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The general theory of analytic energy gradients is presented for the complex absorbing potential
equation-of-motion coupled-cluster (CAP-EOM-CC) method together with an implementation within
the singles and doubles approximation. Expressions for the CAP-EOM-CC energy gradient are derived
based on a Lagrangian formalism with a special focus on the extra terms arising from the presence
of the CAP. Our implementation allows for locating minima on high-dimensional complex-valued
potential energy surfaces and thus enables geometry optimizations of resonance states of polyatomic
molecules. The applicability of our CAP-EOM-CC gradients is illustrated by computations of the
equilibrium structures and adiabatic electron affinities of the temporary anions of formaldehyde,
formic acid, and ethylene. The results are compared to those obtained from standard EOM-CC
calculations and the advantages of CAP methods are emphasized. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4974094]

Electron attachment to molecules with negative verti-
cal electron affinity (VEA) leads to the formation of tempo-
rary anions that can decay through autodetachment and often
exhibit distinctly different properties and reactivity patterns
than the parent neutral molecules.1,2 The so opened uncom-
mon reaction channels play a role in unwanted processes such
as radiative DNA damage3,4 but can also be exploited produc-
tively, for example, in electron-induced reactions.5–7 These
phenomena and the underlying physical mechanisms such as
dissociative electron attachment1,8 or interatomic Coulom-
bic decay9 cannot be understood in a fixed-nuclei picture but
require to take into account the coupling between electronic
and nuclear degrees of freedom. The importance of nuclear
motion for the understanding of temporary anions is also evi-
dent in photodetachment,10,11 electron transmission,12,13 and
electron-impact spectra14–16 that feature vibrational structure
and thereby allow for the determination of adiabatic electron
affinities (AEAs).

The theoretical treatment of temporary anions is chal-
lenging because they belong to the continuum and cannot be
associated with discrete eigenstates in the Hermitian domain
of the molecular Hamiltonian.17 By means of the Siegert
formalism,17–19 it is, however, possible to associate tempo-
rary anions with adiabatic resonance states with complex
energy. This allows for a characterization in analogy to bound
states and, in particular, the construction of complex-valued
potential energy surfaces (CPESs)20 by invoking the Born-
Oppenheimer approximation. The real part of a CPES can be
interpreted similarly to the PES of a bound state, whereas the
imaginary part yields the local decay rate as a function of
molecular structure.20–22

CPESs of several diatomic and triatomic temporary
anions, such as N−2 ,23–29 H2O�,30 and CO−2 ,31 have been
studied previously, but little is known about the CPESs of
polyatomic species. This is because the efficient determina-
tion of minima, transition states, conical intersections, etc. on

high-dimensional CPES is feasible only by means of ana-
lytical gradients, which have not been available so far for
any method for resonance states. Since analytical gradients
have been derived and implemented for numerous bound-state
electronic-structure methods, including Hartree-Fock (HF),32

coupled-cluster (CC),33,34 and equation-of-motion (EOM)-CC
theory,35 a possible solution is to apply these methods to res-
onances. This has been done, for example, for the benzene
radical anion36 and the cyclooctatetraene dianion37 but is not
satisfying as the metastable nature of the resonance state is
neglected entirely.

In this Communication, we present the theory of ana-
lytic gradients for the complex absorbing potential (CAP)-
EOM-CC method,38–41 which enables the determination of
equilibrium structures of polyatomic temporary anions. While
Siegert energies can be obtained using different techniques
such as straight complex scaling (CS),42–44 exterior scal-
ing (ES),45 complex basis functions (CBF),46,47 stabilization
methods,48,49 and CAPs50,51 that can be further combined with
different electronic-structure methods, CAP-EOM-CC holds
several distinct advantages: First, and in contrast to ES and
CBF approaches, evaluation of the energy gradient does not
require non-standard two-electron integral derivatives. Sec-
ond, the wave functions of a temporary anion and its parent
neutral state are obtained as eigenfunctions of the same Hamil-
tonian in CAP-EOM-CC, which ensures that the imaginary
part of a CPES is zero if and only if its real part is below the
PES of the parent neutral state.29 EOM-CC also offers further
advantages such as an unbiased description of the target states
by taking account of dynamical and non-dynamical electron
correlation at once.

In CAP methods, a purely imaginary potential is added
to the usual molecular Hamiltonian H, which leads to a non-
Hermitian Hamiltonian,

H(η) = H − iηW . (1)
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Here, η is the CAP strength parameter and W is in the following
chosen to be of the form:

W =
∑
α

Wα, α = x, y, z, (2)

Wα =

{
0 if |rα − oα | ≤ r0

α,

(|rα − oα | − r0
α)

2
if |rα − oα | > r0

α,
(3)

with r0
α as the box size parameters and the vector o = (ox, oy,

oz) as the origin of the CAP. In our computational protocol,
we choose r0

α as the spatial extent of the wave function of
the neutral molecule (

√〈
α2〉)40 and o as the center of nuclear

charges, that is,

oα =

∑
k Rk,αZk∑

k Zk
, (4)

where Rk,α and Zk are the nuclear coordinates and nuclear
charges, respectively. By this choice of o we ensure that the
molecule is not displaced relative to the CAP during a geom-
etry optimization, which could happen otherwise if o was
defined independently of the nuclear coordinates. Note that
the molecule can still rotate relative to the CAP unless this
would break spatial symmetry.52

Inserting Eq. (1) into the Schrödinger equation leads to
a non-Hermitian eigenvalue problem, from whose complex

eigenvalues E = ER − iΓ/2 the resonance positions ER and
widths Γ are obtained. In CAP-EOM-CC, the resonance wave
function is parametrized as |Ψ) = R eT |ΦHF), where |ΦHF)
is the CAP-HF wave function of the reference state that we
choose as the ground state of the neutral molecule, T is the
cluster operator, and R creates the target states. For tem-
porary anions, the CAP-EOM-EA-CC variant is employed,
where R describes the attachment of an electron to the neutral
molecule. T and R are defined and determined in analogy to
standard EOM-CC theory,53–55 but we use parentheses instead
of chevrons to indicate the c-product.56,57 When |Ψ) is repre-
sented in a complete basis, the energy calculated with the CAP
corresponds to the exact resonance energy in the limit η → 0.51

In a finite basis set, however, an optimal finite ηopt exists that
minimizes the error introduced by the CAP. ηopt is usually
determined based on perturbation theory by minimizing the
expression |η dE/dη |.51

To derive an expression that allows for the efficient eval-
uation of the CAP-EOM-CC energy gradient, we employ
the Lagrangian technique.58,59 Following the same steps
as in standard CC gradient theory, we finally arrive at
the following expression for the Lagrangian in the atomic-
orbital (AO) basis that is valid for any CAP-CC or CAP-
EOM-CC model in which the CAP is introduced at the HF
level:

L =
∑
µν

DHF
µν

(
hµν − i η Wµν

)
+

1
2

∑
µνσρ

DHF
µνDHF

σρ〈µσ | |νρ〉 +
∑
µν

IHF
µν Sµν

+
∑
µν

DCC
µν

(
fµν − i η Wµν

)
+

∑
µνσρ

Γ
CC
µσνρ〈µσ | |νρ〉 +

∑
µν

ICC
µν Sµν +

∑
α

λα

(∑
k Rk,αZk∑

k Zk
− oα

)
+ Vnuc. (5)

Here, hµν , fµν , and Sµν are the elements of the one-
electron Hamiltonian, the Fock matrix, and the overlap matrix,
〈µσ | |νρ〉 denotes antisymmetrized two-electron integrals,60

and Vnuc is the nuclear repulsion energy. Whereas all these
quantities are real-valued, the effective one-electron, two-
electron, and generalized energy-weighted density matrices
D, Γ,61 and I are complex-valued. Quantities labeled with
superscripts “HF” and “CC” refer to contributions due to
the response of the CAP-HF and the CAP-CC/CAP-EOM-
CC wave function, respectively. The expressions for the latter
quantities depend on the employed CC/EOM-CC model with
no modifications required due to the CAP.34,35 We note that
the CAP-HF Lagrangian is obtained from Eq. (5) by setting
all “CC” quantities to zero.

Eq. (5) includes two kinds of extra terms compared to
the regular CC/EOM-CC Lagrangian: The contribution of the
CAP to the energy (−i η

∑
µν(DHF

µν +DCC
µν )Wµν) and an extra

constraint to account for the dependence of the CAP origin
on the nuclear coordinates. To obtain this latter term, Eq. (4)
is rearranged and multiplied with Lagrange multipliers λα.
By requiring L to be stationary with respect to o, we
obtain

λα = −i η
∑
µν

(
DHF
µν + DCC

µν

) (
∂Wα

∂oα

)
µν

, (6)

∂Wα

∂oα
=




0, if |rα − oα | ≤ r0
α,

−2 (rα − oα − r0
α), if (rα − oα) > r0

α,
2(−rα + oα − r0

α), if (rα − oα) < −r0
α ,

(7)

where we exploit that only the terms containing the CAP or
the CAP origin depend explicitly on o in Eq. (5).

In addition to the CAP origin, L also depends on the box
size parameters and the CAP strength. Since ηopt and r0

α in turn
depend on the nuclear coordinates, further constraints should
be included in L in principle. However, in our current compu-
tational protocol, which is described further below, we keep
ηopt and r0

α constant while optimizing the geometry so that
there is no need for additional constraints.

An element of the gradient vector dE/dRn,α correspond-
ing to nucleus n and α = x, y, z can then be obtained by taking
the derivative of Eq. (5) and bearing in mind the 2n + 1 and 2n
+ 2 rules.62 For locating minima on the real part of a CPES, only
the real part of the gradient is needed. Since all integral deriva-
tives are real-valued, this yields the following general expres-
sion for the various CAP-CC and CAP-EOM-CC methods:
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Re

(
dE

dRn,α

)
=

∑
µν

[
Re(DHF

µν ) + Re(DCC
µν )

] ∂hµν
∂Rn,α

+ η
∑
µν

[
Im(DHF

µν ) + Im(DCC
µν )

]

∂Wµν

∂Rn,α
+

Zn∑
k Zk

(
∂Wα

∂oα

)
µν



+
∑
µνσρ

[ 1
2

Re(DHF
µν )Re(DHF

σρ) −
1
2

Im(DHF
µν )Im(DHF

σρ) + Re(DCC
µν )Re(DHF

σρ) − Im(DCC
µν )Im(DHF

σρ)

+Re(ΓCC
µσνρ)

]
∂ 〈µσ | |νρ〉

∂Rn,α
+

∑
µν

[
Re(IHF

µν ) + Re(ICC
µν )

] ∂Sµν
∂Rn,α

+
∂Vnuc

∂Rn,α
(8)

where the derivative of the Fock matrix element fµν
= hµν +

∑
σρ DHF

σρ〈µσ | |νρ〉 has been split into a one-electron
and a two-electron contribution. The corresponding CAP-HF
expression is again obtained by setting all “CC” quantities
to zero. Note that even though only the real part of the two-
electron density matrix ΓCC is needed, this quantity is cal-
culated using complex algebra in the molecular orbital (MO)
basis and then back-transformed to the AO basis using complex
MO coefficients. This increases the cost of CAP-CC/CAP-
EOM-CC gradients considerably compared to the CAP-free
case. However, the formal scaling of every CAP method is the
same as that of the corresponding real-valued method.

Eq. (8) illustrates that the computation of the energy gradi-
ent for CAP methods requires the evaluation of two additional
derivatives compared to standard gradient theory: ∂Wµν/∂Rn,α

and (∂Wα/∂oα)µν . Explicit expressions for the latter term are
given in Eq. (7), while the former term becomes

∂Wµν

∂Rn,α
=
∂(Wx)µν
∂Rn,α

+
∂(Wy)µν
∂Rn,α

+
∂(Wz)µν
∂Rn,α

, (9)

∂(Wx)µν
∂Rn,α

=
〈 ∂ χµ
∂Rn,α

���Wx
���χν

〉
+

〈
χµ

���Wx
���
∂ χν
∂Rn,α

〉
(10)

with χµ, χν as standard Gaussian basis functions.60 Eqs. (7)
and (10) are evaluated numerically in our implementation in
the same way as detailed in Ref. 40 for Wµν .

CAP-CC and CAP-EOM-EA-CC gradients have been
implemented within the singles and doubles (SD) approxi-
mation into the Q-Chem program package.63 In addition, our
implementation allows for the evaluation of restricted and
unrestricted CAP-HF gradients. Spatial symmetry is exploited
and the libtensor library64 is used for operations on high-
dimensional tensors. The implementation has been verified
by means of numerical differentiation. Currently, the implicit
dependence of E on Rn,α through ηopt and r0

α is not considered
in the expression for the gradient (Eq. (8)), instead we use the
following procedure for geometry optimizations:

1. Determine
√〈
α2〉 of the neutral molecule.

2. Find ηopt for r0
α =

√〈
α2〉.

3. Optimize the geometry while leaving η = ηopt and r0
α

unchanged.
4. Go to 1 until

√〈
α2〉 and ηopt are converged.

Updating the box size parameters is especially important if
the molecule rotates in the box during geometry optimiza-
tion. If this is not the case, re-optimizing the geometry with
updated CAP parameters typically entails only small structural
changes.

In the following, we apply the CAP-EOM-EA-CCSD
method for geometry optimizations of the anionic reso-
nance states of CH2O, HCOOH, and C2H4 and determine
the corresponding AEAs and resonance widths. The aug-
cc-pVDZ+3s3p(A) basis set65 from Ref. 40 is used in all
calculations. This basis is diffuse enough to represent the
coupling of the resonance to the continuum and hence suffi-
cient to illustrate the differences between CAP-including and
CAP-free gradient calculations, which is the focus of our Com-
munication. A quantitative comparison to experimental values
would demand the use of a triple-ζ or quadruple-ζ basis as
will be discussed in more detail further below. Values for the
parameters r0

α and ηopt are compiled in the supplementary
material.

Changes in the box size are related to structural differ-
ences between the neutral molecule and the anion. In the case
of CH2O, the C==O bond length differs significantly between
the neutral and anionic equilibrium structures (1.215 Å vs.
1.286 Å), whereas the differences in the remaining geometri-
cal parameters are negligible (see the supplementary material).
This is reflected in the large change in r0

z compared to the
changes in r0

x and r0
y . The geometrical change can be explained

qualitatively by the π∗ character of the corresponding Dyson
orbital66,67 depicted in Figure 1(a). Note that the anionic equi-
librium structure is planar and belongs to the C2v point group,
i.e., electron attachment does not induce a lowering of the
molecular symmetry.

In the cases of HCOOH and C2H4, non-planar distor-
tion of the molecule is observed upon electron attachment
in addition to lengthening of the C–O and C–C bonds. For
formic acid, the C–O bond lengths change from 1.208 Å
and 1.354 Å to 1.276 Å and 1.451 Å, while for ethylene, the
C–C bond length changes from 1.348 Å to 1.439 Å, which
can again be explained by the π∗ character of the correspond-
ing Dyson orbitals (Figures 1(b) and 1(c)). The differences
in the other bond lengths are very small (see the supplemen-
tary material). The equilibrium structure of HCOOH� is of
C1 symmetry compared to Cs for the neutral molecule, while

FIG. 1. Real parts of CAP-EOM-EA-CCSD Dyson orbitals for electron
attachment to CH2O, HCOOH, and C2H4. Computed with the aug-cc-
pVDZ+3s3p(A) basis set at the equilibrium structures of the respective
resonant anions.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-015704
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-015704
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-015704
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-015704
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-015704
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TABLE I. Theoretical and experimental values for the vertical and adiabatic
electron affinities (VEA and AEA), vertical detachment energies (VDE), and
resonance widths (Γ) of formaldehyde, formic acid, ethylene, and the corre-
sponding anions. Γ0 is the resonance width at the neutral equilibrium structure
and Γres is that at the resonance equilibrium structure. The CAP-EOM-EA-
CCSD/aug-cc-pVDZ+3s3p(A) method was employed in all calculations. All
values are given in eV.

VEA VDE AEA Γ0 Γres

CH2O– Calc. �1.372 �0.837 �1.019 0.353 0.213
Expt. �0.8669 · · · �0.6569 0.2–0.469

HCOOH– Calc. �2.325 �0.482 �1.481 0.252 0.126
Expt. �1.7370 · · · �1.371 · · ·

C2H4
− Calc. �2.228 �1.654 �2.039 0.450 0.307

Expt. �1.7672 · · · �1.5573 0.3–0.772

that of C2H−4 belongs to the C2h point group compared to D2h

for the neutral molecule. For the anion of ethylene, symmetry
lowering from D2h to C2h has also been predicted by HF cal-
culations using very small bases and was rationalized in terms
of σ∗-π∗ mixing.68 ηopt values for CH2O� and HCOOH� are
significantly smaller at the equilibrium structure of the reso-
nance than at that of the neutral molecule, while this decrease
is less pronounced for C2H−4 .

The calculated VEAs and AEAs and vertical detachment
energies (VDE) along with the resonance widths at the neutral
equilibrium (Γ0) and at the resonance equilibrium structure
(Γres) are listed in Table I. For all molecules, AEA is signifi-
cantly lower than VEA in terms of absolute values; the effect
of structural relaxation amounts to 0.85 eV for HCOOH�,
0.35 eV for CH2O�, and 0.19 eV for C2H−4 . Remarkably,
experimental results69–73 also suggest a larger relaxation
energy for HCOOH� than for the other two anions.

The quantitative comparison to experiment is difficult due
to the incomplete basis set, the perturbation due to the CAP,
the truncation of the CC expansion, and the neglect of the zero-
point vibrational energy. Also, the experimental determination
of VEA is problematic.13 The calculated absolute values for
VEA are typically 0.5 eV higher than the corresponding exper-
imental values. This discrepancy can be largely attributed to
the first two effects: CAP-EOM-EA-CCSD calculations for
C2H−4 using the aug-cc-pVQZ+3s3p3d(C) basis set yielded
VEA values 0.24 eV lower than aug-cc-pVDZ+3s3p(A) and
a first-order correction for the CAP perturbation lowered the

energy further by 0.08 eV.40 Similar effects can be anticipated
for the AEA values as well.

Table I shows that Γres is smaller than Γ0 for all three
molecules. This is a general feature of temporary anions
because VDE is always smaller than VEA. When the energy
difference between an anionic resonance and the parent neu-
tral state becomes smaller, the resonance width has to decrease
and, if the two PES cross, it has to become zero as the resonance
turns into a stable state.29

To demonstrate the advantages of a geometry optimization
including a CAP over an approach that treats the resonance
as a bound state, we carried out CAP-free EOM-EA-CCSD
calculations for C2H−4 using a variety of basis sets. This is
documented in Table II.

Using the cc-pVDZ basis set, the lowest EOM-EA-CCSD
root resembles the resonance state and a bent equilibrium struc-
ture of C2h symmetry is obtained for the anion. However, the
AEA is overestimated by 0.9 eV. As we enlarge the basis set,
more and more continuum states appear in the spectrum, mak-
ing it harder to associate a single state with the resonance.74,75

Already for aug-cc-pVDZ, the lowest root has continuum char-
acter describing C2H4+e− rather than C2H−4 , which is reflected
in the optimized geometrical parameters R(CC) = 1.351 Å
and ∠(HCCH) = 180.0◦. As Table II shows, it is still possi-
ble to identify resonance-like higher-lying roots in the larger
bases, but even so, their equilibrium structures differ qualita-
tively from that obtained in the presence of the CAP: regular
EOM-EA-CCSD predicts a planar equilibrium structure and
a too short C---C bond length using the aug-cc-pVDZ and
aug-cc-pVDZ+3s3p(A) basis sets.

This clearly shows that although states with proper-
ties similar to the resonance can be found with bound-state
approaches, this is an artifact of discretizing the continuum by
means of small basis sets and valid results are not guaranteed.
In contrast, in the presence of a CAP, the resonance state is
usually one of the lowest-lying roots also in larger bases and
the determination of the equilibrium structure and the AEA is
straightforward.

In sum, we have derived and implemented analytic
gradients for CAP-HF, CAP-CCSD, and various CAP-EOM-
CCSD methods and proposed a procedure for the geome-
try optimization of temporary anions. Equilibrium structures
and adiabatic electron affinities of the anions of formalde-
hyde, formic acid, and ethylene have been determined for
the first time using CAP methods, and the advantages

TABLE II. Equilibrium structures for neutral C2H4 (0) computed with CCSD and the resonant anion C2H−4 (res)
computed with regular and CAP-augmented EOM-EA-CCSD using different basis sets. AEAs and the followed
root (of Ag symmetry in the C2h point group) in the EOM-EA-CCSD eigenvalue equation are also listed.

R(CC)/Å ∠(HCCH)/deg

Basis 0 Res 0 Res AEA/eV Root

cc-pVDZa 1.345 1.456 0.0 48.7 �2.941 1
aug-cc-pVDZa 1.348 1.418 0.0 0.0 �1.923 2
aug-cc-pVDZ+3s3p(A)a 1.348 1.405 0.0 0.1 �1.983 7
aug-cc-pVDZ+3s3p(A)b 1.348 1.439 0.0 26.6 �2.039 2

aWithout CAP.
bIncluding CAP.
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over applying bound-state methods have been illustrated. The
present work represents a key step towards modeling nuclear
motion in processes involving electronic resonances. We plan
to generalize our current implementation to other types of
resonances and different electronic-structure methods.

See supplementary material for the coordinates of all opti-
mized molecular structures in Z-matrix format, CAP box sizes,
and optimal CAP strengths.

This work has been supported by the Fonds der Che-
mischen Industrie through a Ph.D. fellowship to Z.B. and
a Liebig fellowship to T.-C.J. We thank Professor Christian
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36A. Bazanté, E. R. Davidson, and R. J. Bartlett, J. Chem. Phys. 142, 204304

(2015).
37A. Yu. Sokolov, D. B. Magers, J. I. Wu, W. D. Allen, P. v. R. Schleyer, and

H. F. Schaefer, J. Chem. Theory Comput. 9, 4436 (2013).
38A. Ghosh, N. Vaval, and S. Pal, J. Chem. Phys. 136, 234110 (2012).
39T.-C. Jagau, D. Zuev, K. B. Bravaya, E. Epifanovsky, and A. I. Krylov,

J. Phys. Chem. Lett. 5, 310 (2014).
40D. Zuev, T.-C. Jagau, K. B. Bravaya, E. Epifanovsky, Y. Shao, E. Sundstrom,

M. Head-Gordon, and A. I. Krylov, J. Chem. Phys. 141, 024102 (2014).
41D. Zuev, T.-C. Jagau, K. B. Bravaya, E. Epifanovsky, Y. Shao, E. Sundstrom,

M. Head-Gordon, and A. I. Krylov, J. Chem. Phys. 143, 149901 (2015).
42J. Aguilar and J. M. Combes, Commun. Math. Phys. 22, 269 (1971).
43E. Balslev and J. M. Combes, Commun. Math. Phys. 22, 280 (1971).
44B. Simon, Commun. Math. Phys. 27, 1 (1972).
45B. Simon, Phys. Lett. A 71, 211 (1979).
46C. W. McCurdy and T. N. Rescigno, Phys. Rev. Lett. 41, 1364 (1978).
47N. Moiseyev and C. Corcoran, Phys. Rev. A 20, 814 (1979).
48A. U. Hazi and H. S. Taylor, Phys. Rev. A 1, 1109 (1970).
49M. Nestmann and S. D. Peyerimhoff, J. Phys. B 18, 615 (1985).
50G. Jolicard and E. J. Austin, Chem. Phys. Lett. 121, 106 (1985).
51U. V. Riss and H.-D. Meyer, J. Phys. B 26, 4503 (1993).
52This undesired behavior can be corrected by recalculating

√〈
α2〉 and updat-

ing the box size parameters during a geometry optimization. We note that
an alternative would be the use of a spherically symmetric CAP as rota-
tion of the molecule would not affect the results in this case. Assessing the
performance of spherical CAPs will be the subject of future work.

53J. F. Stanton and R. J. Bartlett, J. Chem. Phys. 98, 7029 (1993).
54M. Nooijen and R. J. Bartlett, J. Chem. Phys. 102, 3629 (1995).
55I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry and

Physics: MBPT and Coupled-Cluster Theory (Cambridge University Press,
Cambridge, UK, 2009).

56N. Moiseyev, P. R. Certain, and F. Weinhold, Mol. Phys. 36, 1613 (1978).
57Since the CAP-augmented Hamiltonian H(η) is not Hermitian but complex

symmetric, the proper scalar product needs to be replaced by the c-product in
all equations. The difference is that the bra state is not complex conjugated.

58T. Helgaker and P. Jørgensen, Adv. Quantum Chem. 19, 183 (1988).
59P. G. Szalay, Int. J. Quantum Chem. 55, 151 (1995).
60Note that because the AOs are real valued the c-product metric coincides

with the usual metric. We chose to keep chevrons in order to avoid confusion
between Dirac and Mulliken notation for the two-electron integrals.

61Note that Γ denotes both the resonance width and the two-electron density
matrix in this Communication, which is unfortunate, but in our opinion
preferable to introducing non-standard notation for either quantity. The
meaning is always clear from the context.

62P. Jørgensen and T. Helgaker, J. Chem. Phys. 89, 1560 (1988).
63Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit et al., Mol.

Phys. 113, 184 (2015).
64E. Epifanovsky, M. Wormit, T. Kuś, A. Landau, D. Zuev, K. Khistyaev,
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