Merge branch 'master' of github.com:pfloos/EPAWTFT

This commit is contained in:
Hugh Burton 2020-12-02 09:46:30 +00:00
commit e02ac3a4b3
3 changed files with 389 additions and 30 deletions

View File

@ -6,7 +6,7 @@
%Control: page (0) single
%Control: year (1) truncated
%Control: production of eprint (0) enabled
\begin{thebibliography}{133}%
\begin{thebibliography}{148}%
\makeatletter
\providecommand \@ifxundefined [1]{%
\@ifx{#1\undefined}
@ -50,6 +50,154 @@
\providecommand \BibitemShut [1]{\csname bibitem#1\endcsname}%
\let\auto@bib@innerbib\@empty
%</preamble>
\bibitem [{\citenamefont {Szabo}\ and\ \citenamefont
{Ostlund}(1989)}]{SzaboBook}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {A.}~\bibnamefont
{Szabo}}\ and\ \bibinfo {author} {\bibfnamefont {N.~S.}\ \bibnamefont
{Ostlund}},\ }\href@noop {} {\emph {\bibinfo {title} {Modern quantum
chemistry: {Introduction} to advanced electronic structure}}}\ (\bibinfo
{publisher} {McGraw-Hill},\ \bibinfo {year} {1989})\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Jensen}(2017)}]{JensenBook}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {F.}~\bibnamefont
{Jensen}},\ }\href@noop {} {\emph {\bibinfo {title} {Introduction to
Computational Chemistry}}},\ \bibinfo {edition} {3rd}\ ed.\ (\bibinfo
{publisher} {Wiley},\ \bibinfo {address} {New York},\ \bibinfo {year}
{2017})\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Cramer}(2004)}]{CramerBook}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {C.~J.}\ \bibnamefont
{Cramer}},\ }\href@noop {} {\emph {\bibinfo {title} {Essentials of
Computational Chemistry: Theories and Models}}}\ (\bibinfo {publisher}
{Wiley},\ \bibinfo {year} {2004})\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Helgaker}\ \emph {et~al.}(2013)\citenamefont
{Helgaker}, \citenamefont {J{\o}rgensen},\ and\ \citenamefont
{Olsen}}]{HelgakerBook}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {T.}~\bibnamefont
{Helgaker}}, \bibinfo {author} {\bibfnamefont {P.}~\bibnamefont
{J{\o}rgensen}}, \ and\ \bibinfo {author} {\bibfnamefont {J.}~\bibnamefont
{Olsen}},\ }\href@noop {} {\emph {\bibinfo {title} {Molecular
Electronic-Structure Theory}}}\ (\bibinfo {publisher} {John Wiley \& Sons,
Inc.},\ \bibinfo {year} {2013})\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Parr}\ and\ \citenamefont {Yang}(1989)}]{ParrBook}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {R.~G.}\ \bibnamefont
{Parr}}\ and\ \bibinfo {author} {\bibfnamefont {W.}~\bibnamefont {Yang}},\
}\href@noop {} {\emph {\bibinfo {title} {Density-Functional Theory of Atoms
and Molecules}}}\ (\bibinfo {publisher} {Oxford},\ \bibinfo {address}
{Clarendon Press},\ \bibinfo {year} {1989})\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Fetter}\ and\ \citenamefont
{Waleck}(1971)}]{FetterBook}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {A.~L.}\ \bibnamefont
{Fetter}}\ and\ \bibinfo {author} {\bibfnamefont {J.~D.}\ \bibnamefont
{Waleck}},\ }\href@noop {} {\emph {\bibinfo {title} {Quantum Theory of Many
Particle Systems}}}\ (\bibinfo {publisher} {McGraw Hill, San Francisco},\
\bibinfo {year} {1971})\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Martin}\ \emph {et~al.}(2016)\citenamefont {Martin},
\citenamefont {Reining},\ and\ \citenamefont {Ceperley}}]{ReiningBook}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {R.}~\bibnamefont
{Martin}}, \bibinfo {author} {\bibfnamefont {L.}~\bibnamefont {Reining}}, \
and\ \bibinfo {author} {\bibfnamefont {D.}~\bibnamefont {Ceperley}},\
}\href@noop {} {\emph {\bibinfo {title} {Interacting Electrons: Theory and
Computational Approaches}}}\ (\bibinfo {publisher} {Cambridge University
Press},\ \bibinfo {year} {2016})\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Piecuch}\ \emph {et~al.}(2002)\citenamefont
{Piecuch}, \citenamefont {Kowalski}, \citenamefont {Pimienta},\ and\
\citenamefont {Mcguire}}]{Piecuch_2002}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {P.}~\bibnamefont
{Piecuch}}, \bibinfo {author} {\bibfnamefont {K.}~\bibnamefont {Kowalski}},
\bibinfo {author} {\bibfnamefont {I.~S.~O.}\ \bibnamefont {Pimienta}}, \ and\
\bibinfo {author} {\bibfnamefont {M.~J.}\ \bibnamefont {Mcguire}},\ }\href
{\doibase 10.1080/0144235021000053811} {\bibfield {journal} {\bibinfo
{journal} {Int. Rev. Phys. Chem.}\ }\textbf {\bibinfo {volume} {21}},\
\bibinfo {pages} {527} (\bibinfo {year} {2002})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Dreuw}\ and\ \citenamefont
{Head-Gordon}(2005)}]{Dreuw_2005}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {A.}~\bibnamefont
{Dreuw}}\ and\ \bibinfo {author} {\bibfnamefont {M.}~\bibnamefont
{Head-Gordon}},\ }\href {\doibase 10.1021/cr0505627} {\bibfield {journal}
{\bibinfo {journal} {Chem. Rev.}\ }\textbf {\bibinfo {volume} {105}},\
\bibinfo {pages} {4009} (\bibinfo {year} {2005})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Krylov}(2006)}]{Krylov_2006}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {A.~I.}\ \bibnamefont
{Krylov}},\ }\href {\doibase 10.1021/ar0402006} {\bibfield {journal}
{\bibinfo {journal} {Acc. Chem. Res.}\ }\textbf {\bibinfo {volume} {39}},\
\bibinfo {pages} {83} (\bibinfo {year} {2006})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Sneskov}\ and\ \citenamefont
{Christiansen}(2012)}]{Sneskov_2012}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {K.}~\bibnamefont
{Sneskov}}\ and\ \bibinfo {author} {\bibfnamefont {O.}~\bibnamefont
{Christiansen}},\ }\href {\doibase https://doi.org/10.1002/wcms.99}
{\bibfield {journal} {\bibinfo {journal} {WIREs Comput. Mol. Sci.}\
}\textbf {\bibinfo {volume} {2}},\ \bibinfo {pages} {566} (\bibinfo {year}
{2012})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Gonz{\'a}lez}\ \emph {et~al.}(2012)\citenamefont
{Gonz{\'a}lez}, \citenamefont {Escudero},\ and\ \citenamefont
{Serrano-Andr\`es}}]{Gonzales_2012}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {L.}~\bibnamefont
{Gonz{\'a}lez}}, \bibinfo {author} {\bibfnamefont {D.}~\bibnamefont
{Escudero}}, \ and\ \bibinfo {author} {\bibfnamefont {L.}~\bibnamefont
{Serrano-Andr\`es}},\ }\href {\doibase 10.1002/cphc.201100200} {\bibfield
{journal} {\bibinfo {journal} {ChemPhysChem}\ }\textbf {\bibinfo {volume}
{13}},\ \bibinfo {pages} {28} (\bibinfo {year} {2012})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Laurent}\ and\ \citenamefont
{Jacquemin}(2013)}]{Laurent_2013}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {A.~D.}\ \bibnamefont
{Laurent}}\ and\ \bibinfo {author} {\bibfnamefont {D.}~\bibnamefont
{Jacquemin}},\ }\href {\doibase 10.1002/qua.24438} {\bibfield {journal}
{\bibinfo {journal} {Int. J. Quantum Chem.}\ }\textbf {\bibinfo {volume}
{113}},\ \bibinfo {pages} {2019} (\bibinfo {year} {2013})}\BibitemShut
{NoStop}%
\bibitem [{\citenamefont {Adamo}\ and\ \citenamefont
{Jacquemin}(2013)}]{Adamo_2013}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {C.}~\bibnamefont
{Adamo}}\ and\ \bibinfo {author} {\bibfnamefont {D.}~\bibnamefont
{Jacquemin}},\ }\href {\doibase 10.1039/C2CS35394F} {\bibfield {journal}
{\bibinfo {journal} {Chem. Soc. Rev.}\ }\textbf {\bibinfo {volume} {42}},\
\bibinfo {pages} {845} (\bibinfo {year} {2013})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Ghosh}\ \emph {et~al.}(2018)\citenamefont {Ghosh},
\citenamefont {Verma}, \citenamefont {Cramer}, \citenamefont {Gagliardi},\
and\ \citenamefont {Truhlar}}]{Ghosh_2018}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {S.}~\bibnamefont
{Ghosh}}, \bibinfo {author} {\bibfnamefont {P.}~\bibnamefont {Verma}},
\bibinfo {author} {\bibfnamefont {C.~J.}\ \bibnamefont {Cramer}}, \bibinfo
{author} {\bibfnamefont {L.}~\bibnamefont {Gagliardi}}, \ and\ \bibinfo
{author} {\bibfnamefont {D.~G.}\ \bibnamefont {Truhlar}},\ }\href {\doibase
10.1021/acs.chemrev.8b00193} {\bibfield {journal} {\bibinfo {journal}
{Chem. Rev.}\ }\textbf {\bibinfo {volume} {118}},\ \bibinfo {pages} {7249}
(\bibinfo {year} {2018})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Blase}\ \emph {et~al.}(2020)\citenamefont {Blase},
\citenamefont {Duchemin}, \citenamefont {Jacquemin},\ and\ \citenamefont
{Loos}}]{Blase_2020}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {X.}~\bibnamefont
{Blase}}, \bibinfo {author} {\bibfnamefont {I.}~\bibnamefont {Duchemin}},
\bibinfo {author} {\bibfnamefont {D.}~\bibnamefont {Jacquemin}}, \ and\
\bibinfo {author} {\bibfnamefont {P.~F.}\ \bibnamefont {Loos}},\ }\href
{\doibase 10.1021/acs.jpclett.0c01875} {\bibfield {journal} {\bibinfo
{journal} {J. Phys. Chem. Lett.}\ }\textbf {\bibinfo {volume} {11}},\
\bibinfo {pages} {7371} (\bibinfo {year} {2020})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Loos}\ \emph {et~al.}(2020)\citenamefont {Loos},
\citenamefont {Scemama},\ and\ \citenamefont {Jacquemin}}]{Loos_2020a}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {P.~F.}\ \bibnamefont
{Loos}}, \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Scemama}}, \
and\ \bibinfo {author} {\bibfnamefont {D.}~\bibnamefont {Jacquemin}},\ }\href
{\doibase 10.1021/acs.jpclett.0c00014} {\bibfield {journal} {\bibinfo
{journal} {J. Phys. Chem. Lett.}\ }\textbf {\bibinfo {volume} {11}},\
\bibinfo {pages} {2374} (\bibinfo {year} {2020})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Moiseyev}(2011)}]{MoiseyevBook}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {N.}~\bibnamefont
@ -545,14 +693,6 @@
{Goodson}},\ }\href {\doibase 10.1002/wcms.92} {\bibfield {journal}
{\bibinfo {journal} {{WIREs} Comput. Mol. Sci.}\ }\textbf {\bibinfo {volume}
{2}},\ \bibinfo {pages} {743} (\bibinfo {year} {2011})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Szabo}\ and\ \citenamefont
{Ostlund}(1989)}]{SzaboBook}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {A.}~\bibnamefont
{Szabo}}\ and\ \bibinfo {author} {\bibfnamefont {N.~S.}\ \bibnamefont
{Ostlund}},\ }\href@noop {} {\emph {\bibinfo {title} {Modern quantum
chemistry: {Introduction} to advanced electronic structure}}}\ (\bibinfo
{publisher} {McGraw-Hill},\ \bibinfo {year} {1989})\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Mayer}\ and\ \citenamefont
{L{\"o}wdin}(1993)}]{Mayer_1993}%
\BibitemOpen
@ -992,15 +1132,6 @@
10.1021/acs.jctc.8b00406} {\bibfield {journal} {\bibinfo {journal} {J.
Chem. Theory Comput.}\ }\textbf {\bibinfo {volume} {14}},\ \bibinfo {pages}
{4360} (\bibinfo {year} {2018})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Loos}\ \emph {et~al.}(2020)\citenamefont {Loos},
\citenamefont {Scemama},\ and\ \citenamefont {Jacquemin}}]{Loos_2020a}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {P.~F.}\ \bibnamefont
{Loos}}, \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Scemama}}, \
and\ \bibinfo {author} {\bibfnamefont {D.}~\bibnamefont {Jacquemin}},\ }\href
{\doibase 10.1021/acs.jpclett.0c00014} {\bibfield {journal} {\bibinfo
{journal} {J. Phys. Chem. Lett.}\ }\textbf {\bibinfo {volume} {11}},\
\bibinfo {pages} {2374} (\bibinfo {year} {2020})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Paw{\l}owski}\ \emph
{et~al.}(2019{\natexlab{a}})\citenamefont {Paw{\l}owski}, \citenamefont
{Olsen},\ and\ \citenamefont {J{\o}rgensen}}]{Pawlowski_2019a}%

View File

@ -1,13 +1,244 @@
%% This BibTeX bibliography file was created using BibDesk.
%% http://bibdesk.sourceforge.net/
%% Created for Pierre-Francois Loos at 2020-12-01 13:28:00 +0100
%% Created for Pierre-Francois Loos at 2020-12-01 21:24:39 +0100
%% Saved with string encoding Unicode (UTF-8)
@article{Blase_2018,
author = {Blase, Xavier and Duchemin, Ivan and Jacquemin, Denis},
date-added = {2020-12-01 21:12:31 +0100},
date-modified = {2020-12-01 21:12:31 +0100},
doi = {10.1039/C7CS00049A},
journal = {Chem. Soc. Rev.},
pages = {1022-1043},
publisher = {The Royal Society of Chemistry},
title = {The Bethe--Salpeter equation in chemistry: relations with TD-DFT{,} applications and challenges},
volume = {47},
year = {2018},
Bdsk-Url-1 = {http://dx.doi.org/10.1039/C7CS00049A}}
@article{Blase_2020,
author = {X. Blase and I. Duchemin and D. Jacquemin and P. F. Loos},
date-added = {2020-12-01 21:12:31 +0100},
date-modified = {2020-12-01 21:12:31 +0100},
doi = {10.1021/acs.jpclett.0c01875},
journal = {J. Phys. Chem. Lett.},
pages = {7371},
title = {The Bethe-Salpeter Formalism: From Physics to Chemistry},
volume = {11},
year = {2020},
Bdsk-Url-1 = {https://doi.org/10.1021/acs.jpclett.0c01875}}
@article{Ghosh_2018,
author = {Ghosh, Soumen and Verma, Pragya and Cramer, Christopher J. and Gagliardi, Laura and Truhlar, Donald G.},
date-added = {2020-12-01 21:12:15 +0100},
date-modified = {2020-12-01 21:12:15 +0100},
doi = {10.1021/acs.chemrev.8b00193},
journal = {Chem. Rev.},
pages = {7249--7292},
title = {Combining Wave Function Methods with Density Functional Theory for Excited States},
volume = {118},
year = {2018},
Bdsk-Url-1 = {https://doi.org/10.1021/acs.chemrev.8b00193}}
@article{Adamo_2013,
author = {Adamo, C. and Jacquemin, D.},
date-added = {2020-12-01 21:11:58 +0100},
date-modified = {2020-12-01 21:15:50 +0100},
doi = {10.1039/C2CS35394F},
journal = {Chem. Soc. Rev.},
pages = {845--856},
title = {The Calculations of Excited-State Properties with Time-Dependent Density Functional Theory},
volume = {42},
year = {2013}}
@article{Laurent_2013,
author = {Laurent, Ad{\`e}le D. and Jacquemin, Denis},
date-added = {2020-12-01 21:11:49 +0100},
date-modified = {2020-12-01 21:15:13 +0100},
doi = {10.1002/qua.24438},
journal = {Int. J. Quantum Chem.},
pages = {2019--2039},
title = {TD-DFT Benchmarks: A Review},
volume = {113},
year = {2013}}
@article{Gonzales_2012,
author = {Gonz{\'a}lez, Leticia and Escudero, D. and Serrano-Andr\`es, L.},
date-added = {2020-12-01 21:11:38 +0100},
date-modified = {2020-12-01 21:11:38 +0100},
doi = {10.1002/cphc.201100200},
journal = {ChemPhysChem},
pages = {28--51},
title = {Progress and Challenges in the Calculation of Electronic Excited States},
volume = {13},
year = {2012},
Bdsk-Url-1 = {https://doi.org/10.1002/cphc.201100200}}
@article{Sneskov_2012,
abstract = {Abstract We review coupled cluster (CC) theory for electronically excited states. We outline the basics of a CC response theory framework that allows the transfer of the attractive accuracy and convergence properties associated with CC methods over to the calculation of electronic excitation energies and properties. Key factors affecting the accuracy of CC excitation energy calculations are discussed as are some of the key CC models in this field. To aid both the practitioner as well as the developer of CC excited state methods, we also briefly discuss the key computational steps in a working CC response implementation. Approaches aimed at extending the application range of CC excited state methods either in terms of molecular size and phenomena or in terms of environment (solution and proteins) are also discussed. {\copyright} 2011 John Wiley \& Sons, Ltd. This article is categorized under: Electronic Structure Theory > Ab Initio Electronic Structure Methods},
author = {Sneskov, Kristian and Christiansen, Ove},
date-added = {2020-12-01 21:11:24 +0100},
date-modified = {2020-12-01 21:14:26 +0100},
doi = {https://doi.org/10.1002/wcms.99},
journal = {WIREs Comput. Mol. Sci.},
pages = {566--584},
title = {Excited State Coupled Cluster Methods},
volume = {2},
year = {2012},
Bdsk-Url-1 = {https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.99},
Bdsk-Url-2 = {https://doi.org/10.1002/wcms.99}}
@article{Krylov_2006,
author = {Krylov, Anna I.},
date-added = {2020-12-01 21:10:56 +0100},
date-modified = {2020-12-01 21:14:02 +0100},
doi = {10.1021/ar0402006},
journal = {Acc. Chem. Res.},
pages = {83-91},
title = {Spin-Flip Equation-of-Motion Coupled-Cluster Electronic Structure Method for a Description of Excited States, Bond Breaking, Diradicals, and Triradicals},
volume = {39},
year = {2006},
Bdsk-Url-1 = {https://doi.org/10.1021/ar0402006}}
@article{Dreuw_2005,
author = {Dreuw, Andreas and Head-Gordon, Martin},
date-added = {2020-12-01 21:10:39 +0100},
date-modified = {2020-12-01 21:10:39 +0100},
doi = {10.1021/cr0505627},
file = {/Users/loos/Zotero/storage/WKGXAHGE/Dreuw_2005.pdf},
issn = {0009-2665, 1520-6890},
journal = {Chem. Rev.},
language = {en},
pages = {4009--4037},
title = {Single-{{Reference}} Ab {{Initio Methods}} for the {{Calculation}} of {{Excited States}} of {{Large Molecules}}},
volume = {105},
year = {2005},
Bdsk-Url-1 = {https://dx.doi.org/10.1021/cr0505627}}
@article{Piecuch_2002,
author = {Piotr Piecuch and Karol Kowalski and Ian S. O. Pimienta and Michael J. Mcguire},
date-added = {2020-12-01 21:10:26 +0100},
date-modified = {2020-12-01 21:13:27 +0100},
doi = {10.1080/0144235021000053811},
journal = {Int. Rev. Phys. Chem.},
pages = {527-655},
publisher = {Taylor & Francis},
title = {Recent advances in electronic structure theory: Method of moments of coupled-cluster equations and renormalized coupled-cluster approaches},
volume = {21},
year = {2002},
Bdsk-Url-1 = {https://doi.org/10.1080/0144235021000053811}}
@book{AveryBook,
address = {Dordrecht},
author = {J. Avery},
date-added = {2020-12-01 21:06:44 +0100},
date-modified = {2020-12-01 21:06:44 +0100},
publisher = {Kluwer Academic},
title = {Hyperspherical harmonics: applications in quantum theory},
year = {1989}}
@book{CramerBook,
author = {C. J. Cramer},
date-added = {2020-12-01 21:06:44 +0100},
date-modified = {2020-12-01 21:06:44 +0100},
keywords = {qmech},
publisher = {Wiley},
title = {Essentials of Computational Chemistry: Theories and Models},
year = {2004}}
@book{FetterBook,
author = {A. L. Fetter and J. D. Waleck},
date-added = {2020-12-01 21:06:44 +0100},
date-modified = {2020-12-01 21:06:44 +0100},
publisher = {McGraw Hill, San Francisco},
title = {Quantum Theory of Many Particle Systems},
year = {1971}}
@book{HerzbergBook,
author = {K. P. Huber and G. Herzberg},
date-added = {2020-12-01 21:06:44 +0100},
date-modified = {2020-12-01 21:06:44 +0100},
publisher = {van Nostrand Reinhold Company},
title = {Molecular Spectra and Molecular Structure: IV. Constants of diatomic molecules},
year = {1979}}
@book{JensenBook,
address = {New York},
author = {F. Jensen},
date-added = {2020-12-01 21:06:44 +0100},
date-modified = {2020-12-01 21:06:44 +0100},
edition = {3rd},
keywords = {qmech},
publisher = {Wiley},
title = {Introduction to Computational Chemistry},
year = {2017}}
@book{NISTbook,
address = {New York},
date-added = {2020-12-01 21:06:44 +0100},
date-modified = {2020-12-01 21:06:44 +0100},
editor = {F. W. J. Olver and D. W. Lozier and R. F. Boisvert and C. W. Clark},
keywords = {maths},
publisher = {Cambridge University Press},
title = {NIST Handbook of Mathematical Functions},
year = {2010}}
@book{ParrBook,
address = {Clarendon Press},
author = {R. G. Parr and W. Yang},
date-added = {2020-12-01 21:06:44 +0100},
date-modified = {2020-12-01 21:06:44 +0100},
keywords = {dft; qmech},
publisher = {Oxford},
title = {Density-Functional Theory of Atoms and Molecules},
year = {1989}}
@book{ReiningBook,
author = {Martin, R.M. and Reining, L. and Ceperley, D.M.},
date-added = {2020-12-01 21:06:44 +0100},
date-modified = {2020-12-01 21:06:44 +0100},
isbn = {0521871506},
publisher = {Cambridge University Press},
title = {Interacting Electrons: Theory and Computational Approaches},
year = {2016}}
@book{Schuck_Book,
author = {P. Ring and P. Schuck},
date-added = {2020-12-01 21:06:44 +0100},
date-modified = {2020-12-01 21:06:44 +0100},
publisher = {Springer},
title = {The Nuclear Many-Body Problem},
year = {2004}}
@book{Stefanucci_2013,
abstract = {"The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory. Starting with basic quantum mechanics, the authors introduce the equilibrium and nonequilibrium Green's function formalisms within a unified framework called the contour formalism. The physical content of the contour Green's functions and the diagrammatic expansions are explained with a focus on the time-dependent aspect. Every result is derived step-by-step, critically discussed and then applied to different physical systems, ranging from molecules and nanostructures to metals and insulators. With an abundance of illustrative examples, this accessible book is ideal for graduate students and researchers who are interested in excited state properties of matter and nonequilibrium physics"--},
address = {Cambridge},
author = {Stefanucci, Gianluca and van Leeuwen, Robert},
date-added = {2020-12-01 21:06:44 +0100},
date-modified = {2020-12-01 21:06:44 +0100},
isbn = {978-0-521-76617-3},
keywords = {Many-body problem,Quantum theory,Green's functions,Mathematics,SCIENCE / Physics},
lccn = {QC174.17.G68 S74 2013},
publisher = {{Cambridge University Press}},
shorttitle = {Nonequilibrium Many-Body Theory of Quantum Systems},
title = {Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction},
year = {2013}}
@book{HelgakerBook,
author = {T. Helgaker and P. J{\o}rgensen and J. Olsen},
date-added = {2020-12-01 21:06:11 +0100},
date-modified = {2020-12-01 21:06:17 +0100},
owner = {joshua},
publisher = {John Wiley \& Sons, Inc.},
timestamp = {2014.11.24},
title = {Molecular Electronic-Structure Theory},
year = {2013}}
@article{Feenberg_1956,
author = {Feenberg, Eugene},
date-added = {2020-12-01 13:27:51 +0100},
@ -1584,12 +1815,6 @@
title = {Modern quantum chemistry: {Introduction} to advanced electronic structure},
year = {1989}}
@book{JensenBook,
author = {F. Jensen},
publisher = {Wiley},
title = {Introduction to computational chemistry},
year = {2017}}
@article{Lepetit_1988,
author = {Lepetit, M. B. and P{\'e}lissier, M. and Malrieu, J. P.},
date-modified = {2020-08-22 22:14:08 +0200},

View File

@ -146,9 +146,11 @@
\begin{abstract}
In this review, we explore the extension of quantum chemistry in the complex plane and its link with perturbation theory.
We observe that the physics of a quantum system is intimately connected to the position of energy singularities in the complex plane, known as exceptionnal points.
We observe that the physics of a quantum system is intimately connected to the position of energy singularities in the complex plane, known as exceptional points.
After a presentation of the fundamental notions of quantum chemistry in the complex plane, such as the mean-field Hartree--Fock approximation and Rayleigh-Schr\"odinger perturbation theory, and their illustration with the ubiquitous (symmetric) Hubbard dimer at half filling, we provide a historical overview of the various research activities that have been performed on the physics of singularities.
In particular, we highlight the seminal work of several research groups on the convergence behaviour of perturbative series obtained within M{\o}ller--Plesset perturbation theory and its apparent link with quantum phase transitions.
Each of these points is further illustrated with the Hubbard dimer.
Finally, we discuss several resummation techniques (such as Pad\'e and quadratic approximants) alongside concrete examples.
\end{abstract}
\maketitle
@ -163,12 +165,13 @@ In particular, we highlight the seminal work of several research groups on the c
Due to the ubiquitous influence of processes involving electronic states in physics, chemistry, and biology, their faithful description from first principles has been one of the grand challenges faced by theoretical chemists since the dawn of computational chemistry.
Accurately predicting ground- and excited-state energies (hence excitation energies) is particularly valuable in this context, and it has concentrated most of the efforts within the community.
An armada of theoretical and computational methods have been developed to this end, each of them being plagued by its own flaws.
The fact that none of these methods is successful in every chemical scenario has encouraged chemists to carry on the development of new methodologies, their main goal being to get the most accurate energies (and properties) at the lowest possible computational cost in the most general context.
An armada of theoretical and computational methods have been developed to this end, each of them being plagued by its own flaws. \cite{SzaboBook,JensenBook,CramerBook,HelgakerBook,ParrBook,FetterBook,ReiningBook}
The fact that none of these methods is successful in every chemical scenario has encouraged chemists and physicists to carry on the development of new methodologies, their main goal being to get the most accurate energies (and properties) at the lowest possible computational cost in the most general context.
In particular, the design of an affordable, black-box method performing well in both the weak and strong correlation regimes is still elusive.
One common feature of all these methods is that they rely on the notion of quantised energy levels of Hermitian quantum mechanics, in which the different electronic states of a molecule or an atom are energetically ordered, the lowest being the ground state while the higher ones are excited states.
Within this quantised paradigm, electronic states look completely disconnected from one another.
Many current methods study excited states using only ground-state information, creating a ground-state bias that leads to incorrect excitation energies.
For example, many current methods study excited states using only ground-state information, creating a ground-state bias that leads to incorrect excitation energies.\cite{Piecuch_2002,Dreuw_2005,Krylov_2006,Sneskov_2012,Gonzales_2012,Laurent_2013,Adamo_2013,Ghosh_2018,Blase_2020,Loos_2020a}
However, one can gain a different perspective on quantisation extending quantum chemistry into the complex domain.
In a non-Hermitian complex picture, the energy levels are \textit{sheets} of a more complicated topological manifold called \textit{Riemann surface}, and they are smooth and continuous \textit{analytic continuation} of one another.
In other words, our view of the quantised nature of conventional Hermitian quantum mechanics arises only from our limited perception of the more complex and profound structure of its non-Hermitian variant. \cite{MoiseyevBook,BenderPTBook}