)
, (102)

which is explicitly positive and vanishes only if x = y = u = v = 0.
Since 〈u| denotes the CPT -conjugate of |u〉, the completeness condition reads

|E+〉〈E+| + |E−〉〈E−| =
(

1 0
0 1

)
. (103)

Furthermore, using the CPT conjugate 〈E±|, we can represent C as

C = |E+〉〈E+| − |E−〉〈E−|. (104)

In the limit θ → 0, the Hamiltonian (93) for this two-state system becomes Hermitian and
C reduces to the parity operator P . Thus, CPT invariance reduces to the standard condition of
Hermiticity for a symmetric matrix; namely, H = H ∗.

6. Calculation of the C operator in quantum mechanics

The distinguishing feature of PT -symmetric quantum mechanics is the C operator. In ordinary
Hermitian quantum mechanics there is no such operator. Only a non-Hermitian PT -symmetric
Hamiltonian possesses a C operator distinct from the parity operator P . Indeed, if we were
to sum the series in (87) for a PT -symmetric Hermitian Hamiltonian, the result would be P ,
which in coordinate space is δ(x + y). (See (83).)

While the C operator is represented formally in (87) as an infinite series, it is not easy to
evaluate the sum of this series. Calculating C by direct brute-force evaluation of the sum in
(87) is not easy in quantum mechanics because it is necessary to find all the eigenfunctions
φn(x) ofH . Furthermore, such a procedure cannot be used in quantum field theory because in
field theory there is no simple analog of the Schrödinger eigenvalue differential equation and
its associated coordinate-space eigenfunctions.

The first attempt to calculate C relied on a perturbative approach [78]. In this paper the
PT -symmetric Hamiltonian

H = 1
2 p̂

2 + 1
2 x̂

2 + iεx̂3 (105)

is considered, where ε is treated as a small real parameter. When ε = 0, the Hamiltonian
reduces to the Hamiltonian for the quantum harmonic oscillator, all of whose eigenfunctions
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can be calculated exactly. Thus, it is possible to express the eigenfunctions of H in (105)
in the form of perturbation series in powers of ε. For each of the eigenfunctions the first
few terms in the perturbation series were calculated. These perturbation series were then
substituted into (87) and the summation over the nth eigenfunction was performed. The result
is a perturbation-series expansion of the C operator. This calculation is long and tedious and
the final result is quite complicated. However, the calculation turned out to be of great value
because while the final answer is complicated, it was discovered that the answer in coordinate
space simplified dramatically if the C operator is written as the exponential of a derivative
operator Q multiplying the parity operator P:

C(x, y) = exp

[
Q

(
x,−i

d

dx

)]
δ(x + y). (106)

The simplification that occurs when C is written in the form C = eQP is that while the
expression for C is a series in all positive integer powers of ε, Q is a series in odd powers of
ε only. Since Q is a series in odd powers of ε, in the limit ε → 0 the function Q vanishes.
Thus, in this limit the C operator tends to the parity operator P .

The expression in (106) need not be limited to coordinate space. A more general way
to represent the C operator is to express it generically in terms of the fundamental dynamical
operators x̂ and p̂:

C = eQ(x̂,p̂)P. (107)

Written in this form,Q is a real function of its two variables. By seeking the C operator in the
form (107) we will be able to devise powerful analytic tools for calculating it.

We illustrate the representation C = eQP by using two elementary Hamiltonians. First,
consider the shifted harmonic oscillator H = 1

2 p̂
2 + 1

2 x̂
2 + iεx̂. This Hamiltonian has an

unbroken PT symmetry for all real ε. Its eigenvalues En = n+ 1
2 + 1

2ε
2 are all real. The exact

formula for C for this theory is given exactly by C = eQP , where

Q = −εp̂. (108)

Note that in the limit ε → 0, where the Hamiltonian becomes Hermitian, C becomes identical
with P .

As a second example, consider the non-Hermitian 2 × 2 matrix Hamiltonian (93). The
associated C operator in (99) can be rewritten in the form C = eQP , where

Q = 1
2σ2 ln

(
1 − sin α

1 + sin α

)
(109)

and

σ2 =
(

0 −i

i 0

)
(110)

is the Pauli sigma matrix. Again, observe that in the limit θ → 0, where the Hamiltonian
becomes Hermitian, the C operator becomes identical with P .

6.1. Algebraic equations satisfied by the C operator

Fortunately, there is a relatively easy algebraic way to calculate theC operator, and the procedure
circumvents the difficult problem of evaluating the sum in (87). As a result, the technique
readily generalizes from quantum mechanics to quantum field theory. In this section we
show how to use this technique to calculate C for the PT -symmetric Hamiltonian in (105).
We explain how to calculate C perturbatively to high order in powers of ε for this cubic
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Hamiltonian. Calculating C for other kinds of interactions is more difficult and may require
the use of semiclassical approximations [79].

To calculate C we make use of its three crucial algebraic properties. First, C commutes
with the space–time reflection operator PT ,

[C,PT ] = 0, (111)

although C does not, in general, commute with P or T separately. Second, the square of C is
the identity,

C2 = 1, (112)

which allows us to interpret C as a reflection operator. Third, C commutes with H ,

[C, H ] = 0, (113)

and thus is time independent. To summarize, C is a time-independent PT -symmetric reflection
operator.

The procedure for calculating C is simply to substitute the generic operator representation
in (107) into the three algebraic equations (111)–(113) in turn and to solve the resulting
equations for the function Q. First, we substitute (107) into the condition (111) to obtain

eQ(x̂,p̂) = PT eQ(x̂,p̂)PT = eQ(−x̂,p̂), (114)

from which we conclude that Q(x̂, p̂) is an even function of x̂.
Second, we substitute (107) into the condition (112) and find that

eQ(x̂,p̂)PeQ(x̂,p̂)P = eQ(x̂,p̂)eQ(−x̂,−p̂) = 1, (115)

which implies that Q(x̂, p̂) = −Q(−x̂,−p̂). Since we already know that Q(x̂, p̂) is an even
function of x̂, we conclude that it is also an odd function of p̂.

The remaining condition (113) to be imposed is that the operator C commutes with H .
While the first two conditions are, in effect, kinematic conditions on Q that are generally true
for any Hamiltonian, condition (113) is equivalent to imposing the specific dynamics of the
particular Hamiltonian that defines the quantum theory. Substituting C = eQ(x̂,p̂)P into (113),
we get

eQ(x̂,p̂)[P, H ] + [eQ(x̂,p̂), H ]P = 0. (116)

This equation is difficult to solve in general, and to do so we must use perturbative methods,
as we explain in the following section.

6.2. Perturbative calculation of C

To solve (116) for the Hamiltonian in (105), we express this Hamiltonian in the form
H = H0 + εH1. Here, H0 is the harmonic-oscillator Hamiltonian H0 = 1

2 p̂
2 + 1

2 x̂
2, which

commutes with the parity operator P , and H1 = ix̂3, which anticommutes with P . Thus, the
condition (116) becomes

2εeQ(x̂,p̂)H1 = [eQ(x̂,p̂), H ]. (117)

We expand the operator Q(x̂, p̂) as a perturbation series in odd powers of ε:

Q(x̂, p̂) = εQ1(x̂, p̂) + ε3Q3(x̂, p̂) + ε5Q5(x̂, p̂) + · · · . (118)

Substituting the expansion in (118) into the exponential eQ(x̂,p̂), we get after some algebra
a sequence of equations that can be solved systematically for the operator-valued functions
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Qn(x̂, p̂) (n = 1, 3, 5, . . .) subject to the symmetry constraints that ensure the conditions
(111) and (112). The first three of these equations are

[H0,Q1] = − 2H1,

[H0,Q3] = − 1
6 [Q1, [Q1, H1]],

[H0,Q5] = 1
360 [Q1, [Q1, [Q1, [Q1, H1]]]] − 1

6 [Q1, [Q3, H1]] + 1
6 [Q3, [Q1, H1]]. (119)

Let us solve these equations for the Hamiltonian in (105), for which H0 = 1
2 p̂

2 + 1
2 x̂

2

and H1 = ix̂3. The procedure is to substitute the most general polynomial form for Qn

using arbitrary coefficients and then to solve for these coefficients. For example, to solve
[H0,Q1] = −2ix̂3, the first of the equations in (119), we take as an ansatz for Q1 the most
general Hermitian cubic polynomial that is even in x̂ and odd in p:

Q1(x̂, p̂) = Mp̂3 +Nx̂p̂x̂, (120)

where M and N are numerical coefficients to be determined. The operator equation for Q1 is
satisfied if M = − 4

3 and N = −2.
It is algebraically tedious but completely straightforward to continue this process. In

order to present the solutions forQn(x̂, p̂) (n > 1), it is convenient to introduce the following
notation: let Sm,n represent the totally symmetrized sum over all terms containingm factors of
p̂ and n factors of x̂. For example,

S0,0 = 1, S0,3 = x̂3, S1,1 = 1
2

(
x̂p̂ + p̂x̂

)
, S1,2 = 1

3 (x̂
2p̂ + x̂p̂x̂ + p̂x̂2),

(121)

and so on. (The properties of the operators Sm,n are summarized in [80].)
In terms of the symmetrized operators Sm,n the first three functions Q2n+1 are

Q1 = − 4
3 p̂

3 − 2S1,2,

Q3 = 128
15 p̂

5 + 40
3 S3,2 + 8S1,4 − 12p̂,

Q5 = − 320
3 p̂

7 − 544
3 S5,2 − 512

3 S3,4 − 64S1,6 + 24 736
45 p̂3 + 6 368

15 S1,2. (122)

Together, (107) (118) and (122) represent an explicit perturbative expansion of C in terms of
the operators x̂ and p̂, correct to order ε6.

To summarize, using the ansatz (107) we can calculate C to high order in perturbation
theory. We are able to perform this calculation because this ansatz obviates the necessity of
calculating the PT -normalized wave functionsφn(x). We show how use these same techniques
for quantum field theory in section 8.

6.3. Perturbative calculation of C for other quantum-mechanical Hamiltonians

The C operator has been calculated perturbatively for a variety of quantum-mechanical models.
For example, let us consider first the case of the Hamiltonian

H = 1
2

(
p̂2 + q̂2

)
+ 1

2

(
x̂2 + ŷ2

)
+ iεx̂2ŷ, (123)

which has two degrees of freedom. The energy levels of this complex Hénon–Heiles theory
were studied in [81]. The C operator for this Hamiltonian was calculated in [82–84]. The
perturbative result for the Q = Q1ε +Q3ε

3 + · · · operator is

Q1(x̂, ŷ, p̂, q̂) = − 4
3 p̂

2q̂ − 1
3S1,1y − 2

3 x̂
2q̂,

Q3(x̂, ŷ, p̂, q̂) = 512
405 p̂

2q̂3 + 512
405 p̂

4q̂ + 1088
405 S1,1T2,1 − 256

405 p̂
2T1,2 + 512

405S3,1ŷ + 288
405S2,2q̂

− 32
405 x̂

2q̂3 + 736
405 x̂

2T1,2 − 256
405S1,1ŷ

3 + 608
405S1,3ŷ − 128

405 x̂
4q̂ − 8

9q , (124)
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where Tm,n represents a totally symmetric product of m factors of q̂ and n factors
of ŷ.

For the Hamiltonian

H = 1
2

(
p̂2 + q̂2 + r̂2

)
+ 1

2

(
x̂2 + ŷ2 + ẑ2

)
+ iεx̂ŷẑ, (125)

which has three degrees of freedom, we have [82–84]

Q1(x̂, ŷ, ẑ, p̂, q̂, r̂) = − 2
3 (ŷẑp̂ + x̂ẑq̂ + x̂ŷr̂)− 4

3 p̂q̂r̂,

Q3(x̂, ŷ, ẑ, p̂, q̂, r̂) = 128
405

(
p̂3q̂ r̂ + q̂3p̂r̂ + r̂3q̂p̂

)
+ 136

405 [p̂x̂p̂(ŷr̂ + ẑq̂) + q̂ŷq̂(x̂r̂ + ẑp̂)

+r̂ ẑr̂(x̂q̂ + ŷp̂)] − 64
405 (x̂p̂x̂q̂ r̂ + ŷq̂ŷp̂r̂ + ẑr̂ ẑp̂q̂) + 184

405 (x̂p̂x̂ŷẑ + ŷq̂ŷx̂ẑ

+ẑr̂ ẑx̂ŷ)− 32
405 [x̂3(ŷr̂ + ẑq̂) + ŷ3(x̂r̂ + ẑp̂) + ẑ3(x̂q̂ + ŷp̂)]

− 8
405

(
p̂3ŷẑ + q̂3x̂ẑ + r̂3x̂ŷ

)
. (126)

An extremely interesting and deceptively simple quantum-mechanical model is the
PT -symmetric square well, whose Hamiltonian on the domain 0 < x < π is given by

H = p̂2 + V (x̂), (127)

where in the coordinate representation V (x) = ∞ for x < 0 and x > π and

V (x) =




iε for
π

2
< x < π,

−iε for 0 < x <
π

2
.

(128)

The PT -symmetric square-well Hamiltonian was invented by Znojil [85] and it has been
heavily studied by many researchers [64, 86–88]. This Hamiltonian reduces to the conventional
Hermitian square well in the limit as ε → 0. For H in (127) the parity operator P performs a
reflection about x = π

2 : P : x → π − x.
In all the examples discussed so far the coordinate-space representation of the C operator

is a combination of integer powers of x and integer numbers of derivatives multiplying the
parity operator P . Hence, the Q operator is a polynomial in the operators x̂ and p̂ = −i d

dx .
The novelty of the PT -symmetric square-well Hamiltonian (127) and (128) is that C contains
integrals of P . Thus, theQ operator, while it is a simple function, is not a polynomial in x̂ and
p̂ and therefore it cannot be found easily by the algebraic perturbative methods introduced in
section 6.1.

Instead, in [89] the C operator for the square-well Hamiltonian was calculated by using
the brute-force approach of calculating the PT -normalized eigenfunctions φn(x) of H and
summing over these eigenfunctions. The eigenfunctions φn(x) were obtained as perturbation
series to second order in powers of ε. The eigenfunctions were then normalized according
to (80), substituted into the formula (87), and the sum was evaluated directly to obtain the C
operator accurate to order ε2. The advantage of the domain 0 < x < π is that this sum reduces
to a set of Fourier sine and cosine series that can be evaluated in closed form. After evaluating
the sum, the result was translated to the symmetric region −π

2 < x < π
2 . On this domain the

parity operator in coordinate space is P(x, y) = δ(x + y).
The last step in the calculation is to show that the C operator to order ε2 has the form eQP

and then to evaluate the function Q to order ε2. The final result for Q(x, y) on the domain
−π

2 < x < π
2 has the relatively simple structure

Q(x, y) = 1
4 iε[x − y + ε(x − y) (| x + y | − π)] + O(ε3), (129)
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Figure 22. Three-dimensional plot of the imaginary part of C(1)(x, y), the first-order perturbative
contribution in (131) to the C operator in coordinate space. The plot is on the symmetric square
domain − π

2 < (x, y) < π
2 . Note that C(1)(x, y) vanishes on the boundary of this square domain

because the eigenfunctions φn(x) are required to vanish at x = 0 and x = π .

where ε(x) is the standard step function

ε(x) =




1 (x > 0),

0 (x = 0),

−1 (x < 0).

(130)

When we say that the formula for Q(x, y) has a relatively simple structure, we mean
that this structure is simple in comparison with the formula for the C operator expressed as an
expansionC(x, y) = C(0)+εC(1)+ε2C(2)+O(ε3). The formulas for the first three coefficients
in this series for C are

C(0)(x, y) = δ(x + y),

C(1)(x, y) = 1
4 i[x + y + ε(x + y) (|x − y| − π)],

C(2)(x, y) = 1
96π

3 − 1
24 (x

3 + y3) ε(x + y)− 1
24 (y

3 − x3) ε(y − x)

+ 1
8xyπ − 1

16π
2(x + y) ε(x + y) + 1

8π(x|x| + y|y|) ε(x + y)

− 1
4xy{|x|[θ(x − y) θ(−x − y) + θ(y − x) θ(x + y)]

+ |y|[θ(y − x) θ(−x − y) + θ(x − y) θ(x + y)]}. (131)

We plot the imaginary part of C(1)(x, y) in figure 22, and we plot C(2)(x, y) in figure 23.
These three-dimensional plots show C(1)(x, y) and C(2)(x, y) on the symmetric domain
−π

2 < (x, y) < π
2 .

The most noteworthy property of the C operator for the square-well model is that the
associated operator Q is a non-polynomial function, and this kind of structure had not been
seen in previous studies of C. It was originally believed that for such a simple PT -symmetric
Hamiltonian it would be possible to calculate the C operator in closed form. It is a surprise
that for this elementary model the C operator is so non-trivial.
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Figure 23. Three-dimensional plot of C(2)(x, y) in (131) on the symmetric square domain
− π

2 < (x, y) < π
2 . The function C(2)(x, y) vanishes on the boundary of this square domain

because the eigenfunctions φn(x) from which it was constructed vanish at the boundaries of the
square well.

6.4. Mapping from a PT -symmetric Hamiltonian to a Hermitian Hamiltonian

Mostafazadeh observed that the square root of the positive operator eQ can be used to construct
a similarity transformation that maps a non-Hermitian PT -symmetric Hamiltonian H to an
equivalent Hermitian Hamiltonian h [72, 90]:

h = e−Q/2HeQ/2. (132)

He noted that h is equivalent to H because it has the same eigenvalues as H .
To understand why (132) is valid, recall from (107) that the C operator has the general

form C = eQP , where Q = Q(x̂, p̂) is a Hermitian function of the fundamental dynamical
operator variables of the quantum theory. Multiplying C on the right by P gives an expression
for eQ:

eQ = CP, (133)

which indicates that CP is a positive and invertible operator.
To verify that h in (132) is Hermitian, take the Hermitian conjugate of (132)

h† = eQ/2H †e−Q/2, (134)

which can be rewritten as

h† = e−Q/2eQH †e−QeQ/2. (135)

Use (133) to replace eQ by CP and e−Q by PC
h† = e−Q/2CPH †PCeQ/2 (136)

and recall from (92) that H † can be replaced by PHP . This gives

h† = e−Q/2CPPHPPCeQ/2 = e−Q/2CHCeQ/2. (137)

Finally, one uses the fact that C commutes with H (see (113)) and that the square of C is unity
(see (112)) to reduce the right side of (136) to the right side of (132). This verifies that h is
Hermitian in the Dirac sense.

We conclude from this calculation that for every non-Hermitian PT -symmetric
Hamiltonian H whose PT symmetry is unbroken, it is, in principle, possible to construct
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via (132) a Hermitian Hamiltonian h that has exactly the same eigenvalues as H . Note that it
is crucial that H has an unbroken PT symmetry because this allows us to construct C, which
in turn allows us to construct the similarity operator eQ/2.

This construction poses the following question: are PT -symmetric Hamiltonians
physically new and distinct from ordinary Hermitian Hamiltonians, or do they describe exactly
the same physical processes that ordinary Hermitian Hamiltonians describe?

There are two answers to this question, the first being technical and practical and the
second being an answer in principle. First, while it is theoretically possible to construct the
Hermitian Hamiltonian h whose spectrum is identical to that of H , it cannot in general be
done except at the perturbative level because the transformation is so horribly complicated.
(See, for example, the discussion of the square well in section 6.3.) Furthermore, while
the PT -symmetric Hamiltonian H is simple in structure and easy to use in calculations
because the interaction term is local, it is shown in [91] that h is non-local (its interaction
term has arbitrarily high powers of the variables x̂ and p̂). Thus, it is not just difficult to
calculate using h; it is almost impossible because the usual regulation schemes are hopelessly
inadequate.

There is only one known non-trivial example for which there is actually a closed-form
expression for both H and h, and this is the case of the quartic Hamiltonian discussed in
sections 2.6–2.8. Even in this case, it is not possible to construct the C operator in closed
form because this operator is non-local (it contains a Fourier transform) and it performs a
transformation in the complex plane. This is the only known example for which it is practical
to calculate with both H and h. Hence, while the mapping from H to h is of great theoretical
interest, it does not have much practical value.

The second answer is of greater importance because it leads immediately to physical
considerations. The transformation from H to h in (132) is a similarity and not a unitary
transformation. Thus, while the eigenvalues of H and h are the same, relationships between
vectors are changed; pairs of vectors that are orthogonal are mapped into pairs of vectors that are
not orthogonal. Thus, experiments that measure vectorial relationships can distinguish between
H and h. One plausible experiment, which involves the speed of unitary time evolution, is
described in detail in section 7.3.

7. Applications of PT -symmetric Hamiltonians in quantum mechanics

It is not yet known whether non-Hermitian PT -symmetric Hamiltonians describe phenomena
that can be observed experimentally. However, non-Hermitian PT -symmetric Hamiltonians
have already appeared in the literature very often and their remarkable properties have been
noticed and used by many authors. For example, in 1959 Wu showed that the ground state of
a Bose system of hard spheres is described by a non-Hermitian Hamiltonian [92]. Wu found
that the ground-state energy of this system is real and he conjectured that all the energy levels
were real. Hollowood showed that the non-Hermitian Hamiltonian of a complex Toda lattice
has real energy levels [9]. Cubic non-Hermitian Hamiltonians of the form H = p̂2 + ix̂3

(and also cubic quantum field theories) arise in studies of the Lee-Yang edge singularity
[93–96] and in various Reggeon field-theory models [97, 98]. In all these cases a non-
Hermitian Hamiltonian having a real spectrum appeared mysterious at the time, but now the
explanation is simple: In every case the non-Hermitian Hamiltonian is PT symmetric. In each
case the Hamiltonian is constructed so that the position operator x̂ or the field operator φ is
always multiplied by i. Hamiltonians having PT symmetry have also been used to describe
magnetohydrodynamic systems [99,100] and to study non-dissipative time-dependent systems
interacting with electromagnetic fields [101].
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In this section we describe briefly four areas of quantum mechanics in which non-
Hermitian PT -Hamiltonians play a crucial and significant role.

7.1. New PT -symmetric quasi-exactly solvable Hamiltonians

A quantum-mechanical Hamiltonian is said to be quasi-exactly solvable (QES) if a finite
portion of its energy spectrum and associated eigenfunctions can be found exactly and in
closed form [102]. QES potentials depend on an integer parameter J ; for positive values of
J one can find exactly the first J eigenvalues and eigenfunctions, typically of a given parity.
QES systems are classified using an algebraic approach in which the Hamiltonian is expressed
in terms of the generators of a Lie algebra [104]. This approach generalizes the dynamical-
symmetry analysis of exactly solvable quantum-mechanical systems whose entire spectrum
may be found in closed form by algebraic means.

Prior to the discovery of non-Hermitian PT -symmetric Hamiltonians the lowest-degree
one-dimensional QES polynomial potential that was known was a sextic potential having one
continuous parameter as well as a discrete parameter J . A simple case of such a potential
is [103]

V (x) = x6 − (4J − 1)x2. (138)

For this potential, the Schrödinger equation −ψ ′′(x)+ [V (x)−E]ψ(x) = 0 has J even-parity
solutions of the form

ψ(x) = e−x4/4
J−1∑
k=0

ckx
2k. (139)

The coefficients ck for 0 � k � J − 1 satisfy the recursion relation

4(J − k)ck−1 + Eck + 2(k + 1)(2k + 1)ck+1 = 0, (140)

where c−1 = cJ = 0. The linear equations (140) have a non-trivial solution for
c0, c1, . . . , cJ−1 if the determinant of the coefficients vanishes. For each integer J this
determinant is a polynomial of degree J in the variable E. The roots of this polynomial
are all real and they are the J quasi-exact energy eigenvalues of the potential (138).

The discovery of PT symmetry allows us to introduce an entirely new class of QES quartic
polynomial potentials having two continuous parameters in addition to the discrete parameter
J . The Hamiltonian has the form [105]

H = p̂2 − x̂4 + 2iax̂3 + (a2 − 2b)x̂2 + 2i(ab − J )x̂, (141)

where a and b are real and J is a positive integer. The spectra of this family of Hamiltonians
are real, discrete and bounded below. Like the eigenvalues of the potential (138), the lowest J
eigenvalues of H are the roots of a polynomial of degree J .

The eigenfunction ψ(x) satisfies PT -symmetric boundary conditions; it vanishes in the
Stokes wedges shown in figure 4. The eigenfunction satisfies

− ψ ′′(x) +
[−x4 + 2iax3 + (a2 − 2b)x2 + 2i(ab − J )x

]
ψ(x) = Eψ(x). (142)

We obtain the QES portion of the spectrum of H in (141) by making the ansatz
ψ(x) = exp

(− 1
3 ix3 − 1

2ax
2 − ibx

)
PJ−1(x), where

PJ−1(x) = xJ−1 +
J−2∑
k=0

ckx
k (143)

is a polynomial in x of degree J − 1. Substituting ψ(x) into the differential equation (142),
dividing off the exponential and collecting powers of x, we obtain a polynomial in x of
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degree J − 1. Setting the coefficients of xk (1 � k � J − 1) to 0 gives a system of J − 1
simultaneous linear equations for the coefficients ck (0 � k � J − 2). We solve these
equations and substitute the values of ck into the coefficient of x0. This gives a polynomial
QJ (E) of degree J in the eigenvalue E. The coefficients of this polynomial are functions of
the parameters a and b. The first two of these polynomials are

Q1 = E − b2 − a,

Q2 = E2 − (2b2 + 4a)E + b4 + 4ab2 − 4b + 3a2. (144)

The roots of QJ (E) are the QES portion of the spectrum of H .
The polynomials QJ (E) simplify dramatically when we substitute

E = F + b2 + Ja and K = 4b + a2. (145)

The new polynomials then have the form

Q1 = F,

Q2 = F 2 −K,

Q3 = F 3 − 4KF − 16,

Q4 = F 4 − 10KF 2 − 96F + 9K2,

Q5 = F 5 − 20KF 3 − 336F 2 + 64K2F + 768K. (146)

The roots of these polynomials are all real as long asK � Kcritical, whereKcritical is a function
of J .

Had PT -symmetric quantum mechanics not been discovered, this beautiful family of
quartic QES Hamiltonians would never have been considered because the quartic term has a
negative sign. Lacking the discovery that PT -symmetric Hamiltonians have positive spectra,
the Hamiltonians in (141) would have been rejected because it would have been assumed that
the spectra of such Hamiltonians would be unbounded below. Quasi-exactly solvable sextic
PT -symmetric Hamiltonians are studied in [106].

7.2. Complex crystals

An experimental signal of a complex Hamiltonian might be found in the context of condensed
matter physics. Consider the complex crystal lattice whose potential is V (x) = i sin x. The
optical properties of complex crystal lattices were first studied by Berry and O’Dell, who
referred to them as complex diffraction gratings [107].

While the Hamiltonian H = p̂2 + i sin x̂ is not Hermitian, it is PT symmetric and all of
its energy bands are real. At the edge of the bands the wave function of a particle in such
a lattice is bosonic (2π -periodic), and unlike the case of ordinary crystal lattices, the wave
function is never fermionic (4π -periodic). The discriminant for a Hermitian sin(x) potential
is plotted in figure 24 and the discriminant for a non-Hermitian i sin(x) potential is plotted in
figure 25. The difference between these two figures is subtle. In figure 25 the discriminant
does not go below −2, and thus there are half as many gaps [108]. Direct observation of such a
band structure would give unambiguous evidence of a PT -symmetric Hamiltonian8. Complex
periodic potentials having more elaborate band structures have also been found [109–112].

8 We hope that some of the delicate experiments performed by A Zeilinger on models of this type (private
communication, M V Berry) will eventually be able to verify by direct observation the theoretical band-edge predictions
that are illustrated in figures 24 and 25.
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Figure 24. Discriminant 	(E) plotted as a function of E for the real periodic potential
V (x) = sin(x). Although it cannot be seen in the figure, all local maxima lie above the line
	 = 2 and all local minima lie below the line 	 = −2. The regions of energy E for which
|	| � 2 correspond to allowed energy bands and the regions where |	| > 2 correspond to gaps.
There are infinitely many gaps and these gaps become exponentially narrow as E increases. It is
clear in this figure that the first maximum lies above 2. The first minimum occurs at E = 2.3138,
where the discriminant has the value −2.003 8787. The second maximum occurs at E = 4.0336,
where the discriminant is 2.000 007. Similar behaviour is found for other potentials in the class
V (x) = sin2N+1(x).
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Figure 25. Discriminant 	(E) plotted as a function of E for the complex periodic potential
V (x) = i sin(x). For E > 2 it is not possible to see any difference between this figure and
figure 24. However, although it cannot be seen, all local maxima in this figure lie above the line
	 = 2 and all local minima lie above the line	 = −2. This behaviour is distinctly different from
the behaviour in figure 24 exhibited by the real periodic potential V (x) = sin x. In stark contrast
with real periodic potentials, for the potentials of the form V (x) = i sin2N+1(x), while the maxima
of the discriminant lie above +2, the minima of the discriminant lie above −2. Thus, for these
potentials there are no antiperiodic wave functions. Lengthy and delicate numerical analysis verifies
that for the potential V (x) = i sin(x) the first three maxima of the discriminant 	(E) are located
at E = 3.966 4284, E = 8.985 7320 and E = 15.992 066 213 46. The value of the discriminant
	(E) at these energies is 2.000 007, 2.000 000 000 000 69 and 2.000 000 000 000 000 000 04. The
first two minima of the discriminant are located at E = 2.1916 and E = 6.229 223 and at these
energies	(E) has the values −1.995 3386 and −1.999 999 995 27. Similar behaviour is found for
the other complex periodic potentials in the class.

7.3. Quantum brachistochrone

We pointed out in section 6.4 that there is a similarity transformation that maps a non-
Hermitian PT -symmetric Hamiltonian H to a Hermitian Hamiltonian h [see (132)]. The
two Hamiltonians, H and h, have the same eigenvalues, but this does not mean they describe
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the same physics. To illustrate the differences between H and h, we show how to solve the
quantum brachistochrone problem for PT -symmetric and for Hermitian quantum mechanics,
and we show that the solution to this problem in these two formulations of quantum mechanics
is not the same.

The fancy word brachistochrone means ‘shortest time.’ Thus, the quantum
brachistochrone problem is defined as follows: suppose we are given initial and final quantum
states |ψI〉 and |ψF〉 in a Hilbert space. There exist infinitely many Hamiltonians H under
which |ψI〉 evolves into |ψF〉 in some time t :

|ψF〉 = e−iHt/h̄|ψI〉. (147)

The problem is to find the Hamiltonian H that minimizes the evolution time t subject to the
constraint that ω, the difference between the largest and smallest eigenvalues of H , is held
fixed. The shortest evolution time is denoted by τ .

In Hermitian quantum mechanics there is an unavoidable lower bound τ on the time
required to transform one state into another. Thus, the minimum time required to flip unitarily
a spin-up state into a spin-down state of an electron is an important physical quantity because
it gives an upper bound on the speed of a quantum computer.

In this paper we have shown that Hermitian quantum mechanics can be extended into the
complex domain while retaining the reality of the energy eigenvalues, the unitarity of time
evolution and the probabilistic interpretation. It has recently been discovered that within this
complex framework a spin-up state can be transformed arbitrarily quickly to a spin-down state
by a simple non-Hermitian Hamiltonian [113].

Let us first show how to find the value of τ for the case of a Hermitian Hamiltonian: this
problem is easy because finding the optimal evolution time τ requires only the solution to the
simpler problem of finding the optimal evolution time for the 2×2 matrix Hamiltonians acting
on the two-dimensional subspace spanned by |ψI〉 and |ψF〉 [115]. To solve the Hermitian
version of the two-dimensional quantum brachistochrone problem, we choose the basis so that
the initial and final states are given by

|ψI〉 =
(

1

0

)
and |ψF〉 =

(
a

b

)
, (148)

where |a|2 + |b|2 = 1. The most general 2 × 2 Hermitian Hamiltonian is

H =
(
s re−iθ

reiθ u

)
, (149)

where the parameters r , s, u and θ are real. The eigenvalue constraint is

ω2 = (s − u)2 + 4r2. (150)

The Hamiltonian H in (149) can be expressed in terms of the Pauli matrices

σ1 =
(

0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
, (151)

as H = 1
2 (s + u)1 + 1

2ωσ ·n, where n = 2
ω

(
r cos θ, r sin θ, s−u2

)
is a unit vector. The matrix

identity

exp(iφ σ ·n) = cosφ 1 + i sin φ σ ·n (152)

then simplifies the relation |ψF〉 = e−iHτ/h̄|ψI〉 to

(
a

b

)
= e−i(s+u)t/(2h̄)




cos

(
ωt

2h̄

)
− i
s − u

ω
sin

(
ωt

2h̄

)

−i
2r

ω
eiθ sin

(
ωt

2h̄

)

 . (153)
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From the second component of (153) we obtain |b| = 2r
ω

sin
(
ωt
2h̄

)
, which gives the time

required to transform the initial state: t = 2h̄
ω

arcsin
(
ω|b|
2r

)
. To optimize this relation over all

r > 0, we note that (150) implies that the maximum value of r is 1
2ω and that at this maximum

s = u. The optimal time is thus

τ = 2h̄

ω
arcsin |b|. (154)

Note that if a = 0 and b = 1 we have τ = 2πh̄/ω for the smallest time required to transform(
1
0

)
to the orthogonal state

(
0
1

)
.

For general a and b, at the optimal time τ we have a = eiτs/h̄
√

1 − |b|2 and b =
ieiτs/h̄|b|eiθ , which satisfies the condition |a|2 + |b|2 = 1 that the norm of the state does
not change under unitary time evolution. The parameters s and θ are determined by the phases
of a and b. We set a = |a|eiarg(a) and b = |b|eiarg(b) and find that the optimal Hamiltonian is

H =




ωarg(a)

2 arcsin |b|
ω

4
e−i[arg(b)−arg(a)− π

2 ]

ω

4
ei[arg(b)−arg(a)− π

2 ] ωarg(a)

2 arcsin |b|


 . (155)

The overall phase of |ψF〉 is not physically relevant, so the quantity arg(a) may be chosen
arbitrarily; we may thus assume that it is 0. We are free to choose arg(a) because there is
no absolute energy in quantum mechanics; one can add a constant to the eigenvalues of the
Hamiltonian without altering the physics. Equivalently, this means that the value of τ cannot
depend on the trace s + u of H .

How do we interpret the result for τ in (154)? While this equation resembles the time-
energy uncertainty principle, it is really the much simpler statement that rate×time=distance.
The constraint (150) onH is a bound on the standard deviation	H of the Hamiltonian, where
	H in a normalized state |ψ〉 is given by (	H)2 = 〈ψ |H 2|ψ〉–〈ψ |H |ψ〉2. The maximum
value of	H is ω/2. From the Anandan–Aharonov relation [116], the speed of evolution of a
quantum state is given by	H . The distance between the initial state |ψI〉 and the final state |ψF〉
is δ = 2 arccos(|〈ψF|ψI〉|). Thus, the shortest time τ for |ψI〉 to evolve to |ψF〉 = e−iHτ/h̄|ψI〉
is bounded below because the speed is bounded above while the distance is held fixed. The
Hamiltonian H that realizes the shortest time evolution can be understood as follows: the
standard deviation 	H of the Hamiltonian in (149) is r . Since 	H is bounded by ω/2, to
maximize the speed of evolution (and minimize the time of evolution) we choose r = ω/2.

We now perform the same optimization for the complex 2 × 2 non-Hermitian PT
Hamiltonian in (93). Following the same procedure used for Hermitian Hamiltonians, we
rewrite H in (93) in the form H = (r cos θ)1 + 1

2ωσ ·n, where n = 2
ω
(s, 0, ir sin θ) is a unit

vector and the squared difference between the energy eigenvalues (see (95)) is

ω2 = 4s2 − 4r2 sin2 θ. (156)

The condition of unbroken PT symmetry ensures the positivity of ω2. This equation
emphasizes the key difference between Hermitian and PT -symmetric Hamiltonians: the
corresponding equation (150) for the Hermitian Hamiltonian has a sum of squares, while
this equation for ω2 has a difference of squares. Thus, Hermitian Hamiltonians exhibit elliptic
behaviour, which leads to a non-zero lower bound for the optimal time τ . The hyperbolic
nature of (156) allows τ to approach zero because, as we will see, the matrix elements of
the PT -symmetric Hamiltonian can be made large without violating the energy constraint
E+ − E− = ω.
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The PT -symmetric analog of the evolution equation (153) is

e−iHt/h̄

(
1

0

)
= e−itr cos θ/h̄

cosα




cos

(
ωt

2h̄
− α

)

−i sin

(
ωt

2h̄

)

 . (157)

We apply this result to the same pair of vectors examined in the Hermitian case: |ψI〉 =
(

1
0

)
and

|ψF〉 =
(

0
1

)
. (Note that these vectors are not orthogonal with respect to the CPT inner product.)

Equation (157) shows that the evolution time to reach |ψF〉 from |ψI〉 is t = (2α − π)h̄/ω.
Optimizing this result over allowable values for α, we find that as α approaches 1

2π the
optimal time τ tends to zero. This result is quite general and even holds for broad classes of
non-Hermitian Hamiltonians [114].

Note that in the limit α → 1
2π we get cosα → 0. However, in terms of α, the energy

constraint (156) becomes ω2 = 4s2 cos2 α. Since ω is fixed, in order to have α approach 1
2π

we must require that s  1. It then follows from the relation sin α = (r/s) sin θ that |r| ∼ |s|,
so we must also require that r  1. Evidently, in order to make τ � 1, the matrix elements
of the PT -symmetric Hamiltonian (93) must be large.

The result demonstrated here does not violate the uncertainty principle. Indeed, Hermitian
and non-Hermitian PT -symmetric Hamiltonians share the properties that (i) the evolution time

is given by 2πh̄/ω and (ii)	H � ω/2. The key difference is that a pair of states such as
(

1
0

)
and

(
0
1

)
are orthogonal in a Hermitian theory, but have separation δ = π − 2|α| in the PT -

symmetric theory. This is because the Hilbert-space metric of the PT -symmetric quantum
theory depends on the Hamiltonian. Hence, it is possible to choose the parameter α to create
a wormhole-like effect in the Hilbert space.

A gedanken experiment to realize this effect in a laboratory might work as follows:
a Stern–Gerlach filter creates a beam of spin-up electrons. The beam then passes through
a ‘black box’ containing a device governed by a PT -symmetric Hamiltonian that flips the
spins unitarily in a very short time. The outgoing beam then enters a second Stern–Gerlach
device which verifies that the electrons are now in spin-down states. In effect, the black-
box device is applying a magnetic field in the complex direction (s, 0, ir sin θ). If the field
strength is sufficiently strong, then spins can be flipped unitarily in virtually no time because
the complex path joining these two states is arbitrary short without violating the energy
constraint. The arbitrarily short alternative complex pathway from a spin-up state to a spin-
down state, as illustrated by this thought experiment, is reminiscent of the short alternative
distance between two widely separated space–time points as measured through a wormhole in
general relativity.

The results established here provide the possibility of performing experiments that
distinguish between Hermitian and PT -symmetric Hamiltonians. If practical implementation
of complex PT -symmetric Hamiltonians were feasible, then identifying the optimal unitary
transformation would be particularly important in the design and implementation of fast
quantum communication and computation algorithms. Of course, the wormhole-like effect
we have discussed here can only be realized if it is possible to switch rapidly between
Hermitian and PT -symmetric Hamiltonians by means of similarity transformations. It is
conceivable that so much quantum noise would be generated that there is a sort of quantum
protection mechanism that places a lower bound on the time required to switch Hilbert spaces.
If so, this would limit the applicability of a Hilbert-space wormhole to improve quantum
algorithms.
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7.4. Supersymmetric PT -symmetric Hamiltonians

After the discovery ofPT -symmetric Hamiltonians in quantum mechanics, it was proposed that
PT symmetry might be combined with supersymmetry [117] in the context of quantum field
theory. In [117] it was shown that one can easily construct two-dimensional supersymmetric
quantum field theories by introducing a PT -symmetric superpotential of the form S(φ) =
−ig(iφ)1+ε . The resulting quantum field theories exhibit a broken parity symmetry for all
δ > 0. However, supersymmetry remains unbroken, which is verified by showing that the
ground-state energy density vanishes and that the fermion-boson mass ratio is unity. Many
papers have subsequently been written on PT -symmetric supersymmetric quantum mechanics.
(See [118].) A particularly interesting paper by Dorey et al examines the connection between
supersymmetry and broken PT symmetry in quantum mechanics [119].

7.5. Other quantum-mechanical applications

There are many additional quantum-mechanical applications of non-Hermitian PT -invariant
Hamiltonians. In condensed matter physics Hamiltonians rendered non-Hermitian by an
imaginary external field have been introduced to study delocalization transitions in condensed
matter systems such as vortex flux-line depinning in type-II superconductors [120]. In this
Hatano–Nelson model there is a critical value of the anisotropy (non-Hermiticity) parameter
below which all eigenvalues are real [121]. In the theory of reaction–diffusion systems,
many models have been constructed for systems described by matrices that can be non-
Hermitian [122, 123] and with the appropriate definition of the P and T operators, these
systems can be shown to be PT symmetric. Finally, we mention a recent paper by Hibberd
et al who found a transformation that maps a Hamiltonian describing coherent superpositions
of Cooper pairs and condensed molecular bosons to one that is PT -symmetric [124].

8. PT -symmetric quantum field theory

Quantum-mechanical theories have only a finite number of degrees of freedom. Most of the
PT -symmetric quantum-mechanical models discussed so far in this paper have just one degree
of freedom; that is, the Hamiltonians for these theories are constructed from just one pair of
dynamical variables, x̂ and p̂. In a quantum field theory the operators x̂(t) and p̂(t) are replaced
by the quantum fields ϕ(x, t) and π(x, t), which represent a continuously infinite number of
degrees of freedom, one for each value of the spatial variable x. Such theories are vastly more
complicated than quantum-mechanical theories, but constructing quantum field theories that
are non-Hermitian and PT symmetric is straightforward. For example, the quantum-field-
theoretic Hamiltonians that are analogous to the quantum-mechanical Hamiltonians in (10)
and (11) are

H = 1
2π

2(x, t) + 1
2 [∇xϕ(x, t)]2 + 1

2µ
2ϕ2(x, t) + igϕ3(x, t) (158)

and

H = 1
2π

2(x, t) + 1
2 [∇xϕ(x, t)]2 + 1

2µ
2ϕ2(x, t)− 1

4gϕ
4(x, t). (159)

As in quantum mechanics, where the operators x̂ and p̂ change sign under parity reflection
P , we assume that the fields in these Hamiltonians are pseudoscalars so that they also
change sign:

Pϕ(x, t)P = −ϕ(−x, t), Pπ(x, t)P = −π(−x, t). (160)

Quantum field theories like these that possess PT symmetry exhibit a rich variety of
behaviours. Cubic field-theory models like that in (158) are of interest because they arise in
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the study of the Lee–Yang edge singularity [93–95] and in Reggeon field theory [97, 98]. In
these papers it was asserted that an iϕ3 field theory is nonunitary. However, by constructing
the C operator, we argue in section 8.1 that this quantum field theory is, in fact, unitary. We
show in section 8.3 how PT symmetry eliminates the ghosts in the Lee model, another cubic
quantum field theory. The field theory described by (159) is striking because it is asymptotically
free, as explained in section 8.4. We also examine PT -symmetric quantum electrodynamics
in section 8.5, the PT -symmetric Thirring and sine-Gordon models in section 8.6, and
gravitational and cosmological theories in section 8.7. Last, we look briefly at PT -symmetric
classical field theories in section 8.8.

8.1. iϕ3 quantum field theory

In courses on quantum field theory, a scalar gϕ3 theory is used as a pedagogical example of
perturbative renormalization even though this model is not physically realistic because the
energy is not bounded below. However, by calculating C perturbatively for the case when the
coupling constant g = iε is pure imaginary, one obtains a fully acceptable Lorentz invariant
quantum field theory. This calculation shows that it is possible to construct perturbatively the
Hilbert space in which the Hamiltonian for this cubic scalar field theory in (D+1)-dimensional
Minkowski space–time is self-adjoint. Consequently, such theories have positive spectra and
exhibit unitary time evolution.

In this section we explain how to calculate perturbatively the C operator for the quantum-
field-theoretic Hamiltonian in (158) [83]. We apply the powerful algebraic techniques
explained in sections 6.1 and 6.2 for the calculation of the C operator in quantum mechanics.
As in quantum mechanics, we express C in the form C = exp

(
εQ1 + ε3Q3 + · · ·)P , where

now Q2n+1 (n = 0, 1, 2, . . .) are real functionals of the fields ϕx and πx. To find Qn for H
in (158) we must solve a system of operator equations.

We begin by making an ansatz for Q1 analogous to the ansatz used in (120):

Q1 =
∫ ∫ ∫

dx dy dz
(
M(xyz)πxπyπz +Nx(yz)ϕyπxϕz

)
. (161)

In quantum mechanics M and N are constants, but in field theory they are functions. The
notation M(xyz) indicates that this function is totally symmetric in its three arguments, and the
notation Nx(yz) indicates that this function is symmetric under the interchange of the second
and third arguments. The unknown functions M and N are form factors; they describe the
spatial distribution of three-point interactions of the field variables inQ1. The non-local spatial
interaction of the fields is an intrinsic property of C. (Note that we have suppressed the time
variable t in the fields and that we use subscripts to indicate the spatial dependence.)

To determine M and N we substitute Q1 into the first equation in (119), namely
[H0,Q1] = −2H1, which now takes the form[∫

dxπ2
x +
∫ ∫

dx dy ϕxG
−1
xy ϕy,Q1

]
= −4i

∫
dxϕ3

x , (162)

where the inverse Green’s function is given by G−1
xy ≡ (µ2 − ∇2

x )δ(x − y). We obtain the
following coupled system of partial differential equations:

(µ2 − ∇2
x )Nx(yz) + (µ2 − ∇2

y )Ny(xz) + (µ2 − ∇2
z )Nz(xy) = −6δ(x − y)δ(x − z),

Nx(yz) +Ny(xz) = 3(µ2 − ∇2
z )M(wxy). (163)

We solve these equations by Fourier transforming to momentum space and get

M(xyz) = − 4

(2π)2D

∫ ∫
dp dq

ei(x−y)·p+i(x−z)·q

D(p, q)
, (164)
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where D(p, q) = 4[p2q2 − (p · q)2] + 4µ2(p2 + p · q + q2) + 3µ4 is positive, and

Nx(yz) = − 3
(∇y · ∇z + 1

2µ
2
)
M(xyz). (165)

For the special case of a (1 + 1)-dimensional quantum field theory the integral in (165)

evaluates to M(xyz) = −K0(µR)/
(√

3πµ2
)

, where K0 is the associated Bessel function and

R2 = 1
2 [(x − y)2 + (y − z)2 + (z − x)2]. This completes the calculation of C to first order in

perturbation theory.
We mention finally that the C operator for this cubic quantum field theory transforms as

a scalar under the action of the homogeneous Lorentz group [125]. In [125] it was argued
that because the Hamiltonian H0 for the unperturbed theory (g = 0) commutes with the
parity operator P , the intrinsic parity operator PI in the non-interacting theory transforms as
a Lorentz scalar. (The intrinsic parity operator PI and the parity operator P have the same
effect on the fields, except that PI does not reverse the sign of the spatial argument of the
field. In quantum mechanics P and PI are indistinguishable.) When the coupling constant g
is non-zero, the parity symmetry of H is broken and PI is no longer a scalar. However, C is
a scalar. Since limg→0 C = PI, one can interpret the C operator in quantum field theory as
the complex extension of the intrinsic parity operator when the imaginary coupling constant is
turned on. This means that C is frame-invariant and it shows that the C operator plays a truly
fundamental role in non-Hermitian quantum field theory.

8.2. Other quantum field theories having cubic interactions

We can repeat the calculations done in section 8.1 for cubic quantum field theories having
several interacting scalar fields [83, 84]. For example, consider the case of two scalar fields
ϕ(1)x and ϕ(2)x whose interaction is governed by

H = H
(1)
0 +H(2)

0 + iε
∫

dx [ϕ(1)x ]2ϕ(2)x , (166)

which is the analog of the quantum-mechanical theory described by H in (123). Here,

H
(j)

0 = 1
2

∫
dx [π(j)x ]2 + 1

2

∫ ∫
dx dy [G(j)

xy ]−1ϕ(j)x ϕ(j)y . (167)

To determine C to order ε we introduce the ansatz

Q1 =
∫ ∫ ∫

dx dy dz[N(1)
x(yz)

(
π(1)z ϕ(1)y + ϕ(1)y π(1)z

)
ϕ(2)x

+N(2)
x(yz)π

(2)
x ϕ(1)y ϕ(1)z +Mx(yz)π

(2)
x π(1)y π(1)z ], (168)

where Mx(yz), N
(1)
x(yz) and N

(2)
x(yz) are unknown functions and the parentheses indicate

symmetrization. We get

Mx(yz) = −Gm(R1)Gµ2(R2),

N
(1)
x(yz) = − δ(2x − y − z)Gm(R1),

N
(2)
x(yz) = 1

2δ(2x − y − z)Gm(R1)− δ(y − z)Gµ2(R2), (169)

where Gµ(r) = r
µ

(
µ

2πr

)D/2
K−1+D/2(µr) with r = |r| is Green’s function in D-dimensional

space, m2 = µ2
1 − 1

4µ
2
2, R2

1 = (y − z)2 and R2
2 = 1

4 (2x − y − z)2.
For three interacting scalar fields whose dynamics is described by

H = H
(1)
0 +H(2)

0 +H(3)
0 + iε

∫
dxϕ(1)x ϕ(2)x ϕ(3)x , (170)
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which is the analog of H in (125), we make the ansatz

Q1 =
∫ ∫ ∫

dx dy dz[N(1)
xyzπ

(1)
x ϕ(2)y ϕ(3)z +N(2)

xyzπ
(2)
x ϕ(3)y ϕ(1)z +N(3)

xyzπ
(3)
x ϕ(1)y ϕ(2)z

+Mxyzπ
(1)
x π(2)y π(3)z ]. (171)

The solutions for the unknown functions are as follows: Mxyz is given by the integral (164)
with the more general formula D(p, q) = 4[p2q2 − (p · q)2] + 4[µ2

1(q
2 + p · q) + µ2

2(p
2 + p ·

q)− µ2
3p · q] + µ4 with µ4 = 2µ2

1µ
2
2 + 2µ2

1µ
2
3 + 2µ2

2µ
2
3 − µ4

1 − µ4
2 − µ4

3. The N coefficients
are expressed as derivatives acting on M:

N(1)
xyz = [

4∇y · ∇z + 2(µ2
2 + µ2

3 − µ2
1)
]
Mxyz,

N(2)
xyz = [−4∇y · ∇z − 4∇2

z + 2(µ2
1 + µ2

3 − µ2
2)
]
Mxyz,

N(3)
xyz = [−4∇y · ∇z − 4∇2

y + 2(µ2
1 + µ2

2 − µ2
3)
]
Mxyz. (172)

Once again, the calculation of C shows that these cubic field theories are fully consistent
quantum theories9.

8.3. The Lee model

In this section we will show how to use the tools that we have developed to study non-Hermitian
PT -symmetric quantum theories to examine a famous model quantum field theory known as
the Lee model. In 1954 the Lee model was proposed as a quantum field theory in which
mass, wave function and charge renormalization could be performed exactly and in closed
form [1, 126–128]. We discuss the Lee model here because when the renormalized coupling
constant is taken to be larger than a critical value, the Hamiltonian becomes non-Hermitian and
a (negative-norm) ghost state appears. The appearance of the ghost state was assumed to be a
fundamental defect of the Lee model. However, we show that the non-Hermitian Lee-model
Hamiltonian is actually PT symmetric. When the states of this model are examined using the
C operator, the ghost state is found to be an ordinary physical state having positive norm [129].

The idea for studying the Lee model as a non-Hermitian Hamiltonian is due to Kleefeld,
who was the first to point out this transition to PT symmetry [130]. His work gives a
comprehensive history of non-Hermitian Hamiltonians.

The Lee model has a cubic interaction term that describes the interaction of three spinless
particles called V , N and θ . The V and N particles are fermions and behave roughly like
nucleons, and the θ particle is a boson and behaves roughly like a pion. In the model a V may
emit a θ , but when it does so it becomes an N : V → N + θ . Also, an N may absorb a θ , but
when it does so it becomes a V : N + θ → V .

The solvability of the Lee model is based on the fact that there is no crossing symmetry.
That is, the N is forbidden to emit an anti-θ and become a V . Eliminating crossing symmetry
makes the Lee model solvable because it introduces two conservation laws. First, the number
of N quanta plus the number of V quanta is fixed. Second, the number of N quanta minus
the number of θ quanta is fixed. These two highly constraining conservation laws decompose
the Hilbert space of states into an infinite number of non-interacting sectors. The simplest
sector is the vacuum sector. Because of the conservation laws, there are no vacuum graphs
and the bare vacuum is the physical vacuum. The next two sectors are the one-θ -particle and

9 In [125,129] it is shown that the C operator in quantum field theory has the form C = eQPI, where PI is the intrinsic
parity-reflection operator. The difference between P and PI is that PI does not reflect the spatial arguments of the
fields. For a cubic interaction Hamiltonian this distinction is technical. It does not affect the final result for the Q
operator in (161), (168) and (171).
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Figure 26. Square of the unrenormalized coupling constant, g2
0 , plotted as a function of the square

of the renormalized coupling constant g2. Note that g2 = 0 when g2
0 = 0, and as g2 increases

from 0 so does g2
0 . However, as g2 increases past a critical value, g2

0 abruptly becomes negative.
In this regime g0 is imaginary and the Hamiltonian is non-Hermitian.

the one-N -particle sector. These two sectors are also trivial because the two conservation laws
prevent any dynamical processes from occurring there. As a result, the masses of theN particle
and of the θ particle are not renormalized; that is, the physical masses of these particles are
the same as their bare masses.

The lowest non-trivial sector is the V/Nθ sector. The physical states in this sector of the
Hilbert space are linear combinations of the bare V and the bare Nθ states, and these states
consist of the one-physical-V -particle state and the physical N -θ -scattering states. To find
these states one can look for the poles and cuts of Green’s functions. The renormalization
in this sector is easy to perform. Following the conventional renormalization procedure, one
finds that the mass of the V particle is renormalized; that is, the mass of the physical V
particle is different from its bare mass. In the Lee model one calculates the unrenormalized
coupling constant as a function of the renormalized coupling constant in closed form. There are
many ways to define the renormalized coupling constant. For example, in an actual scattering
experiment one could define the square of the renormalized coupling constant g2 as the value
of the Nθ scattering amplitude at threshold.

The intriguing aspect of the Lee model is the appearance of a ghost state in theV/Nθ sector.
This state appears when one performs coupling-constant renormalization. Expressing g2

0 , the
square of the unrenormalized coupling constant, in terms of g2, the square of the renormalized
coupling constant, one obtains the graph in figure 1. In principle, the g is a physical parameter
whose numerical value is determined by a laboratory experiment. If g2 is measured to be near
0, then from figure 26 we see that g2

0 is also small. However, if the experimental value of g2

is larger than this critical value, then the square of the unrenormalized coupling constant is
negative. In this regime g0 is imaginary and the Hamiltonian is non-Hermitian. Moreover,
a new state appears in the V/Nθ sector, and because its norm is negative, the state is called
a ghost. Ghost states are unacceptable in quantum theory because their presence signals a
violation of unitarity and makes a probabilistic interpretation impossible.

There have been many unsuccessful attempts to make sense of the Lee model as a physical
quantum theory in the ghost regime [1, 127, 128]. However, the methods of PT -symmetric
quantum theory enable us to give a physical interpretation for the V/Nθ sector of the Lee
model when g0 becomes imaginary and H becomes non-Hermitian. The Lee model is a
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cubic interaction and we have already shown in sections 8.1 and 8.2 how to make sense of a
Hamiltonian in which there is a cubic interaction multiplied by an imaginary coupling constant.
The procedure is to calculate the C operator and to use it to define a new inner product when
the Hamiltonian is non-Hermitian.

For simplicity, we focus here on the quantum-mechanical Lee model; the results for
the field-theoretic Lee model in [129] are qualitatively identical. The Hamiltonian for the
quantum-mechanical Lee model is

H = H0 + g0H1 = mV0V
†V +mNN

†N +mθa
†a +

(
V †Na + a†N†V

)
. (173)

The bare states are the eigenstates of H0 and the physical states are the eigenstates of the full
HamiltonianH . The mass parametersmN andmθ represent the physical masses of the one-N -
particle and one-θ -particle states because these states do not undergo mass renormalization.
However, mV0 is the bare mass of the V particle.

We treat the V , N and θ particles as pseudoscalars. To understand why, recall that in
quantum mechanics the position operator x = (a + a†)/

√
2 and the momentum operator

p = i(a† − a)/
√

2 both change sign under parity reflection P:

PxP = −x, PpP = −p. (174)

Thus, PVP = −V , PNP = −N , PaP = −a, PV †P = −V †, PN†P = −N†,
Pa†P = −a†. Under time reversal T , p and i change sign but x does not:

T pT = −p, T iT = −i, T xT = x. (175)

Thus, T V T = V , T NT = N , T aT = a, T V †T = V †, T N†T = N†, T a†T = a†.
When the bare coupling constant g0 is real,H in (173) is Hermitian: H† = H . When g0 is

imaginary, g0 = iλ0 (λ0 real),H is not Hermitian, but by virtue of the above transformation
properties, H is PT -symmetric: HPT = H .

We assume first that g0 is real so that H is Hermitian and we examine the simplest non-
trivial sector of the quantum-mechanical Lee model; namely, the V/Nθ sector. We look for
the eigenstates of the Hamiltonian H in the form of linear combinations of the bare one-V -
particle and the bare one-N -one-θ -particle states. There are two eigenfunctions. We interpret
the eigenfunction corresponding to the lower-energy eigenvalue as the physical one-V -particle
state, and we interpret the eigenfunction corresponding with the higher-energy eigenvalue as
the physical one-N -one-θ -particle state. (In the field-theoretic Lee model this higher-energy
state corresponds to the continuum of physical N–θ scattering states.) Thus, we make the
ansatz

|V 〉 = c11|1, 0, 0〉 + c12|0, 1, 1〉, |Nθ〉 = c21|1, 0, 0〉 + c22|0, 1, 1〉, (176)

and demand that these states be eigenstates of H with eigenvalues mV (the renormalized V -
particle mass) and ENθ . The eigenvalue problem reduces to a pair of elementary algebraic
equations:

c11mV0 + c12g0 = c11mV , c21g0 + c22 (mN +mθ) = c22ENθ . (177)

The solutions to (177) are

mV = 1
2

(
mN +mθ +mV0 −

√
µ2

0 + 4g2
0

)
,

ENθ = 1
2

(
mN +mθ +mV0 +

√
µ2

0 + 4g2
0

)
, (178)
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where µ0 ≡ mN + mθ − mV0 . Notice that mV , the mass of the physical V particle, is
different from mV0 , the mass of the bare V particle, because the V particle undergoes mass
renormalization.

Next, we perform wave-function renormalization. Following Barton [1] we define the
wave-function renormalization constant ZV by

√
ZV = 〈0|V |V 〉. This gives

Z−1
V = 1

2g
−2
0

√
µ2

0 + 4g2
0

(√
µ2

0 + 4g2
0 − µ0

)
. (179)

Finally, we perform coupling-constant renormalization. Again, following Barton we note
that

√
ZV is the ratio between the renormalized coupling constant g and the bare coupling

constant g0 [1]. Thus, g2/g2
0 = ZV . Elementary algebra gives the bare coupling constant in

terms of the renormalized mass and coupling constant:

g2
0 = g2/(1 − g2/µ2), (180)

where µ is defined as µ ≡ mN + mθ − mV . We cannot freely choose g because the value of
g is, in principle, taken from experimental data. Once g has been determined experimentally,
we can use (21) to determine g0. The relation in (21) is plotted in figure 26. This figure reveals
a surprising property of the Lee model: if g is larger than the critical value µ, then the square
of g0 is negative and g0 is imaginary.

As g approaches its critical value from below, the two energy eigenvalues in (178) vary
accordingly. The energy eigenvalues are the two zeros of the secular determinantf (E)obtained
from applying Cramer’s rule to (177). As g (and g0) increase, the energy of the physical Nθ
state increases. The energy of the Nθ state becomes infinite as g reaches its critical value.
As g increases past its critical value, the upper energy eigenvalue goes around the bend; it
abruptly jumps from being large and positive to being large and negative. Then, as g continues
to increase, this energy eigenvalue approaches the energy of the physical V particle from
below.

When g increases past its critical value, the Hamiltonian H in (173) becomes non-
Hermitian, but its eigenvalues in the V/Nθ sector remain real. (The eigenvalues remain
real becauseH becomes PT symmetric. All cubic PT -symmetric Hamiltonians that we have
studied have been shown to have real spectra.) However, in the PT -symmetric regime it is
no longer appropriate to interpret the lower eigenvalue as the energy of the physical Nθ state.
Rather, it is the energy of a new kind of state |G〉 called a ghost. As is shown in [1, 127, 128],
the Hermitian norm of this state is negative.

A physical interpretation of the ghost state emerges easily when we use the procedure
developed in [129]. We begin by verifying that in the PT -symmetric regime, where g0

is imaginary, the states of the Hamiltonian are eigenstates of the PT operator, and we
then choose the multiplicative phases of these states so that their PT eigenvalues are
unity:

PT |G〉 = |G〉, PT |V 〉 = |V 〉. (181)

It is then straightforward to verify that the PT norm of the V state is positive, while the PT
norm of the ghost state is negative.

We now follow the procedures described in section 6 to calculate C. We express
the C operator as an exponential of a function Q multiplying the parity operator: C =
exp[Q(V †, V ;N†, N; a†, a)]P . We then impose the operator equations C2 = 1, [C,PT ] =
0, and [C, H ] = 0. The condition C2 = 1 gives

Q(V †, V ;N†, N; a†, a) = −Q(−V †,−V ; −N†,−N; −a†,−a). (182)
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Thus, Q(V †, V ;N†, N; a†, a) is an odd function in total powers of V †, V , N†, N , a†, and
a. Next, we impose the condition [C,PT ] = 0 and obtain

Q(V †, V ;N†, N; a†, a) = Q∗(−V †,−V ; −N†,−N; −a†,−a), (183)

where ∗ denotes complex conjugation.
Last, we impose the condition that C commutes with H , which requires that[

eQ,H0
] = g0

[
eQ,H1

]
+ . (184)

Although in sections 8.1 and 8.2 we were only able to find the C operator to leading order in
perturbation theory, for the Lee model one can calculate C exactly and in closed form. To do
so, we seek a solution for Q as a formal Taylor series in powers of g0:

Q =
∞∑
n=0

g2n+1
0 Q2n+1. (185)

Only odd powers ofg0 appear in this series, andQ2n+1 are all anti-Hermitian: Q†
2n+1 = −Q2n+1.

From (185) we get

Q2n+1 = (−1)n
22n+1

(2n + 1)µ2n+1
0

(V †Nannθ − nnθa
†N†V ), (186)

where nθ = a†a is the number operator for θ -particle quanta.
We then sum over all Q2n+1 and obtain the exact result that

Q = V †Na
1√
nθ

arctan

(
2g0

√
nθ

µ0

)
− 1√

nθ
arctan

(
2g0

√
nθ

µ0

)
a†N†V. (187)

We exponentiate this result to obtain the C operator. The exponential of Q simplifies
considerably because we are treating the V and N particles as fermions and therefore we
can use the identity n2

V,N = nV,N . The exact result for eQ is

eQ =


1 − 2g0

√
nθ√

µ2
0 + 4g2

0nθ

a†N†V +
µ0nN (1 − nV )√
µ2

0 + 4g2
0nθ

+
µ0nV (1 − nN)√
µ2

0 + 4g2
0 (nθ + 1)

+ V †Na
2g0

√
nθ√

µ2
0 + 4g2

0nθ

− nV − nN + nV nN


 . (188)

We can also express the parity operator P in terms of number operators:

P = eiπ(nV +nN+nθ ) = (1 − 2nV ) (1 − 2nN) eiπnθ . (189)

Combining eQ and P , we obtain the exact expression for C:

C =


1 − 2g0

√
nθ√

µ2
0 + 4g2

0nθ

a†N†V +
µ0nN (1 − nV )√
µ2

0 + 4g2
0nθ

+
µ0nV (1 − nN)√
µ2

0 + 4g2
0 (nθ + 1)

+ V †Na
2g0

√
nθ√

µ2
0 + 4g2

0nθ

− nV − nN + nV nN


(1 − 2nV )(1 − 2nN) eiπnθ . (190)

Using this C operator to calculate the CPT norm of the V state and of the ghost state,
we find that these norms are both positive. Furthermore, the time evolution is unitary. This
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establishes that with the proper definition of the inner product the quantum-mechanical Lee
model is a physically acceptable and consistent quantum theory, even in the ghost regime
where the unrenormalized coupling constant is imaginary. The procedure of redefining the
inner product to show that the ghost state is a physical state is a powerful technique that has
been used by Curtright et al and by Ivanov and Smilga for more advanced problems [131,132].

8.4. The Higgs sector of the standard model of particle physics

The distinguishing features of the −gϕ4 quantum field theory in (159) are that its spectrum is
real and bounded below, it is perturbatively renormalizable, it has a dimensionless coupling
constant in four-dimensional space–time, and it is asymptotically free [133]. The property
of asymptotic freedom was established many years ago by Symanzik [134], as has been
emphasized in a recent paper by Kleefeld [135]. As Kleefeld explains, a +gϕ4 theory in four-
dimensional space–time is trivial because it is not asymptotically free. However, Symanzik
proposed a ‘precarious’ theory with a negative quartic coupling constant as a candidate for an
asymptotically free theory of strong interactions. Symanzik used the term ‘precarious’ because
the negative sign of the coupling constant suggests that this theory is energetically unstable.
However, as we have argued in this paper, imposing PT -symmetric boundary conditions (in
this case on the functional-integral representation of the quantum field theory) gives a spectrum
that is bounded below. Thus, Symanzik’s proposal of a non-trivial theory is resurrected.

The −gϕ4 quantum field theory has another remarkable property. Although the theory
seems to be parity invariant, the PT -symmetric boundary conditions violate parity invariance,
as explained in section 2.7. Hence, the one-point Green’s function (the expectation value of
the field ϕ) does not vanish. (Techniques for calculating this expectation value are explained
in [136].) Thus, a non-zero vacuum expectation value can be achieved without having to
have spontaneous symmetry breaking because parity symmetry is permanently broken. These
properties suggest that a −gϕ4 quantum field theory might be useful in describing the Higgs
sector of the standard model.

Perhaps the Higgs particle state is a consequence of the field-theoretic parity anomaly in
the same way that the quantum-mechanical parity anomaly described in sections 2.7 and 2.8
gives rise to bound states. Recent research in this area has been done by Jones et al, who studied
transformations of functional integrals [137], and by Meisinger and Ogilvie, who worked on
large-N approximations and matrix models [138].

8.5. PT -symmetric quantum electrodynamics

If the unrenormalized electric charge e in the Hamiltonian for quantum electrodynamics were
imaginary, then the Hamiltonian would be non-Hermitian. However, if one specifies that the
potentialAµ in this theory transforms as an axial vector instead of a vector, then the Hamiltonian
becomes PT symmetric [139]. Specifically, we assume that the four-vector potential and the
electromagnetic fields transform under P like

P : E → E, B → −B, A → A, A0 → −A0. (191)

Under time reversal, the transformations are assumed to be conventional:

T : E → E, B → −B, A → −A, A0 → A0. (192)

The Lagrangian of the theory possesses an imaginary coupling constant in order that it be
invariant under the product of these two symmetries:

L = − 1
4F

µνFµν + 1
2ψ

†γ 0γ µ 1
i ∂µψ + 1

2mψ
†γ 0ψ + ieψ†γ 0γ µψAµ. (193)
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The corresponding Hamiltonian density is then

H = 1
2 (E

2 + B2) + ψ†
[
γ 0γ k (−i∇k + ieAk) +mγ 0

]
ψ. (194)

The Lorentz transformation properties of the fermions are unchanged from the usual ones.
Thus, the electric current appearing in the Lagrangian and Hamiltonian densities, jµ =
ψ†γ 0γ µψ , transforms conventionally under both P and T :

Pjµ(x, t)P =
(
j 0

−j

)
(−x, t), T jµ(x, t)T =

(
j 0

−j

)
(x,−t). (195)

Because its interaction is cubic, this non-Hermitian theory of ‘electrodynamics’ is the
analog of the spinless iϕ3 quantum field theory discussed in section 8.1. PT -symmetric
electrodynamics is especially interesting because it is an asymptotically free theory (unlike
ordinary electrodynamics) and because the sign of the Casimir force is the opposite of that in
ordinary electrodynamics [139, 140]. This theory is remarkable because finiteness conditions
enable it to determine its own coupling constant [140].

The C operator for PT -symmetric quantum electrodynamics has been constructed
perturbatively to first order in e [141]. This construction is too technical to describe here,
but it demonstrates that non-Hermitian quantum electrodynamics is a viable and consistent
unitary quantum field theory. PT -symmetric quantum electrodynamics is more interesting
than an iφ3 quantum field theory because it possesses many of the features of conventional
quantum electrodynamics, including Abelian gauge invariance. The only asymptotically free
quantum field theories described by Hermitian Hamiltonians are those that possess a non-
Abelian gauge invariance; PT symmetry allows for new kinds of asymptotically free theories,
such as the −ϕ4 theory discussed in section 8.4, that do not possess a non-Abelian gauge
invariance.

8.6. Dual PT -symmetric quantum field theories

Until now we have focused on bosonic PT -symmetric Hamiltonians, but it is just as easy
to construct fermionic PT -symmetric Hamiltonians. We look first at free theories. The
Lagrangian density for a conventional Hermitian free fermion field theory is

L(x, t) = ψ̄(x, t)(i∂/ −m)ψ(x, t) (196)

and the corresponding Hamiltonian density is

H(x, t) = ψ̄(x, t)(−i∇/ +m)ψ(x, t), (197)

where ψ̄(x, t) = ψ†(x, t)γ0.
In (1 + 1)-dimensional space–time we adopt the following conventions: γ0 = σ1 and

γ1 = iσ2, where the Pauli σ matrices are given in (151). With these definitions, we have
γ 2

0 = 1 and γ 2
1 = −1. We also define γ5 = γ0γ1 = σ3, so that γ 2

5 = 1. The parity-reflection
operator P has the effect

Pψ(x, t)P = γ0ψ(−x, t), Pψ̄(x, t)P = ψ̄(−x, t)γ0. (198)

The effect of the time-reversal operator T ,

T ψ(x, t)T = γ0ψ(x,−t), T ψ̄(x, t)T = ψ̄(x,−t)γ0, (199)

is similar to that of P , except that T is antilinear and takes the complex conjugate of complex
numbers. From these definitions the Hamiltonian H = ∫

dxH(x, t), where H is given in

(197), is Hermitian: H = H†. Also, H is separately invariant under parity reflection and
under time reversal: PHP = H and T HT = H .
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We can construct a non-Hermitian fermionic Hamiltonian by adding a γ5-dependent mass
term to the Hamiltonian density in (197):

H(x, t) = ψ̄(x, t)(−i∇/ +m1 +m2γ5)ψ(x, t) (m2 real). (200)

The HamiltonianH = ∫ dxH(x, t) associated with this Hamiltonian density is not Hermitian
because the m2 term changes sign under Hermitian conjugation. This sign change occurs
because γ0 and γ5 anticommute. Also, H is not invariant under P or under T separately
because the m2 term changes sign under each of these reflections. However, H is invariant
under combined P and T reflection. Thus, H is PT -symmetric.

To see whether the PT symmetry of H is broken or unbroken, we must check to see
whether the spectrum ofH is real. We do so by solving the field equations. The field equation
associated with H in (200) is

(i∂/ −m1 −m2γ5) ψ(x, t) = 0. (201)

If we iterate this equation and use ∂/2 = ∂2, we obtain(
∂2 + µ2

)
ψ(x, t) = 0, (202)

which is the two-dimensional Klein–Gordon equation withµ2 = m2
1 −m2

2. The physical mass
that propagates under this equation is real when the inequality

m2
1 � m2

2 (203)

is satisfied. This condition defines the two-dimensional parametric region of unbroken PT
symmetry. When (203) is not satisfied, PT symmetry is broken. At the boundary between
the regions of broken and unbroken PT symmetry (the line m2 = 0), the Hamiltonian is
Hermitian. (The same is true in quantum mechanics. Recall that for the Hamiltonian in (12)
the region of broken (unbroken) PT symmetry is ε < 0 (ε > 0). At the boundary ε = 0 of
these two regions the Hamiltonian is Hermitian.)

The C operator associated with the PT -symmetric Hamiltonian density H in (200) is given
by C = eQP , where [142]

Q = − tanh−1ε

∫
dx ψ̄(x, t)γ1ψ(x, t)

= − tanh−1ε

∫
dx ψ†(x, t)γ5ψ(x, t). (204)

The inverse hyperbolic tangent in this equation requires that |ε| � 1, or equivalently that
m2

1 � m2
2, which corresponds to the unbroken region of PT symmetry. We use (204) to

construct the equivalent Hermitian Hamiltonian h as in (132):

h = exp

[
1
2 tanh−1ε

∫
dx ψ†(x, t)γ5ψ(x, t)

]
H

× exp

[
− 1

2 tanh−1ε

∫
dx ψ†(x, t)γ5ψ(x, t)

]
. (205)

The commutation relations [γ5, γ0] = −2γ1 and [γ5, γ1] = −2γ0 simplify h in (205):

h =
∫

dx ψ̄(x, t)(−i∇/ + µ)ψ(x, t), (206)

where µ2 = m2(1 − ε2) = m2
1 − m2

2, in agreement with (202). Replacing H by h changes
the γ5-dependent mass termmψ̄(1 + εγ5)ψ to a conventional fermion mass term µψ̄ψ . Thus,
the non-Hermitian PT -symmetric Hamiltonian density in (200) is equivalent to the Hermitian
Hamiltonian density in (197) with m replaced by µ.
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If we introduce a four-point fermion interaction term in (196), we obtain the Lagrangian
density for the massive Thirring model in (1 + 1) dimensions:

L = ψ̄(i∂/ −m)ψ + 1
2g(ψ̄γ

µψ)(ψ̄γµψ), (207)

whose corresponding Hamiltonian density is

H = ψ̄(−i∇/ +m)ψ − 1
2g(ψ̄γ

µψ)(ψ̄γµψ). (208)

We can then construct the PT -symmetric Thirring model

H = ψ̄(−i∇/ +m + εmγ5)ψ − 1
2g(ψ̄γ

µψ)(ψ̄γµψ) (209)

by introducing a γ5-dependent mass term. The additional term is non-Hermitian but PT -
symmetric because it is odd under both parity reflection and time reversal. Remarkably, the
Q operator for the interacting case g �= 0 is identical to the Q operator for the case g = 0
because in (1 + 1)-dimensional space the interaction term (ψ̄γ µψ)(ψ̄γµψ) commutes with
the Q in (204) [142]. Thus, the non-Hermitian PT -symmetric Hamiltonian density in (209)
is equivalent to the Hermitian Hamiltonian density in (208) with the mass m replaced by µ,
where µ2 = m2(1 − ε2) = m2

1 −m2
2.

The same holds true for the (3 + 1)-dimensional interacting Thirring model by virtue of
the commutation relation [γ5, γ0γµ] = 0, but because this higher-dimensional field theory is
non-renormalizable, the Q operator may only have a formal significance.

In (1 + 1) dimensions the massive Thirring Model (207) is dual to the (1 + 1)-dimensional
sine-Gordon model [143], whose Lagrangian density is

L = 1
2 (p̂µϕ)

2 +m2λ−2(cos λϕ − 1), (210)

whose corresponding Hamiltonian density is

H = 1
2π

2 + 1
2 (∇ϕ)2 +m2λ−2(1 − cos λϕ), (211)

where π(x, t) = ∂0ϕ(x, t) and where in (1 + 1)-dimensional space ∇ϕ(x, t) is just p̂1ϕ(x, t).
The duality between the Thirring model and the sine-Gordon model is expressed as an algebraic
relationship between the coupling constants g and λ:

λ2

4π
= 1

1 − g/π
. (212)

Note that the free fermion theory (g = 0) is equivalent to the sine-Gordon model with the
special value for the coupling constant λ2 = 4π .

The PT -symmetric extension (209) of the modified Thirring model is, by the same
analysis, dual to a modified sine-Gordon model with the Hamiltonian density

H = 1
2π

2 + 1
2 (∇ϕ)2 +m2λ−2(1 − cos λϕ − iε sin λϕ), (213)

which is PT -symmetric and not Hermitian. The Q operator for this Hamiltonian is

Q = 2

λ
tanh−1ε

∫
dx π(x, t). (214)

Thus, the equivalent Hermitian Hamiltonian h is given by

h = exp

[
−1

λ
tanh−1ε

∫
dx π(x, t)

]
H exp

[
1

λ
tanh−1ε

∫
dx π(x, t)

]
. (215)

Note that the operation that transforms H to h has the same effect as shifting the boson field
ϕ by an imaginary constant:

ϕ → ϕ +
i

λ
tanh−1ε. (216)
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Under this transformation the interaction termm2λ−2(1−cos λϕ− iε sin λϕ) in (213) becomes
−m2λ−2(1 − ε2) cos λϕ, apart from an additive constant. Hence, h is the Hamiltonian for the
Hermitian sine-Gordon model, but with mass µ given by µ2 = m2(1 − ε2) = m2

1 −m2
2. This

change in the mass is the same as for the Thirring model. Being Hermitian, h is even in the
parameter ε that breaks the Hermiticity of H .

The idea of generating a non-Hermitian but PT -symmetric Hamiltonian from a Hermitian
Hamiltonian by shifting the field operator as in (216), first introduced in the context of quantum
mechanics in [144], suggests a way to construct solvable fermionic PT -invariant models
whenever there is a boson-fermion duality.

8.7. PT -symmetric gravitational and cosmological theories

In section 8.5 we showed that to construct a PT -symmetric model of quantum electrodynamics,
one needs only to replace the electric charge e by ie and then replace the vector potential Aµ

by an axial-vector potential. The result is a non-Hermitian but PT -symmetric Hamiltonian.
An interesting classical aspect of this model is that the sign of the Colomb force is reversed,
so that like charges feel an attractive force and unlike charges feel a repulsive force.

One can use the same idea to construct a PT -symmetric model of massless spin-2 particles
(gravitons). One simply replaces the gravitational coupling constantG by iG and then requires
the two-component tensor field to behave like an axial tensor under parity reflection. The
result is a non-Hermitian PT -symmetric Hamiltonian, which at the classical level describes
a repulsive gravitational force. It would be interesting to investigate the possible connections
between such a model and the notion of dark energy and the recent observations that the
expansion of the universe is accelerating.

The connection discussed in section 2.6 between reflectionless potentials and PT
symmetry may find application in quantum cosmology. There has been much attention given to
anti-de Sitter cosmologies [145] and de Sitter cosmologies [146,147]. In the AdS description
the universe propagates reflectionlessly in the presence of a wrong-sign potential (−x6, for
example). In the dS case the usual Hermitian quantum mechanics must be abandoned and be
replaced by a non-Hermitian one in which there are ‘meta-observables’. The non-Hermitian
inner product that is used in the dS case is based on the CPT theorem in the same way that
the CPT inner product is used in PT -symmetric quantum theory [60]. The condition of
reflectionless, which is equivalent to the requirement of PT symmetry, is what allows the
wrong-sign potential to have a positive spectrum. Calculating the lowest-energy level in this
potential would be equivalent to determining the cosmological constant [148].

8.8. Classical field theory

The procedure for constructing PT -symmetric Hamiltonians is to begin with a Hamiltonian
that is both Hermitian and PT symmetric, and then to introduce a parameter ε that extends
the Hamiltonian into the complex domain while maintaining its PT symmetry. This is the
procedure that was used to construct the new kinds of Hamiltonians in (12). We can follow
the same procedure for classical nonlinear wave equations because many wave equations are
PT symmetric.

As an example, consider the Korteweg–de Vries (KdV) equation

ut + uux + uxxx = 0. (217)

To demonstrate that this equation is PT symmetric, we define a classical parity reflection P to
be the replacementx → −x, and sinceu = u(x, t) is a velocity, the sign ofu also changes under
P: u → −u. We define a classical time reversal T to be the replacement t → −t , and again,
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since u is a velocity, the sign of u also changes under T : u → −u. Following the quantum-
mechanical formalism, we also require that i → −i under time reversal. Note that the KdV
equation is not symmetric under P or T separately, but that it is symmetric under combined
PT reflection. The KdV equation is a special case of the Camassa–Holm equation [149],
which is also PT symmetric. Other nonlinear wave equations such as the generalized KdV
equation ut + ukux + uxxx = 0, the sine-Gordon equation utt − uxx + g sin u = 0, and the
Boussinesq equation are PT symmetric as well.

The observation that there are many nonlinear wave equations possessing PT symmetry
suggests that one can generate rich and interesting families of new complex nonlinear PT -
symmetric wave equations by following the same procedure that was used in quantum
mechanics and one can try to discover which properties (conservation laws, solitons,
integrability, stochastic behaviour) of the original wave equations are preserved and which are
lost. One possible procedure for generating new nonlinear equations from the KdV equation
is to introduce the real parameter ε as follows:

ut − iu(iux)
ε + uxxx = 0. (218)

Various members of this family of equations have been studied in [150]. Of course, there
are other ways to extend the KdV equation into the complex domain while preserving PT
symmetry; see, for example [151].

9. Final remarks

In this paper we have shown how to extend physical theories into the complex domain. The
complex domain is huge compared with the real domain, and therefore there are many exciting
new theories to explore. The obvious potential problem with extending a real theory into
complex space is that one may lose some of the characteristics that a valid physical theory
must possess. Thus, it is necessary that this complex extension be tightly constrained. We have
shown that the essential physical axioms of a quantum theory are maintained if the complex
extension is done in such a way as to preserve PT symmetry.

The complex theories that we have constructed are often far more elaborate and diverse
than theories that are restricted to the real domain. Upon entering the complex world we have
found a gold mine of new physical theories that have strange and fascinating properties. We
have just begun to study the vast new panorama that has opened up and we can hardly begin
to guess what new kinds of phenomena have yet to be discovered.
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Sinha A, Lévai G and Roy P 2004 Phys. Lett. A 322 78
Sinha A and Roy P 2004 J. Phys. A: Math. Gen. 37 2509
Caliceti E, Cannata F, Znojil M and Ventura A 2005 Phys. Lett. A 335 26
Bagchi B, Banerjee A, Caliceti E, Cannata F, Geyer H B, Quesne C and Znojil M 2005 Int. J. Mod. Phys. A

20 7107
Samsonov B F 2005 J. Phys. A: Math. Gen. 38 L397
Gonzalez A-Lopez and Tanaka T 2006 J. Phys. A: Math. Gen. 39 3715
Curtright T, Mezincescu L and Schuster D 2006 J. Math. Phys. submitted (Preprint quant-ph/0603170)
Cannata F, Ioffe M V and Nishnianidze D N 2007 Preprint hep-th/0704.2219

[119] Dorey P, Dunning C and Tateo R 2001 J. Phys. A: Math. Gen. 34 L391
[120] Hatano N and Nelson D R 1996 Phys. Rev. Lett. 77 570

Hatano N and Nelson D R 1997 Phys. Rev. B 56 8651
[121] Scalettar R 2006 private communication
[122] Henkel M 2003 Classical and Quantum Nonlinear Integrable Systems: Theory and Applications ed A Kundu

(Bristol: Institute of Physics Publishing)
[123] Alcaraz F C, Droz M, Henkel M and Rittenberg V 1994 Ann. Phys. 230 250
[124] Hibberd K E, Dunning C and Links J 2006 Nucl. Phys. B 748 458

http://dx.doi.org/10.1088/0305-4470/39/8/011
http://dx.doi.org/10.1088/0305-4470/36/25/312
http://dx.doi.org/10.1088/0305-4470/39/7/010
http://dx.doi.org/10.1103/PhysRev.115.1390
http://dx.doi.org/10.1103/PhysRevLett.40.1610
http://dx.doi.org/10.1016/0370-2693(89)90818-6
http://dx.doi.org/10.1016/0550-3213(91)90207-E
http://dx.doi.org/10.1016/0370-2693(78)90279-4
http://dx.doi.org/10.1016/0550-3213(80)90377-6
http://dx.doi.org/10.1016/0370-2693(80)90452-9
http://dx.doi.org/10.1063/1.1915293
http://dx.doi.org/10.1088/1751-8113/40/5/F04
http://arxiv.org/abs/quant-ph/0609096
http://dx.doi.org/10.1063/1.531373
http://dx.doi.org/10.1103/PhysRevA.55.2625
http://dx.doi.org/10.1088/0305-4470/31/14/001
http://dx.doi.org/10.1088/0305-4470/38/10/009
http://dx.doi.org/10.1088/0305-4470/31/8/019
http://dx.doi.org/10.1016/S0375-9601(98)00960-8
http://dx.doi.org/10.1016/j.physleta.2004.03.006
http://dx.doi.org/10.1063/1.2000207
http://dx.doi.org/10.1088/0305-4470/39/32/S14
http://dx.doi.org/10.1063/1.2204810
http://dx.doi.org/10.1103/PhysRevLett.98.040403
http://arxiv.org/abs/quant-ph/0703254
http://dx.doi.org/10.1088/0305-4470/39/11/L02
http://dx.doi.org/10.1103/PhysRevLett.65.1697
http://dx.doi.org/10.1103/PhysRevD.57.3595
http://dx.doi.org/10.1016/S0375-9601(98)00517-9
http://dx.doi.org/10.1142/S0217751X99001342
http://dx.doi.org/10.1088/0305-4470/33/7/102
http://dx.doi.org/10.1016/S0375-9601(00)00227-9
http://dx.doi.org/10.1142/S0217751X01004153
http://dx.doi.org/10.1142/S0217751X02005748
http://dx.doi.org/10.1142/S0217732302006734
http://dx.doi.org/10.1016/j.physleta.2004.01.009
http://dx.doi.org/10.1088/0305-4470/37/6/039
http://dx.doi.org/10.1016/j.physleta.2004.12.004
http://dx.doi.org/10.1142/S0217751X05022901
http://dx.doi.org/10.1088/0305-4470/38/21/L04
http://dx.doi.org/10.1088/0305-4470/39/14/014
http://arxiv.org/abs/quant-ph/0603170
http://arxiv.org/abs/hep-th/0704.2219
http://dx.doi.org/10.1088/0305-4470/34/28/102
http://dx.doi.org/10.1103/PhysRevLett.77.570
http://dx.doi.org/10.1103/PhysRevB.56.8651
http://dx.doi.org/10.1006/aphy.1994.1026
http://dx.doi.org/10.1016/j.nuclphysb.2006.04.026


1018 C M Bender

[125] Bender C M, Brandt S F, Chen J-H and Wang Q 2005 Phys. Rev. D 71 065010
[126] Lee T D 1954 Phys. Rev. 95 1329
[127] Källén G and Pauli W 1955 Mat.-Fys. Medd. 30 (7)
[128] Schweber S S 1961 An Introduction to Relativistic Quantum Field Theory (Evanston: Row Peterson) chapter 12
[129] Bender C M, Brandt S F, Chen J-H and Wang Q 2005 Phys. Rev. D 71 025014
[130] Kleefeld F 2004 Preprint hep-th/0408028

Kleefeld F 2004 Preprint hep-th/0408097
[131] Curtright T, Ivanov E, Mezincescu L and Townsend P K 2007 J. High Energy Phys. JHEP04(2007)020 (Preprint

hep-th/0612300)
Curtright T and Veitia A 2007 Preprint quant-ph/0701006

[132] Ivanov E A and Smilga A V 2007 Preprint hep-th/0703038
[133] Bender C M, Milton K A and Savage V M 2000 Phys. Rev. D 62 85001
[134] Symanzik K 1971 Springer Tracts Mod. Phys. 57 222

Symanzik K 1971 Commun. Math. Phys. 23 49
Symanzik K 1973 Nuovo Cim. 6 77

[135] Kleefeld F 2006 J. Phys. A: Math. Gen. 39 L9
[136] Bender C M, Meisinger P and Yang H 2001 Phys. Rev. D 63 45001
[137] Jones H F, Mateo J and Rivers R J Phys. Rev. D 74 125022
[138] Meisinger P N and Ogilvie M C 2007 Preprint hep-th/0701207
[139] Milton K A 2004 Czech. J. Phys. 54 85
[140] Bender C M and Milton K A 1999 J. Phys. A: Math. Gen. 32 L87
[141] Bender C M, Cavero-Pelaez I, Milton K A and Shajesh K V 2005 Phys. Lett. B 613 97
[142] Bender C M, Jones H F and Rivers R J 2005 Phys. Lett. B 625 333–40
[143] Abdalla E, Abdalla M G B and Rothe K D 1991 Non-perturbative Methods in 2 Dimensional Quantum Field

Theory (New York: World Scientific)
[144] Fernández M F, Guardiola R, Ros J and Znojil M 1999 J. Phys. A: Math. Gen. 32 3105
[145] Hertog T and Horowitz G T 2005 J. High. Energy Phys. JHEP04(2005)05
[146] Witten E 2001 Preprint hep-th/0106109
[147] Bousso R, Maloney A and Strominger A 2000 Phys. Rev. D 65 104039
[148] Moffat J W 2005 Phys. Lett. B 627 9 (Preprint hep-th/0610162)
[149] Camassa R and Holm D D 1993 Phys. Rev. Lett. 71 1661
[150] Bender C M, Brody D C, Chen J-H and Furlan E 2007 J. Phys. A.: Math. Theor. 40 F153
[151] Fring A 2007 Preprint math-ph/0701036

http://dx.doi.org/10.1103/PhysRevD.71.065010
http://dx.doi.org/10.1103/PhysRev.95.1329
http://dx.doi.org/10.1103/PhysRevD.71.025014
http://arxiv.org/abs/hep-th/0408028
http://arxiv.org/abs/hep-th/0408097
http://arxiv.org/abs/hep-th/0612300
http://arxiv.org/abs/quant-ph/0701006
http://arxiv.org/abs/hep-th/0703038
http://dx.doi.org/10.1103/PhysRevD.62.085001
http://dx.doi.org/10.1007/BF01877596
http://dx.doi.org/10.1088/0305-4470/39/1/L02
http://dx.doi.org/10.1103/PhysRevD.63.045001
http://arxiv.org/abs/hep-th/0701207
http://dx.doi.org/10.1023/B:CJOP.0000014372.21537.c0
http://dx.doi.org/10.1088/0305-4470/32/7/001
http://dx.doi.org/10.1016/j.physletb.2005.03.032
http://dx.doi.org/10.1016/j.physletb.2005.08.087
http://dx.doi.org/10.1088/0305-4470/32/17/303
http://arxiv.org/abs/hep-th/0106109
http://dx.doi.org/10.1103/PhysRevD.65.104039
http://dx.doi.org/10.1016/j.physletb.2005.09.012
http://arxiv.org/abs/hep-th/0610162
http://dx.doi.org/10.1103/PhysRevLett.71.1661
http://dx.doi.org/10.1088/1751-8113/40/5/F02
http://arxiv.org/abs/math-ph/0701036

	1. Introduction---new kinds of quantum theories
	1.1. Presentation and scope of this paper
	1.2. Organization of this paper

	2. Determining the eigenvalues of a PT-symmetric Hamiltonian
	2.1. Broken and unbroken PT symmetry
	2.2. Boundary conditions for the Schrödinger eigenvalue problem
	2.3. The flaw in Dyson's argument
	2.4. Using WKB phase-integral techniques to calculate eigenvalues
	2.5. Numerical calculation of eigenvalues
	2.6. The remarkable case of a PT-symmetric -x4 potential
	2.7. Parity anomaly
	2.8. Physical consequence of the parity anomaly: appearance of bound states in a PT-symmetric quartic potential

	3. PT-symmetric classical mechanics---the strange dynamics of a classical particle subject to complex forces
	3.1. The case =0
	3.2. The case =1
	3.3. The case =2
	3.4. Broken and unbroken classical PT symmetry
	3.5. Noninteger values of 
	3.6. Classical orbits having spontaneously broken PT symmetry

	4. PT-symmetric quantum mechanics
	4.1. Recipe for a quantum-mechanical theory defined by a Hermitian Hamiltonian
	4.2. Recipe for PT-symmetric quantum mechanics
	4.3. Comparison of Hermitian and PT-symmetric quantum theories
	4.4. Observables
	4.5. Pseudo-Hermiticity, quasi-Hermiticity and PT symmetry

	5. Illustrative 22 matrix example of a PT-symmetric Hamiltonian
	6. Calculation of the C operator in quantum mechanics
	6.1. Algebraic equations satisfied by the C operator
	6.2. Perturbative calculation of C
	6.3. Perturbative calculation of C for other quantum-mechanical Hamiltonians
	6.4. Mapping from a PT-symmetric Hamiltonian to a Hermitian Hamiltonian

	7. Applications of PT-symmetric Hamiltonians in quantum mechanics
	7.1. New PT-symmetric quasi-exactly solvable Hamiltonians
	7.2. Complex crystals
	7.3. Quantum brachistochrone
	7.4. Supersymmetric PT-symmetric Hamiltonians
	7.5. Other quantum-mechanical applications

	8. PT-symmetric quantum field theory
	8.1. i3 quantum field theory
	8.2. Other quantum field theories having cubic interactions
	8.3. The Lee model
	8.4. The Higgs sector of the standard model of particle physics
	8.5. PT-symmetric quantum electrodynamics
	8.6. Dual PT-symmetric quantum field theories
	8.7. PT-symmetric gravitational and cosmological theories
	8.8. Classical field theory

	9. Final remarks
	 Acknowledgments
	 References

