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Abstract 

We review the nature of the problem in the framework of Rayleigh-Schrodinger perturbation theory 
(the polarization approximation ) considering explicitly two examples: the interaction of two hydrogen 
atoms and the interaction of Li with H. We show, in agreement with the work of Claverie and of Morgan 
and Simon, that the LiH problem is dramatically different from the H2 problem. In particular, the 
physical states of LiH are higher in energy than an infinite number of discrete, unphysical states and 
they are buried in a continuum of unbound, unphysical states, which starts well below the lowest physical 
state. Claverie has shown that the perturbation expansion, under these circumstances, is likely to converge 
to an unphysical state of lower energy than the physical ground state, if it converges at all. We review, 
also, the application of two classes of exchange perturbation theory to LiH and larger systems. We show 
that the spectra of three Eisenschitz-London (EL) class, exchange perturbation theories have no continuum 
of unphysical states overlaying the physical states and no discrete, unphysical states below the lowest 
physical state. In contrast, the spectra of two Hirschfelder-Silbey class theories differ hardly at all from 
that found with the polarization approximation. Not one of the EL class of perturbation theories, however, 
eliminates all of the discrete unphysical states. The best one establishes a one-to-one correspondence 
between the lowest energy states of the unperturbed and perturbed Hamiltonians, and a one-to-two 
correspondence for the higher states. We suggest that the EL class perturbation theories would be good 
starting points for the development of more effective perturbation theories for intermolecular interactions. 

Introduction 

Interatomic and intermolecular interaction energies are less easily calculated as 
small corrections to atomic or molecular energies than as total energies from which 
the atomic or molecular energies are subtracted. This is contrary to our experience 
in other areas of science, which raises a question: What makes this problem so 
different? It is well known that there is an exchange symmetry problem created by 
dividing the electrons among the interacting atoms and molecules [l-71. But 
knowing this has not enabled us to single out one or two of the many proposed 
perturbation theories as fundamentally better than all the others. Perhaps it is because 
we have not looked closely enough at the basic problem. In this paper we examine 
the strength of the perturbing potentials that appear in selected perturbation theories 
and find that there are enormous differences between them. Based on this criterion, 
we find that there is no fully satisfactory theory, but that one class of theories may 
be a good basis for further development. 

In part this paper is a review of exchange perturbation theory ( EPT ) from an 
unusual perspective. Because a number of fine reviews of the subject have appeared 
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[ 1-71, there is no reason for us to attempt a broad, balanced review of what has 
been done. Indeed, we regard our paper as complementary to Klein’s [ 71. He has 
emphasized degeneracy, we emphasize the strength of the interactions as measured 
by the disparity between the spectra of the unperturbed and perturbed problems. 
We show that the disparity is gross for certain EPTS, modest for others. 

From the work of Claverile [ 81 and Morgan and Simon [ 91 it is clear that inter- 
molecular interactions are very strong, not weak. Claverie was the first to point out 
that there are discrete, unphysical states of lower energy than the physical ground 
state of a molecule, and thal. a Rayleigh-Schrodinger perturbation expansion is as 
likely to converge to one of these unphysical states as to a physical one. Morgan 
and Simon have simply remarked that in systems containing atoms other than 
hydrogen and helium, even the lowest energy physical states are buried in a con- 
tinuum of unbound, unphysical states. These observations are true at infinite as 
well as finite nuclear separations. Since the unphysical states are not in the spectrum 
of the unperturbed problem, the perturbation must be very strong. 

The idea that intermolecullar interactions are weak and, therefore, that interaction 
energies might be calculated by perturbation methods, probably has its origin in 
the observation that the diissociation energies of most molecules are very small 
compared to their total electronic energies. By increasing the distance between 
atoms in a system, one can reduce the interaction energy until it becomes vanishingly 
small compared to the total electronic energy. One ought to be able to use for the 
zero-order Hamiltonian the sum of the atomic Hamiltonians, and for the perturbing 
potential, the difference be1 ween the molecular Hamiltonian and the zero-order 
Hamiltonian [ lo ] .  But these arguments are based on what we know about the 
physical electronic states of molecules, i.e., states described by totally antisymmetric 
wave functions. The message of Claverie [ 81 and Morgan and Simon [ 91 is that 
we cannot ignore the unphysical states. Although Eisenschitz and London [ 1 11 did 
not explicitly consider the unphysical states, they effectively did something about 
them by taking electron indistinguishability into consideration in their perturbation 
theory. This is the case, also, with the EPTS proposed in the ’60s and later. Our 
objective is to determine how effectively the various EPTS have dealt with the un- 
physical states. 

At this point we must note that in spite of the unphysical states, the Rayleigh- 
Schrodinger perturbation method can be used to calculate the coefficients in the 
asymptotic expansion of intermolecular interaction energies in powers of 1 / R, 
where R is the nuclear separation. This was first proved by Ahlrichs [ 12 1 .  Morgan 
and Simon [9 ]  later gave ,an independent proof, but pointed out that Ahlrichs 
proof, unlike theirs, was valid even when the state of interest lay in a continuum 
of unphysical states. But this tells us nothing about the exchange interactions which 
are so important at intermediate and small R. 

We must note, also, that it has been possible to determine the large R asymptotic 
behaviour of the exchange energy for H2 [ 131 and H3 [ 141. Herring and Flicker 
showed for H2 that the exchange energy was proportional to R5/2e -2R.  Shipsey 
found an exponential dependence for H3, too. The method used to obtain these 
results does not appear to be generally practical. 
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In the next section we outline the simplest perturbation theory for intermolecular 
interactions, the polarization approximation. It is essentially the Rayleigh-Schro- 
dinger theory applied to two or more interacting atoms or molecules. We review 
why electron indistinguishability is a problem, and then derive the spectra of the 
unperturbed and perturbed problems for H2 and LiH. The H2 spectra are simple. 
The LiH spectra exhibit all of the complications which Claverie and Morgan and 
Simon found. It will be clear from our discussion that the spectrum of LiH is 
representative of that of larger molecules. This suggests that numerical tests of 
perturbation theories, to be realistic, must be done on systems containing atoms 
with atomic numbers greater than 2. 

In the third and fourth sections we derive the spectra of several efective Ham- 
iltonians, operators on which EPTS have been based. Those considered in the third 
section do not have discrete, unphysical states below the lowest energy physical 
states, nor are the physical states buried in an unphysical continuum. Unfortunately, 
these Hamiltonians do not succeed in establishing a one-to-one mapping of the 
physical states onto the unperturbed states. The Hamiltonians considered in the 
fourth section have almost no effect on the troublesome unphysical states. The fifth 
section is primarily about what we have and have not done in this paper. 

The Polarization Approximation and the Energy Spectrum 

We begin with a brief review of the polarization approximation [ 151, which is 
basically Rayleigh-Schrodinger perturbation theory applied to the interaction be- 
tween atoms or molecules. We emphasize the way in which unphysical states may 
enter into the perturbation expansions. We then derive the spectra of the perturbed 
and unperturbed Hamiltonians for H2 and LiH. The derivation for H2 serves as an 
introduction to the derivation for LiH. The emphasis in both cases is on using 
symmetry to life degeneracies and on locating the unphysical states. Our analysis 
for LiH supplies the details not provided by Morgan and Simon [ 91. It should be 
clear from our analysis that the situation will be the same for more complicated 
systems. 

The Polarization Approximation and Unphysicul States 

Let H be the Hamiltonian of a diatomic system in the nonrelativistic, Born- 
Oppenheimer approximation. We write 

H @ k  = E k @ k ,  where Ek I E k + l  ( 1 )  

and ak denotes a physical eigenfunction of H ,  a fully antisymmetric function of 
the N-electron position and spin coordinates. In addition to physical eigenfunctions, 
H has unphysical eigenfunctions u k  which vanish when the totally antisymmetric 
projection operator &is applied. The unphysical states are important to our analysis. 

In the polarization approximation for the interaction between two atoms, A and 
B, one arbitrarily assigns electrons 1 through NA to atom A, and NA + 1 through 
N = NA + NB to B. Let hA be the Hamiltonian for atom A in the absence of B. It 
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operates only on the electronic coordinates assigned to .4. The customary choice 
for the unperturbed Hamiltonian is H o  = hA + h,. The interaction potential 
between the two atoms is P = H - f?'. Let $A and $B be discrete energy, physical 
eigenfunctions of hA and hB, respectively, and let and E ,  be the respective eigen- 
values. One solution to f ? O P ( O )  = E(O)\k'O) is !P(O) =: $A$B with E'O) = &A + e B .  

Bear in mind that q ( O )  will be antisymmetric under the interchange of a pair of 
electron position-spin coordinates only if both belong to atom A or both belong to 
B, but that it will generally have no symmetry for an interchange of coordinates 
between A and B. 

The basic assumption of the polarization approximation is that *(A) exists such 
that 

( H O +  XP)\E(X) = E(X)*(A),  ( 2 )  

*(A) = 2 and E(X) = 2 X"E("), (3 )  

where 

n=O n=O 

and it is required that 

( * ( O ) l * ( r f ) )  = 0 for n = 1 2 '-> '> . . . (4) 

The expansion parameter X smoothly links \k (O)  to ?I/( X = 1 ), which must be an 
eigenfunction of f? = 8' + if the series converges in some sense. One expects 
the polarization approximation to converge when the perturbation s is "weak." 

Equations (2)-(4) give rise to the familiar set of equalions which determine the 
nth order function and energ:y, *(") and E(") ,  from the lower-order functions and 
energies, e.g., E ( ' )  = (*(')I PI*(')) and (I?' - E'O) )P( ' )  = (E")  - P)*(O). 
Note that from the chosen * ( O )  one can determine only one and one E ( ' ) .  
This is true for higher orders, too, although Jeziorski et al. [15] have shown how 
one may work around this problem. 

It was pointed out by Claverie [ 81 that if the polarization approximation converges 
for the system, the eigenfunction of fi that is obtained by solving the set of equations 
(2)-(4) and going to the limit X = 1 may be one of the u k .  One can understand 
how this occurs by recalling that go, H o  + As with h < 1 ,  and \ k ( O )  have no 
symmetry under the interchange of pairs of electron coordinates belonging to dif- 
ferent atoms. Thus, we cannot represent \ k ( O )  by an expansion in the @k because 
that expansion would be antisymmetric under the interchange of every pair of 
electron coordinates. Similarly, *(A) cannot be totally antisymmetric for X # 1 
and, therefore, must have the form 

when expanded in the eigenfunctions off?. For X = 1 all the DI and all but one of 
the Ck must vanish if the series is to converge to a physical solution of H .  How 
difficult this may be to achieve can be seen by deriving parts of the physical and 
unphysical spectra of f f o  and H for some small molecules at R = 00.  
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We consider H2 and LiH. We have chosen the former because it is the example 
most commonly considered and because we want to emphasize that its spectrum 
is unrealistically simple. We have chosen LiH because it exhibits the overlapping 
physical and unphysical states which are typical of molecules having core electrons. 
For both molecules we exploit the available symmetries to resolve energy degener- 
acies as much as possible. 

'. 

' 

Spectra for H2 

We begin by constructing for H2 the Z: + eigenfunctions of H o  which correspond 
to the levels shown in Figure 1. We assign electron 1 to nucleus a, electron 2 to 
nucleus b. One can easily verify that do does not commute with gl2, the operator 
which interchanges the electron position coordinates 1 and 2, or with i', the operator 
which inverts the electron coordinates in the midpoint of the molecular axis. Thus, 
the lowest energy eigenvalue of Ho is - 1 hartree and the corresponding eigenfunction 
is al,( l )b ls (  2) ,  where al, is the hydrogen 1s function centered on A. We multiply 
this function by the singlet spin function. 

The next eigenvalue of fi0 is at - 5 / 8 hartree. There are four Z + functions. The 
degeneracy is reduced to two by invoking a special symmetry which H o  has for 
homonuclear diatomics. The special symmetry for H2 is that i&2 commutes with - 

- .s0 I ~ 

- 1 . 1 1  

Figure 1. Energy level diagram showing selected eigenvalues of I??' and H0 + P for '2' 
States of Hz at R = 00.  The two lowest energy levels of Ho and the beginning of its 
continuum are represented on the left. The energy levels of H o  + pwhich correlate with 
these 8' states, and are degenerate with them, are represented on the right. In addition, 
there is a level just below the continuum which correlates with no eigenstate of Ho.  Solid 
lines represent physical states, dashed lines, unphysical. The closely spaced lines represent 

the continuum. 
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I?'. The eigenvalues of G12 are f l  and -1. The function a',( 1 )b l , (2)  has the 
eigenvalue + 1, so that we choose the corresponding first excited state functions 
and multiply them by the singlet spin function. The first excited level is doubly 
degenerate. 

The eigenstates of H are also represented in Figure 1, The construction of the 
physical states from the hydrogen atom states should be familiar, but some discussion 
is necessary because we must include the unphysical states and consider which 
eigenstates of H can arise frorn the eigenstates of H o  singled out above. We restrict 
our attention to 2; and 2: functions of the position coordinates. The functions 
of each type are further classified as symmetric or antisymmetric under the inter- 
change of the electron position coordinates. We multiply each function of the po- 
sition coordinates by a spin eigenfunction, and classify them as physical if they 
satisfy the Pauli principle. Thus, in Figure 1 we show the lowest energy ' 2 :  physical 
state and the lowest energy ' 2 :  unphysical state. The latter function is a 
product of al,( 1 )b,,( 2)  - bl,( 1 )al,(2) with the singlet spin function. Note that 
a',( l )b l s (2)  - bl,( l )a l , (2)  is an eigenfunction of ljjI2 and its eigenvalue is + l .  
There are four degenerate, first excited singlet states having the eigenvalue + 1 for 
ljjI2, two physical and two not. The physical continuum begins at -1 / 2  hartree. 

There is one more physical '2' state which we have to mention because there 
is no corresponding eigenstate of fro. It arises from putting both electrons on one 
atomic center, i.e., by electron transfer. Thus, there must be an eigenstate of H 
corresponding to the ground state of H-. The state is doubly degenerate because 
there are two atomic centers. These physical ' 2 +  states appear just below the con- 
tinuum in Figure 1. If we had been considering 32 + states instead of singlets, how- 
ever, we would have had to include unphysical states corresponding to the H -  
spatial function multiplied by triplet spin functions. 

Compare the spectra of I?' and fi for H2 in Figure 1. Note that the nondegenerate 
ground state of fi' correlates with one physical and one unphysical state of fi. The 
doubly degenerate first excited state of H0 correlates with four &states, two physical 
and two not. Figure 1 shows that the interaction between two H atoms does not 
result in a one-to-one mappiing of atomic states onto molecular states, and in that 
sense it is not a problem well suited to solution by elementary perturbation methods. 
If all one knew about this problem were the energy levels shown in Figure 1, one 
would say that the perturbation is strong, not weak. 

Spectra for LiH 

In the analysis for LiH we arbitrarily assign electrons I ,  2, and 3 to Li and 4 to 
H. The Hamiltonian for the Li atoms, h, = hLi, operates on electron coordinates 
1, 2, and 3.  It includes all interactions between these electrons. Similarly, h, = 

h, and operates only on electron coordinate 4. Electrons 1, 2,  and 3 are indistin- 
guishable because they both belong to Li. Electron 4 is distinguishable from the 
first three because it belongs to H. Thus, the product of a physical (fully antisym- 
metric) Li eigenfunction and a H-atom eigenfunction is an eigenfunction of fl0 
with all of the symmetry appropriate for that Hamiltonian. We use spin eigen- 
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functions of Li for electrons 1, 2, and 3, and a hydrogen atomic eigenfunction 
multiplied by a spin eigenfunction for electron 4. We spin couple the product 
functions to get spin eigenfunctions. In Figure 1 we have represented the two lowest 
energy 'Z' levels of Ho and the beginning of the continuum. The lowest energy 
level is at -7.978 hartree, the sum of the Li and H ground-state energies. It is 
nondegenerate. The first excited 'Z+ energy level of f i o  is at -7.910 hartree, which 
is the sum of the Li 2 *P energy and the H ground-state energy. This level is non- 
degenerate. The continuum begins at -7.780 hartree, which corresponds to ionizing 
Li. Note that the discrete states corresponding to ground state Li plus an H excited 
state lie in the continuum. 

The task of constructing the eigenstates of H is somewhat more difficult than for 
Ho. The easy states to locate are those which correlate with the states of ko, including 
the continuum. For example, consider the lowest IZ+ eigenfunction of H o ,  which 
is a spin-coupled product of the Li 2 2S for electrons 1-3 with the H 1s function 
for electron 4. From this one function we can construct three more product functions 
by interchanging coordinate 4 with one of the three coordinates assigned to Li. 
From these four linearly independent functions we can form one totally antisym- 
metric function and three which belong to unphysical irreducible representations 
of the symmetric group. All four functions have the same energy as the lowest 
energy eigenfunction of H o  at infinite nuclear separation. We can construct in the 
same manner physical and unphysical eigenfunctions which correlate with the other 
discrete eigenstates of fro. 

Many other 'Z' eigenstates of H arise from the exchange of pairs of electrons 
between the two atoms, but they correlate with no eigenstates of H o  because they 
arise from an unphysical state of Li. Recall that the H electron is distinguishable 
from the Li electrons in the polarization approximation. The lowest energy un- 
physical state of Li is totally symmetric and can be thought of as a ls3 state. We 
use the notation, however, ls2[ls] to remind us that one of the 1s electrons is 
different. We have found an upper bound of -8.59 1 hartree for the energy of this 
state by using as a trial function the symmetric projection of exp [ - ( rl r1 + 3ir2 + 
c3r3)] and minimizing the energy with respect to the rs .  Thus, the lowest energy 
unphysical eigenstate of f? corresponds to a Li ls2 [ Is] plus an H 1s. The energy 
of this state is less than -9.091 hartree. The state is nondegenerate because we 
require that the wave function be antisymmetric in the electron coordinates 1, 2, 
and 3 and that the state be a singlet. The first excited state corresponds to the Li 
ls2 [ Is] plus a H 2s or 2p. This level is doubly degenerate. An infinite number of 
discrete states can be constructed in this manner by combining the Li ls2[ Is] state 
with the discrete excited states of H. All of these states have lower energy than the 
physical ground state. Furthermore, a continuum of unphysical states of H can be 
constructed by combining the Li Is2[ Is] state with the continuum states of H. This 
unphysical continuum begins below -8.591 hartree, which is below the energy of 
the lowest physical state. Thus, the physical states we want to study by perturbation 
methods are higher in energy than an infinite number of unphysical, discrete states 
and are buried in a continuum of unphysical states. 
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In addition to the states described above. there are discrete. physical eigenstates 
of l j  which correspond to no eigenstates of I j " .  They are constructed by transferring 
an electron from one atom to the other. making a positive and a negative ion. 
There is the discrete physical ' Z +  state just below the physical continuum which 
corresponds to the Li Is' state. I t  has an energy 
of -7.807 hartree and is included in Figure 2 .  There is. also. a state which arises 
from the transfer of the H electron to the Li atom to form the physical Li ground 
state function. but it lies in the physical continuum since the ionization potential 
of H exceeds the electron affinity of Li (0.023 hartree). In addition to this physical 
Li state. unphysical states with the configurations I s2  [ 1 s]  2s, I s' [ Is] 2p. etc., may 
exist. although we have no evidence that they do. 

Figure 2 summarizes our results for the lowest, discrete. ' Z  eigenstates of 11" 
and Fi for LiH in the limit R = r,. In  addition. we have indicated where the 
physical and unphysical continua begin. We do not believe the spectra will be 
simpler at finite R .  Note that where f i io  gives one discrete state. creates four. In  
addition. I-' creates an infinite number of discrete. unphysical states lying below 
the lowest physical state. plus an unphysical continuum which blankets the physical 
states. The interaction between Li and H must be very strong. 

To understand how I-'can be so strong yct look so weak, it is helpful to consider 
the LiH problem in more physical terms. We have to assume that the H atom's 
electron is distinguishable from those of thc Li atom to be consistent with the 
polarization approximation. This means that the H electron does not have to obey 

Is' state combined with the H 

-7.6 

-7.0 

- -8.0 
L? 
a, 
a, 
L -8.2 
c' 
L m 
1 - 8 . 4  - 

Figure 2. Energy level diagram showing selected eigenvalues o f  [I" and [lo + 1: for ' 2  I 
States of I.iH at R - 7.. The closely spaced vertical lines represent the unphysical contin- 
uum. The other conventions are explained in the caption to Figure I .  The two lowest 
energy. unphysical levels of 11" i I: are also represented on the right. The single physical 

state just helow the continuum correlates with no state of /lo. 
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the Pauli principle, it can fall into the Li core. The Pauli principle forbids it to do 
so in the real world, so that we cannot see the actual strength of the interaction. 

It should be clear without discussion of other examples that whenever one of the 
interacting atoms has a core, there will be discrete unphysical states lower in energy 
than the physical ground state of the system, and the physical states will lie in a 
continuum of unphysical states [ 91. The H2 problem, as can be seen by comparing 
Figures 1 and 2, is atypical and, therefore, a poor test problem for perturbation 
methods. 

We find it difficult to look at Figure 2 and believe that one can determine any 
of the physical eigenenergies and eigenfunctions of H by perturbation methods 
starting from the eigenstates of fro. The situation would be different if the unphysical 
states could not mix with the physical ones. This would happen if one chose the 
unperturbed problem so that electron indistinguishability were maintained for all 
values of the coupling parameter A. The problem is to do this and to keep the 
separated atoms as the unperturbed problem. Jansen [ 161 and others [ 171 have 
tried to do it by transforming H0, but there is no agreement on the precise form 
of the transforming operator. 

Eisenschitz-London Class Theories 

We distinguish two major classes of EPT based on the concept of a primitive wave 
function, i.e., a function which is not an eigenfunction of H ,  but which, when 
symmetry projected, becomes an eigenfunction [ 181. When only one symmetry 
projection of the primitive wave function is an eigenfunction of H ,  we say that it 
belongs to the Eisenschitz-London ( EL) class [ 1 1,19 1. If each symmetry projection 
produces an Heigenfunction, we say that it belongs to the Hirschfelder-Silbey ( HS) 
class [ 20,2 I]. In this section we analyze only those theories which determine an 
EL class primitive function as the eigenfunction of an effective Hamiltonian. 

The goal of our analysis is to determine the extent to which the various exchange 
perturbation theories transform the intermolecular perturbation problem into one 
in which there is a one-to-one mapping of the discrete unperturbed states onto the 
perturbed states, and vice versa. In effect, we have to solve the perturbation problem 
to infinite order in the limit that the expansion parameter X = 1. This has meant 
that we could only consider theories which define the primitive function as the 
eigenfunction of an effective Hamiltonian. Theories which are not based explicitly 
on the solution of an eigenvalue problem, or which have only been defined by a 
perturbation expansion, have not been studied. The original EL theory [ 1 11, which 
explicitly determines the wave function only through first order, is one we could 
not study. 

Hirschfelder 's Equation 

Hirschfelder [ 22 ] based his version of the EL and Van der Avoird [ 231 theories 
on his Eq. ( 3 ) ,  i.e., on finding the eigenfunctions and eigenvalues of the operator, 
in our notation, H o  + A P  - ( E ,  - E Y ) ) A .  We focus here on the operator 
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since the other term acts merely as a level shift operator, the effect of which can be 
taken into consideration later. One can easily show that if F is an eigenfunction of 
A?H, then A F  is an eigenfunction of H .  

The spectrum of kH is easily determined by evaluating its matrix elements with 
the physical and unphysical eigenfunctions of H defined in the previous section. 

and ( uk I A?H I ul) = ( u k  I Eio I ul). It is useful to transform the unphysical functions 
so that the matrix of ( u k  I H o  I u ~ )  elements is diagonalized. Let the resultant eigen- 
functions and eigenvalues be respectively u k  and Wk. The matrix of 2H in the @k, 
Uk-basis is zero above the diagonal, and, therefore, the eigenvalues of 2?H are the 
physical eigenvalues of H plus the Ok. Note that eigenfunctions belonging to the 
Wk, provided that they are not degenerate with physical eigenstates, can have no 
antisymmetric projection. 

The spectrum of kH is considerably simpler than that found in the polarization 
approximation. By the separation theorem [ 241, the eigenvalues wk, ordered so 
that W k  I Wk+l, must be upper bounds to the similarly ordered eigenvalues of I?’. 
At infinite R ,  this means that 2?‘H has, at worst, two eigenvalues, Ek = EP’ and 
Wk = EP’, where H0 has one. The discrete unphysical states below the lowest 
physical states, and the continuum of unphysical states in which the physical states 
are buried in the pola-zation approximation, are riot in the lower spectrum 
of kH. To this extent kH is a better starting point for a perturbation theory of 
intermolecular interactions than is ko + p; its speclrum correlates better with 
that of a’. 

One can say more about the relationship between the Wk and the E(kO’ at infinite 
R .  Note that the Wk are the eigenvalues of (  I - A)Xi0( 1 - A )  since I - 2i = c k  

(uk)(ukl. Thus, by the variational theorem, o1 I ( q y ’  I (  1 - A)Xio( 1 - 
A)l\ky’). Note, also that 1 - A = 1 - c k  lok)(@kl. Let 8 = I - l@,)(aIl. 
By the separation theorem [ 241, the eigenvalues of 81i08, ordered from smallest 
to largest, must be lower bounds to the Wk and upper bounds to the EP’. Further- 
more, since a k  = A\kio’/( *Lo’ I A I qp’ ’/’ at infinite R ,  the \kp’ diagonalize 

One may verify that the first of these is identical to the upper bound to w1 given 
above. In the Appendix we show that, for LiH, (\k‘ ,O’  I &Hog I *I“’) lies in the 
physical continuum. Thus, the lowest eigenvalue of 88O8 for LiH must be greater 
than or equal to EY’, and there is, consequently, a one-to-one correspond- 
ence between the lowest eigenvalue of 2?H and the lowest eigenvalue of fro. 
Unfortunately, this correspondence is achieved only because LiH has so few 
electrons. 

The dependence of (\ky’ I $Hog I *I“’) on the number of electrons follows from 
the definition A = a(NA,  NB) Z b ( - l ) ‘ $ ’ p ^ ,  where ~ ( N A ,  NB) = N,!INB!/N! and 
the sum is over all interatomic interchanges of position-spin coordinates. When 
R = 00, the functions p^\kP’ and p ’̂\k(ko’ do not overlap if p̂  # f i r ,  which means that 
( \ k $ O ’  lp^ffop^r I \ k \ O ’ )  vanishes. Therefore, 

We find that ( @ k  I 9~1 a/) = Eksk,/, ( @ k  I 2 H  I .I) = 0, (uk I 2 H l @ / )  = ( u/lEio I @/)> 

8H08. The eigenvalues of $Hog are (\k )O’ I 1 $Hog I q?)) and EY’, E?’, . . . . 
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The coefficient a(NA,  N B )  is only 1 / 4  for LiH, but 1 / 184,756 for Ne2. Thus, as 
the total number of electrons in the system increases, we can expect the matrix 
element in Eq. (7)  to approach E?' from above. This means that w 1  approaches 
E',"' and that 2?H is going to have a pair of almost degenerate eigenvalues where 
I?' has one, We conclude that f f H  as a starting point for the development of a 
perturbation theory of intermolecular interactions is a major step in the right di- 
rection, but it is not a complete solution to the problems seen in the polarization 
approximation. 

Up to this point we have ignored the effect of that the level shift operator 
- (El  - E\") A has on the spectrum of 2?H. Basically, it shifts all of the physical 
eigenvalues of 2?H higher if the interaction energy is negative, lower if positive. 
Thus, if the ground state potential curve is attractive, the physical eigenvalues are 
shifted in the direction of the W k ,  thus increasing the likelihood that there will be 
two eigenvalues of 2?H, whereas fi0 has only one. The level shift operator was 
introduced by Hirschfelder to make the first-order energy equal to the Heitler- 
London result. 

Peierls [ 25 ] developed an effective Hamiltonian for symmetry adapted pertur- 
bation theories which is related to 2 ? ~ .  Peierls Hamiltonian is 2 p  = Po + @p, 
where @ is the standardization operator. The one property of that is important 
to us is that A@ = A. Operators having this property are easily constructed from 
permutation operators [ 261. When one calculates the matrix elements of 2?p with 
the @ k ,  u k  functions, one finds that they have exactly the same values as those of 
2?H given above. Thus, even though @ # A,  the Hirschfelder and Peierls Ham- 
iltonians must have the same eigenfunctions. 

The Hirschfelder and Peierls effective Hamiltonians are special cases of the general 
Hamiltonian defined in Klein's Eq. (C. 1 ) [ 71, 2?G = H0 + P + ( 1 - A )f, where 
f i s  an arbitrary operator. The effect of this operator can be determined by calculating 
the matrix elements of with the @k and u k .  The w k  are then determined by 
diagonalizing the matrix of ( u k  I fiio + p +A u,) . Clearly, a suitable choice off can 
give W k ' s  which are higher in energy than the discrete, bound states of H .  The 
problem is to choosefso that the eigenfunctions of discrete states are related to 
the fir', so that the first order energy is the Heitler-London energy, etc. 

Localized Wave Function Hamiltonian 

An EL class perturbation theory has been developed on the basis of the localized 
wave function ( LW ) effective Hamiltonian [ 191. The LW equation is not a special 
case of the general EL effective Hamiltonian 2?~ defined above. Basically, an EL 
LW primitive function F is defined to be least distorted from a \kio' in the sense 
that it minimize ( Q I  fi0 I F ) /  (FI F )  under the constraint that A F  is proportional 
to one and only one @ k .  In contrast, there is no requirement in the theories con- 
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sidered in the previous subsection that there be any optimum relationship between 
the primitive function and \ky'.  The EL Lw-based perturbation theory gives the 
same wave function through first order, and the same energy through second order, 
as the original EL theory and that based on 2??H. In higher orders, differences 
appear. 

The effective Hamiltonian for EL LW s is 

Note that QL is a projection operator. One can prove that if F is an eigenfunction 
of 2?L, then A.F is an eigenfunction of Hand is least distorted from an eigenfunction 
of H o  in the sense defined above. Only one projection of F is an eigenfunction of 
H .  In what follows, we assume that A.F K G I  unless otherwise stated. 

The spectrum of 2?L can be deduced with the aid of QL and PL = 1 - QL. Note 
that from (8)  it follows that QL = I@ll)(@ll + C k  I u k ) ( u k I ,  and that PL = 

C k z l  I @ k ) ( @ k ) .  It follows from (8)  that QL2?LQL = Q 1 , H o Q L ,  P L 2 L P L  = P L H P L ,  

and PLPLQL = 0. Thus, the discrete spectrum of 2~ includes the discrete eigen- 
values of PLHPL, i.e., all of the physical eigenvalues of H except El. The rest of 
the discrete spectrum of 2?L is determined by the eigenvalues of QLH0QL, which, 
by the separation theorem [ 241, must be upper bounds to the eigenvalues of 8'. 
Thus, at large R, the lowest eigenstate of H o  correlates with the lowest of The 
higher energy eigenstates of Po may correlate, however, with two eigenstates of 
k'L for the same reasons that each eigenstate of H o  could correlate, in general, with 
two eigenstates of 2?H. Thus, the discrete spectrurn correlates better with the 

The only other EL class EPT which defines its primitive function so that it has an 
optimized relationship to \ky' is due to Chipman [27]. He defines his primitive 
function to have maximum overlap with \k y ' . Unfortunately, his primitive function 
is not the eigenfunction of an effective Hamiltonian, so that we cannot determine 
its spectrum. 

We conclude that EL class EPTS can completely eliminate the problems noted by 
Claverie and by Morgan and Simon: the Hirschfelder, Peierls, and LW effective 
Hamiltonians have no unphysical eigenstates lower in energy than the lowest states 
of H0 and no continuum of unphysical states overlaying the lowest physical states. 
It is not obvious that all EL class theories achieve this improvement relative to the 
polarization approximation. None of the effective Hamiltonians examined, however, 
gives a one-to-one of mapping of its discrete states onto those of fi0 for larger 
systems. For the specific,example of LiH, because il. has so few electrons, at least 
the two lowest discrete states of kH, 2?p, and 2, map onto the two lowest of H o  
at infinite separation. Only for the LW effective Harniltonian, however, is it clear 
for larger systems that there is just one eigenstate in correspondence with the lowest 

Hirschfelder-Silbey Class Theories 
In the HS class of exchange perturbation theories each symmetry projection of 

the primitive wave function is required to be an eigenfunction of H [ 20,2 11. A 

spectrum than does the 2?H spectrum by one state, the lowest. 

of H O .  
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desirable consequence of this requirement is that an HS class perturbation theory 
must give correctly the asymptotic 1/R expansion. For this reason it has been 
argued that HS class theories are the only acceptable perturbation theories for in- 
termolecular interactions [ 28,291. On the other hand, Chipman [ 301 has argued 
that requiring the correct asymptotic behavior is as arbitrary as any other require- 
ment that one might impose. We show below that two HS class effective Hamil- 
tonians do almost nothing to improve on the polarization approximation. Neither 
has an effect on the discrete unphysical states below the physical states, nor on the 
unphysical continuum, which is probably why they give the correct asymptotic 
1 / R behavior. 

Hirsch felder s Hamilton ian 
The original HS perturbation theory was reformulated by Hirschfelder [ 221, [see 

his Eq. (40)] as the problem of finding the eigenfunction F of an effective Ham- 
iltonian. His Hamiltonian can be defined in terms of the operators ;;, which form 
a matric basis for the irreducible representations of the symmetric group [ 3 I]. For 
our purposes one needs to know only that the superscript p labels the irreducible 
representations, that = 6,,6,k;$. Hirschfelder’s 
Hamiltonian is 

is one of the E;, and that 

2~ = Ei - 2 (Eft] - EY));;  (9)  
P,l 

where EY’ is the lowest energy, physical eigenvalue of I?’, the sum is over all 
irreducible representations of the symmetric group for the specific system, and over 
all rows of each irreducible representation. The symbol Efll represents the energy 
eigenvalue of fi belonging to the pth irreducible representation and correlating with 
EY’ at infinite separation. It is important to recognize that any eigenfunction of 
fi is also an eigenfunction of 2?H. The effect of the operator sum in (9) is to shift 
all H eigenvalues belonging to the same irreducible representation by the same 
amount. It also makes degenerate all eigenfunctions of H which correlate with 

. This permits these functions to mix in forming F ,  but how they mix is de- 
termined by the perturbation equations. The Hirschfelder Hamiltonian has no 
effect on the unphysical discrete and continuum states, which means that they pose 
the same problem that they did in the polarization approximation. For this reason 
we believe that the original HS theory is no improvement on the polarization ap- 
proximation. 

*(O) 

Localized Wave Function Hamiltonian 
An HS class LW has been defined [ 2 1,321 and a perturbation theory has been 

based on it. The HS LW primitive function F is defined to be least distorted from 
\kY’ by requiring that it minimize (FIB’ I F ) / (  FI F )  and belong to the HS class 
of primitive functions. Let 
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where the sum is over those values of p and i for which (FI P:: 1 F) # 0. It has been 
shown that if F is an eigenfunction of 

(10) 

then ZEF, if it does not vanish, is an eigenfunction of H and F is least distorted 
from !Pio) in the above sense [32]. Thus, QL is a sum over a subset of the H 
eigenfunctions, a subset which we call here the HS set. 

All eigenfunctions of fiexcept those belonging to the 13s set are also eigenfunctions 
of 2?L. The entire effect of the QI,PQL term in ( 10 ) is to mix the functions in the 
HS set and change the energy eigenvalues. It leaves the discrete and continuum 
unphysical states where they were in the polarization approximation. The lowest 
energy HS primitive function is higher in energy than the lowest energy, unphysical 
states and is buried in the unphysical continuum. Thus, the HS LW theory is no 
improvement on the polarization approximation. 

Although neither of the HS class effective Hamiltonxans represents an improve- 
ment on the polarization approximation, this does not mean that no HS class theory 
can improve significantly on the polarization approximation. One can see that the 
only change required would be to add to A?'H or A?'L an operator which would raise 
the energies of all u k  except those in the HS set. Unfortunately, we have yet to find 
a suitable operator. 

2 L  = H o  + P - & P O L  

Discussion 

We have focused in this paper on the spectra of N-electron effective Hamiltonians 
which can be used as starting points for the development of a perturbation theory. 
We have restricted our study to those Hamiltonians which exploit only the electronic 
exchange symmetry, a symmetry common, of course, to all electronic systems. Our 
narrow focus has been rewarded, however, by allowing us to see what has and has 
not been accomplished by some proposed EPTS. It remains to be seen if the failings 
of any of these theories can be corrected; knowing how they fail is a first step in 
that direction. In the following paragraphs we touch on aspects of the problem not 
discussed elsewhere in this paper. 

We have not considered how site symmetry can be exploited because we wanted 
to see what could be accomplished using only the electronic exchange symmetry. 
We excluded it, also, because site symmetry and exchange symmetry can combine 
to give other symmetries, e.g., as in our discussion of the H2 states in the second 
section. Site symmetry has been exploited by Mann and Privman [ 331 to develop 
a perturbation theory which, although apparently limited to one-electron problems, 
has a very desirable property. It has no bound state, spurious (=  unphysical) so- 
lutions. Perhaps their approach could be incorporated into the N-electron problem 
and exploited along with exchange symmetry. It might be the way to get rid of the 
unphysical states still left in the EL EPTs. 

We remarked in the previous subsection that the HS class of EPTs give the correct, 
asymptotic 1 /R expansion of the interaction energy. The EL class theories give an 
incorrect asymptotic behavior through second order, which is the basis for the ar- 
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gument that they are inferior to the HS class [ 291. However, it has been found in 
calculations on H2 that when the third order energy is added, the error in the EL 
interaction energies at R 2 8 bohr are reduced by 75% or more [ 341. This suggests 
that the correct asymptotic behavior can be obtained by summing the energy to 
higher order. If this is the case, do we really have to require that the second-order 
energy give the correct asymptotic behavior? 

A major assumption that we have made is that the less disparity there is between 
the spectra of the unperturbed and perturbed Hamiltonians, the better behaved the 
perturbation theory is likely to be. We have numerical evidence, unpublished cal- 
culations on HeH+, that suggest that this is a reasonable assumlption, but it is an 
assumption that should be tested more generally. We have assumed, also, that if 
we can shift the energies of the unphysical solutions into the physical continuum, 
they cannot affect the physical solutions. This assumption should be tested, too. 
We have omitted from our analysis any consideration of the effect of finite R, which 
should certainly be investigated. We plan to study these questions using a model 
in which the Hamiltonians and other operators are transformed into matrices in a 
basis of N-electron functions, each of which is the product of two Slater determinants, 
one for each group. We have completed a prototype, bideterminantal, configuration 
interaction program which will permit us to study small diatomics using any of the 
perturbation theories considered in the third and fourth sections. The program 
cannot produce a continuum of unphysical states like that pictured in Figure 2, 
but with tens of thousands of configurations, most will be unphysical. 

Although we have considered in this paper only the limit of infinite separation 
in diatomic systems, it has been possible to reach certain, specific conclusions. It 
is clear from comparing Figures 1 and 2 that calculations on systems made up only 
of H and He atoms are not realistic tests of perturbation methods. We have shown 
that certain EL class EPTS dramatically, but not totally, alleviate the problems with 
unphysical states encountered in the polarization approximation. The HS class EPTS, 
however, were ineffectual in this regard. In short, we have learned a bit more about 
the nature of the intermolecular perturbation problem. 

Appendix 

The definition of 8 in the third section and Eq. (7)  are the starting points for 
estimating lower bounds to the W k  at R = co. Let X k , [  = \ k k  and X k , ,  = i n \ k k  , 
where $,, interchanges electrons between A and B. There are 1 / a ( & ,  N B )  distinct 
interchange operators. 

be the kth Li state function 
with Ms = +! and let bs be the downspin, 1s function of 13. We can write 

2, 3 ,  l ) ,  . . . , and Xk,4 (  1 ,2 ,  3 ,4 )  = X k , / (  1, 2 , 4 ,  3 ) .  Thus, the totally antisymmetric 
eigenfunctions of H at R = co are @k = 4 [ X k J  - x k , 2  - Xk.3 - X k , 4 ] .  Using this 
notation, and noting that the value of the matrix element depends only on the 
relative spin orientations, Eq. (7)  becomes for LiH (\k‘,o’ I sHoŝ  I \k‘,o’) = 16 EY’ + 
6 ( X 1 , 2  I H0I X 1 , 2 )  since the matrix element of H o  with x ~ , ~  is EI”, and with each 

( 0 )  ( 0 )  

For LiH it helps to be more specific. Let 

Xk, l (  1, 2, 3, 4 )  = ( 1 / f i ) [ + k a (  1, 2, 3)bg(4) - 6 k & a ( 4 ) ] ,  Xk ,2 (  1 ,  2, 3, 4 )  = X k , / ( 4 ,  
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of the other three it is ( x ~ , z ) ~ ~ I X I , ~ )  = (41a(4, 2, 3)bp(l)ll?o14~a(4, 2, 
3)bp( 1 )). In ko electrons 1, 2, and 3 are on Li, and 4 is on H. Let t, be the kinetic 
energy operator for electron i. Since the atoms are infinitely far apart, 

( x i , 2 1 H o I x i , 2 )  = (d)ia(4, 2, 3 ) 1 h ~ + ( 2 ,  3) +- &#d4> 2, 3))  + (bp(1)Iiilbp(1)) 
By the virial theorem [35], (d)la(4, 2, 3)l&\41a(4,  2 ,  . 3 ) )  = - iE(Li  ls22s). One 
can easily show that (41a(4, 2, 3)IhL1+(2, 3)141e(4, 2, 3 ) )  2 E(Li Is2) .  Thus, we 
conclude that (\k‘,o’ I $Hog I \ky’) 2 -5.195 hartrees, which is well up in the phys- 
ical continuum. This means, referring back to the argument in the fourth section, 
that w1 2 E2 . 

The above argument can be extended for LiH to show that wl 2 E:’’ by setting 
& = 1 - 1 aI)( aI I - I aZ)( a2 1 .  Since R = co and the first excited state of Li has 
P symmetry, (al [I?’ I a2) = 0, and we find that both (\ky’ 1 $Hog I \ky’) and 
( \k$’’ I $Ho$ I Sy’)  are in the physical continuum. 

A similar argument works for obtaining lower bounds on the eigenvalues of 
&fioQL. One simply replaces QL with 1 - I @2) (% I - I a3) ( a3 I and calculates 
the matrix elements of QLfioQL with the Sfp’. 

( 0 )  

Bibliography 

[ I ] P. R. Certain and L. W. Bruch, in Theoretical Chemistry, W.B. Brown, Ed. (Buttenvorth, London, 

[ 21 J. G. Stamper, Specialist Periodical Reports, Theoretical Chemistry (Chemical Society, London, 

[3]  A. T. Amos, Advances in Theoretical Chemistry (Academic, New York, 1976), Vol. 2, pp. 1-66. 
[ 41 P. Claverie, Intermolecular Interactions: From Diatomics to Biopolymers, B. Pullman, Ed. ( Wiley, 

[ 5 ] P. Amghini, Intermolecular Forces and Their Evaluation by Perturbation Theory ( Springer-Verlag, 

[6] B. Jeziorski and W. Kolos, Int. J. Quantum Chem. 12, Suppl. 1, 91 (1977). 
[7]  D. J. Klein, Int. J. Quantum Chem. 32, 377 (1987). 
[8]  P. Claverie, Int. J. Quantum Chem. 5 ,273  (1970). 
[9] J. D. Morgan 111 and B. Simon, Int. J.  Quantum Chem. 17, 1 143 (1980). 

1972), MTP Review of Science, Physical Chemistry, Vol. I, p. 113. 

1975), Vol. 2, pp. 66-82. 

New York, 1978), pp. 69-305. 

Berlin, 1981). 

[ l o ]  S. C. Wang, Phys. Z. 28, 663 (1927). 
[ 11 ] R. Eisenschitz and F. London, 2. Phys. 60,491 ( 1930). 
[ 121 R. Ahlrichs, Chem. Phys. Lett. 4 1 , 7  (1976). 
[ 131 C. Hemng and M. Flicker, Phys. Rev. 134, A362 ( 1964). 
[ 141 E. Shipsey, Int. J. Quantum Chem. 25, 891 (1984). 
[ 151 B. Jeziorski, W. A. Schwalm, and K. Szalewicz, J. Chem. Phyr;. 73,6215 ( 1980). 
[ 161 L. Jansen, Phys. Rev. 162, 63 (1967). 
[ 171 W. B. Brown, Chem. Phys. Lett. 2, 105 (1968); M. Berondo, Mol. Phys. 26, 329 (1973); N. 

Suzuki, Int. J. Quantum Chem. 12, 19 (1977); B. Attalay and A. Mann, Chem. Phys. Lett. 45, 
487 (1977). 

[ 181 H. Primas, in Modern Quantum Chemistry, 0. Sinanoilu, Ed. (Academic, New York, 1965), Vol. 

[ 191 W. H. Adams and E. E. Polymeropoulos, Phys. Rev. A 17, 18 (1978). 
[20] J. 0. Hirschfelder and R. Silbey, J. Chem. Phys. 45,2188 ( 1966); J. 0. Hirschfelder, Chem. Phys. 

[21] W. H. Adams and E. E. Polymeropoulos, Phys. Rev. A 17, 24 (1978). 
[22] J. 0. Hirschfelder, Chem. Phys. Lett. 1, 363 (1967). 

2, pp. 48-49. 

Lett. 1 ,363  (1967). 



INTERMOLECULAR INTERACTIONS 547 

[23] A. Van der Avoird, J. Chem. Phys. 47,3649 (1967). 
[24] E. A. Hylleraas and B. Undheim, 2. Phys. 65,758 (1930); J. K. L. MacDonald, Phys. Rev. 43, 

[25] R. Peierls, Proc. Roy. SOC. London A 333, 157 ( 1973); B. Atalay, A. Mann, and R. Peierls, ibid., 

[26] W. H. Adams, Chem. Phys. Lett. 68, 51 1 (1979). 
[27] D. M. Chipman, J. Chem. Phys. 66, 1830 (1977). 
[28] N. Suzuki and Y. J. I’Ihaya, Chem. Phys. Lett. 36,666 (1975). 
[29] W. Kutzelnigg, J. Chem. Phys. 73,343 (1980). 
[30] D. M. Chipman, Chem. Phys. Lett. 40, 147 (1976). 
[ 3 1 ] D. J. Klein, in Group Theory and Its Applications, E. M. Loebel, Ed. (Academic, New York, 1975 ) , 

[32] W . H .  Adams,Chem. Phys. Lett. 11,441 (1971). 
[33] A. Mann and V. Privman, Phys. Rev. Lett. 49,1068 (1982); Chem. Phys. Lett. 106,447 (1984). 
[ 341 W. H. Adams, M. M. Clayton and E. E. Polymeropoulos, Int. J. Quantum Chem. S18,393 ( 1984). 
[35] J. C. Slater, J. Chem. Phys. 1 ,  687 (1933). 

830 (1930). 

335,251 (1973). 

pp. 2-93. 

Received April 18, 1990 


