From ecab322ddaf2bd0f976861f97bee167a13a4a07c Mon Sep 17 00:00:00 2001 From: AntoineMarie2 Date: Sun, 19 Jul 2020 12:12:50 +0200 Subject: [PATCH] few changes --- RapportStage/Rapport.tex | 25 +++++++++++++++---------- 1 file changed, 15 insertions(+), 10 deletions(-) diff --git a/RapportStage/Rapport.tex b/RapportStage/Rapport.tex index a6d6608..293b1e2 100644 --- a/RapportStage/Rapport.tex +++ b/RapportStage/Rapport.tex @@ -306,10 +306,10 @@ K_b(1)\phi_a(1)=\left[\int\dd\vb{x}_2\phi_b^*(2)\frac{1}{r_{12}}\phi_a(2) \right \subsection{M{\o}ller-Plesset perturbation theory} -The Hartree-Fock Hamiltonian \eqref{eq:HFHamiltonian} can be used as the zeroth-order Hamiltonian of the equation \eqref{eq:SchrEq-PT}. This partitioning of the Hamiltonian leads to the so-called M{\o}ller-Plesset (MP) perturbation theory \cite{Moller_1934}. The discovery of a partitioning of the Hamiltonian that allowed chemists to recover a part of the correlation energy (i.e. the difference between the exact energy and the Hartree-Fock energy) using perturbation theory has been a major step in the development of post-Hartree-Fock methods. This yields the Hamiltonian $\bH(\lambda)$ of the equation \eqref{eq:MPHamiltonian} where the two-electron part of the Fock operator $f(i)$ has been written $V_i^{(scf)}$ for convenience. +The Hartree-Fock Hamiltonian \eqref{eq:HFHamiltonian} can be used as the zeroth-order Hamiltonian of the equation \eqref{eq:SchrEq-PT}. This partitioning of the Hamiltonian leads to the so-called M{\o}ller-Plesset (MP) perturbation theory \cite{Moller_1934}. The discovery of a partitioning of the Hamiltonian that allowed chemists to recover a part of the correlation energy (i.e. the difference between the exact energy and the Hartree-Fock energy) using perturbation theory has been a major step in the development of post-Hartree-Fock methods. This yields the Hamiltonian $\bH(\lambda)$ of the equation \eqref{eq:MPHamiltonian} where the two-electron part of the Fock operator $f(i)$ has been written $V_i^{HF}$ for convenience. \begin{equation}\label{eq:MPHamiltonian} - H(\lambda)=\sum\limits_{i=1}^{n}\left[-\frac{1}{2}\grad_i^2 - \sum\limits_{k=1}^{N} \frac{Z_k}{|\vb{r}_i-\vb{R}_k|} + (1-\lambda)V_i^{(scf)}+\lambda\sum\limits_{i