Modified conclusions
This commit is contained in:
parent
14f5f853d9
commit
d3e011084e
@ -6,7 +6,7 @@
|
|||||||
%Control: page (0) single
|
%Control: page (0) single
|
||||||
%Control: year (1) truncated
|
%Control: year (1) truncated
|
||||||
%Control: production of eprint (0) enabled
|
%Control: production of eprint (0) enabled
|
||||||
\begin{thebibliography}{159}%
|
\begin{thebibliography}{174}%
|
||||||
\makeatletter
|
\makeatletter
|
||||||
\providecommand \@ifxundefined [1]{%
|
\providecommand \@ifxundefined [1]{%
|
||||||
\@ifx{#1\undefined}
|
\@ifx{#1\undefined}
|
||||||
@ -1364,6 +1364,147 @@
|
|||||||
{journal} {\bibinfo {journal} {Theor. Chem. Acc.}\ }\textbf {\bibinfo
|
{journal} {\bibinfo {journal} {Theor. Chem. Acc.}\ }\textbf {\bibinfo
|
||||||
{volume} {137}},\ \bibinfo {pages} {149} (\bibinfo {year}
|
{volume} {137}},\ \bibinfo {pages} {149} (\bibinfo {year}
|
||||||
{2018})}\BibitemShut {NoStop}%
|
{2018})}\BibitemShut {NoStop}%
|
||||||
|
\bibitem [{\citenamefont {Thom}\ and\ \citenamefont {Alavi}(2007)}]{Thom_2007}%
|
||||||
|
\BibitemOpen
|
||||||
|
\bibfield {author} {\bibinfo {author} {\bibfnamefont {A.~J.~W.}\
|
||||||
|
\bibnamefont {Thom}}\ and\ \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont
|
||||||
|
{Alavi}},\ }\href {\doibase 10.1103/PhysRevLett.99.143001} {\bibfield
|
||||||
|
{journal} {\bibinfo {journal} {Phys. Rev. Lett.}\ }\textbf {\bibinfo
|
||||||
|
{volume} {99}},\ \bibinfo {pages} {143001} (\bibinfo {year}
|
||||||
|
{2007})}\BibitemShut {NoStop}%
|
||||||
|
\bibitem [{\citenamefont {Neuhauser}\ \emph {et~al.}(2012)\citenamefont
|
||||||
|
{Neuhauser}, \citenamefont {Rabani},\ and\ \citenamefont
|
||||||
|
{Baer}}]{Neuhauser_2012}%
|
||||||
|
\BibitemOpen
|
||||||
|
\bibfield {author} {\bibinfo {author} {\bibfnamefont {D.}~\bibnamefont
|
||||||
|
{Neuhauser}}, \bibinfo {author} {\bibfnamefont {E.}~\bibnamefont {Rabani}}, \
|
||||||
|
and\ \bibinfo {author} {\bibfnamefont {R.}~\bibnamefont {Baer}},\ }\href
|
||||||
|
{\doibase 10.1021/ct.300946j} {\bibfield {journal} {\bibinfo {journal} {J.
|
||||||
|
Chem. Theory Comput.}\ }\textbf {\bibinfo {volume} {9}},\ \bibinfo {pages}
|
||||||
|
{24} (\bibinfo {year} {2012})}\BibitemShut {NoStop}%
|
||||||
|
\bibitem [{\citenamefont {Willow}\ \emph {et~al.}(2012)\citenamefont {Willow},
|
||||||
|
\citenamefont {Kim},\ and\ \citenamefont {Hirata}}]{Willow_2012}%
|
||||||
|
\BibitemOpen
|
||||||
|
\bibfield {author} {\bibinfo {author} {\bibfnamefont {S.~Y.}\ \bibnamefont
|
||||||
|
{Willow}}, \bibinfo {author} {\bibfnamefont {K.~S.}\ \bibnamefont {Kim}}, \
|
||||||
|
and\ \bibinfo {author} {\bibfnamefont {S.}~\bibnamefont {Hirata}},\ }\href
|
||||||
|
{\doibase 10.1063/1.4768697} {\bibfield {journal} {\bibinfo {journal} {J.
|
||||||
|
Chem. Phys.}\ }\textbf {\bibinfo {volume} {137}},\ \bibinfo {pages} {204122}
|
||||||
|
(\bibinfo {year} {2012})}\BibitemShut {NoStop}%
|
||||||
|
\bibitem [{\citenamefont {Takeshita}\ \emph {et~al.}(2017)\citenamefont
|
||||||
|
{Takeshita}, \citenamefont {{de Jong}}, \citenamefont {Neuhauser},
|
||||||
|
\citenamefont {Baer},\ and\ \citenamefont {Rabani}}]{Takeshita_2017}%
|
||||||
|
\BibitemOpen
|
||||||
|
\bibfield {author} {\bibinfo {author} {\bibfnamefont {T.~Y.}\ \bibnamefont
|
||||||
|
{Takeshita}}, \bibinfo {author} {\bibfnamefont {W.~A.}\ \bibnamefont {{de
|
||||||
|
Jong}}}, \bibinfo {author} {\bibfnamefont {D.}~\bibnamefont {Neuhauser}},
|
||||||
|
\bibinfo {author} {\bibfnamefont {R.}~\bibnamefont {Baer}}, \ and\ \bibinfo
|
||||||
|
{author} {\bibfnamefont {E.}~\bibnamefont {Rabani}},\ }\href {\doibase
|
||||||
|
10.1021/acs.jctc.7b00343} {\bibfield {journal} {\bibinfo {journal} {J.
|
||||||
|
Chem. Theory Comput.}\ }\textbf {\bibinfo {volume} {13}},\ \bibinfo {pages}
|
||||||
|
{4605} (\bibinfo {year} {2017})}\BibitemShut {NoStop}%
|
||||||
|
\bibitem [{\citenamefont {Li}(2019)}]{Li_2019}%
|
||||||
|
\BibitemOpen
|
||||||
|
\bibfield {author} {\bibinfo {author} {\bibfnamefont {Z.}~\bibnamefont
|
||||||
|
{Li}},\ }\href {\doibase 10.1063/1.5128719} {\bibfield {journal} {\bibinfo
|
||||||
|
{journal} {J. Chem. Phys.}\ }\textbf {\bibinfo {volume} {151}},\ \bibinfo
|
||||||
|
{pages} {244114} (\bibinfo {year} {2019})}\BibitemShut {NoStop}%
|
||||||
|
\bibitem [{\citenamefont {G.~Rauhut}\ and\ \citenamefont
|
||||||
|
{Werner}(1998)}]{Rauhut_1998}%
|
||||||
|
\BibitemOpen
|
||||||
|
\bibfield {author} {\bibinfo {author} {\bibfnamefont {P.~P.}\ \bibnamefont
|
||||||
|
{G.~Rauhut}}\ and\ \bibinfo {author} {\bibfnamefont {H.-J.}\ \bibnamefont
|
||||||
|
{Werner}},\ }\href {\doibase
|
||||||
|
10.1002/(SICI)1096-987X(199808)19:11<1241::AID-JCC4>3.0.CO;2-K} {\bibfield
|
||||||
|
{journal} {\bibinfo {journal} {J. Comp. Chem.}\ }\textbf {\bibinfo {volume}
|
||||||
|
{19}},\ \bibinfo {pages} {1241} (\bibinfo {year} {1998})}\BibitemShut
|
||||||
|
{NoStop}%
|
||||||
|
\bibitem [{\citenamefont {Sch{\"u}tz}\ \emph {et~al.}(1999)\citenamefont
|
||||||
|
{Sch{\"u}tz}, \citenamefont {Hetzer},\ and\ \citenamefont
|
||||||
|
{Werner}}]{Schutz_1999}%
|
||||||
|
\BibitemOpen
|
||||||
|
\bibfield {author} {\bibinfo {author} {\bibfnamefont {M.}~\bibnamefont
|
||||||
|
{Sch{\"u}tz}}, \bibinfo {author} {\bibfnamefont {G.}~\bibnamefont {Hetzer}},
|
||||||
|
\ and\ \bibinfo {author} {\bibfnamefont {H.-J.}\ \bibnamefont {Werner}},\
|
||||||
|
}\href {\doibase 10.1063/1.479957} {\bibfield {journal} {\bibinfo {journal}
|
||||||
|
{J. Chem. Phys.}\ }\textbf {\bibinfo {volume} {111}},\ \bibinfo {pages}
|
||||||
|
{5691} (\bibinfo {year} {1999})}\BibitemShut {NoStop}%
|
||||||
|
\bibitem [{\citenamefont {Bozkaya}(2011)}]{Bozkaya_2011}%
|
||||||
|
\BibitemOpen
|
||||||
|
\bibfield {author} {\bibinfo {author} {\bibfnamefont {U.}~\bibnamefont
|
||||||
|
{Bozkaya}},\ }\href {\doibase 10.1063/1.3665134} {\bibfield {journal}
|
||||||
|
{\bibinfo {journal} {J. Chem. Phys.}\ }\textbf {\bibinfo {volume} {135}},\
|
||||||
|
\bibinfo {pages} {224103} (\bibinfo {year} {2011})}\BibitemShut {NoStop}%
|
||||||
|
\bibitem [{\citenamefont {Neese}\ \emph {et~al.}(2009)\citenamefont {Neese},
|
||||||
|
\citenamefont {Schwabe}, \citenamefont {Kossmann}, \citenamefont {Schirmer},\
|
||||||
|
and\ \citenamefont {Grimme}}]{Neese_2009}%
|
||||||
|
\BibitemOpen
|
||||||
|
\bibfield {author} {\bibinfo {author} {\bibfnamefont {F.}~\bibnamefont
|
||||||
|
{Neese}}, \bibinfo {author} {\bibfnamefont {T.}~\bibnamefont {Schwabe}},
|
||||||
|
\bibinfo {author} {\bibfnamefont {S.}~\bibnamefont {Kossmann}}, \bibinfo
|
||||||
|
{author} {\bibfnamefont {B.}~\bibnamefont {Schirmer}}, \ and\ \bibinfo
|
||||||
|
{author} {\bibfnamefont {S.}~\bibnamefont {Grimme}},\ }\href {\doibase
|
||||||
|
10.1021/ct9003299} {\bibfield {journal} {\bibinfo {journal} {J. Chem. Teory
|
||||||
|
Comput.}\ }\textbf {\bibinfo {volume} {5}},\ \bibinfo {pages} {3060}
|
||||||
|
(\bibinfo {year} {2009})}\BibitemShut {NoStop}%
|
||||||
|
\bibitem [{\citenamefont {Lee}\ and\ \citenamefont
|
||||||
|
{Head-Gordon}(2018)}]{Lee_2018}%
|
||||||
|
\BibitemOpen
|
||||||
|
\bibfield {author} {\bibinfo {author} {\bibfnamefont {J.}~\bibnamefont
|
||||||
|
{Lee}}\ and\ \bibinfo {author} {\bibfnamefont {M.}~\bibnamefont
|
||||||
|
{Head-Gordon}},\ }\href {\doibase 10.1021/acs.jctc.8b00731} {\bibfield
|
||||||
|
{journal} {\bibinfo {journal} {J. Chem. Theory Comput.}\ ,\ \bibinfo {pages}
|
||||||
|
{5203}} (\bibinfo {year} {2018})}\BibitemShut {NoStop}%
|
||||||
|
\bibitem [{\citenamefont {Bertels}\ \emph {et~al.}(2019)\citenamefont
|
||||||
|
{Bertels}, \citenamefont {Lee},\ and\ \citenamefont
|
||||||
|
{Head-Gordon}}]{Bertels_2019}%
|
||||||
|
\BibitemOpen
|
||||||
|
\bibfield {author} {\bibinfo {author} {\bibfnamefont {L.~W.}\ \bibnamefont
|
||||||
|
{Bertels}}, \bibinfo {author} {\bibfnamefont {J.}~\bibnamefont {Lee}}, \ and\
|
||||||
|
\bibinfo {author} {\bibfnamefont {M.}~\bibnamefont {Head-Gordon}},\ }\href
|
||||||
|
{\doibase 10.1021/acs.jpclett.9b01641} {\bibfield {journal} {\bibinfo
|
||||||
|
{journal} {J. Phys. Chem. Lett.}\ }\textbf {\bibinfo {volume} {10}},\
|
||||||
|
\bibinfo {pages} {4170} (\bibinfo {year} {2019})}\BibitemShut {NoStop}%
|
||||||
|
\bibitem [{\citenamefont {Rettig}\ \emph {et~al.}(2020)\citenamefont {Rettig},
|
||||||
|
\citenamefont {Hait}, \citenamefont {Bertels},\ and\ \citenamefont
|
||||||
|
{Head-Gordon}}]{Rettig_2020}%
|
||||||
|
\BibitemOpen
|
||||||
|
\bibfield {author} {\bibinfo {author} {\bibfnamefont {A.}~\bibnamefont
|
||||||
|
{Rettig}}, \bibinfo {author} {\bibfnamefont {D.}~\bibnamefont {Hait}},
|
||||||
|
\bibinfo {author} {\bibfnamefont {L.~W.}\ \bibnamefont {Bertels}}, \ and\
|
||||||
|
\bibinfo {author} {\bibfnamefont {M.}~\bibnamefont {Head-Gordon}},\ }\href
|
||||||
|
{\doibase 10.1021/acs.jctc.0c00986} {\bibfield {journal} {\bibinfo
|
||||||
|
{journal} {J. Chem. Teory Comput.}\ } (\bibinfo {year} {2020}),\
|
||||||
|
10.1021/acs.jctc.0c00986}\BibitemShut {NoStop}%
|
||||||
|
\bibitem [{\citenamefont {Gilbert}\ \emph {et~al.}(2008)\citenamefont
|
||||||
|
{Gilbert}, \citenamefont {Besley},\ and\ \citenamefont
|
||||||
|
{Gill}}]{Gilbert_2008}%
|
||||||
|
\BibitemOpen
|
||||||
|
\bibfield {author} {\bibinfo {author} {\bibfnamefont {A.~T.~B.}\
|
||||||
|
\bibnamefont {Gilbert}}, \bibinfo {author} {\bibfnamefont {N.~A.}\
|
||||||
|
\bibnamefont {Besley}}, \ and\ \bibinfo {author} {\bibfnamefont {P.~M.~W.}\
|
||||||
|
\bibnamefont {Gill}},\ }\href {\doibase 10.1021/jp801738f} {\bibfield
|
||||||
|
{journal} {\bibinfo {journal} {J. Phys. Chem. A}\ }\textbf {\bibinfo
|
||||||
|
{volume} {112}},\ \bibinfo {pages} {13164} (\bibinfo {year}
|
||||||
|
{2008})}\BibitemShut {NoStop}%
|
||||||
|
\bibitem [{\citenamefont {Lee}\ \emph {et~al.}(2019)\citenamefont {Lee},
|
||||||
|
\citenamefont {Small},\ and\ \citenamefont {Head-Gordon}}]{Lee_2019}%
|
||||||
|
\BibitemOpen
|
||||||
|
\bibfield {author} {\bibinfo {author} {\bibfnamefont {J.}~\bibnamefont
|
||||||
|
{Lee}}, \bibinfo {author} {\bibfnamefont {D.~W.}\ \bibnamefont {Small}}, \
|
||||||
|
and\ \bibinfo {author} {\bibfnamefont {M.}~\bibnamefont {Head-Gordon}},\
|
||||||
|
}\href {\doibase 10.1063/1.5128795} {\bibfield {journal} {\bibinfo
|
||||||
|
{journal} {J. Chem. Phys.}\ }\textbf {\bibinfo {volume} {151}},\ \bibinfo
|
||||||
|
{pages} {214103} (\bibinfo {year} {2019})}\BibitemShut {NoStop}%
|
||||||
|
\bibitem [{\citenamefont {Carter-Fenk}\ and\ \citenamefont
|
||||||
|
{Herbert}(2020)}]{CarterFenk_2020}%
|
||||||
|
\BibitemOpen
|
||||||
|
\bibfield {author} {\bibinfo {author} {\bibfnamefont {K.}~\bibnamefont
|
||||||
|
{Carter-Fenk}}\ and\ \bibinfo {author} {\bibfnamefont {J.~M.}\ \bibnamefont
|
||||||
|
{Herbert}},\ }\href {\doibase 10.1021/acs.jctc.0c00502} {\bibfield {journal}
|
||||||
|
{\bibinfo {journal} {J. Chem. Teory Comput.}\ }\textbf {\bibinfo {volume}
|
||||||
|
{16}},\ \bibinfo {pages} {5067} (\bibinfo {year} {2020})}\BibitemShut
|
||||||
|
{NoStop}%
|
||||||
\bibitem [{\citenamefont {Cohen}\ and\ \citenamefont
|
\bibitem [{\citenamefont {Cohen}\ and\ \citenamefont
|
||||||
{Mori-S\'anchez}(2016)}]{Cohen_2016}%
|
{Mori-S\'anchez}(2016)}]{Cohen_2016}%
|
||||||
\BibitemOpen
|
\BibitemOpen
|
||||||
|
@ -5,8 +5,105 @@
|
|||||||
|
|
||||||
|
|
||||||
%% Saved with string encoding Unicode (UTF-8)
|
%% Saved with string encoding Unicode (UTF-8)
|
||||||
|
%
|
||||||
|
|
||||||
|
@article{Rauhut_1998,
|
||||||
|
author ={G. Rauhut, P. Pulay and Hans-Joachim Werner},
|
||||||
|
journal={J. Comp. Chem.},
|
||||||
|
year ={1998},
|
||||||
|
volume ={19},
|
||||||
|
pages ={1241},
|
||||||
|
title ={Integral transformation with low‐order scaling for large local second‐order {M\oller--Plesset} calculations},
|
||||||
|
doi ={10.1002/(SICI)1096-987X(199808)19:11<1241::AID-JCC4>3.0.CO;2-K},
|
||||||
|
}
|
||||||
|
@article{Schutz_1999,
|
||||||
|
author ={M. Sch{\"u}tz and G. Hetzer and Hans-Joachim Werner},
|
||||||
|
journal={J. Chem. Phys.},
|
||||||
|
year ={1999},
|
||||||
|
volume ={111},
|
||||||
|
pages ={5691},
|
||||||
|
title ={Low-order scaling local electron correlation methods. I. Linear scaling local MP2},
|
||||||
|
doi ={10.1063/1.479957}
|
||||||
|
}
|
||||||
|
@article{Takeshita_2017,
|
||||||
|
author ={T. Y. Takeshita and W. A. {de Jong} and D. Neuhauser and R. Baer and E. Rabani},
|
||||||
|
journal={J. Chem. Theory Comput.},
|
||||||
|
year ={2017},
|
||||||
|
volume ={13},
|
||||||
|
pages ={4605},
|
||||||
|
title ={Stochastic Formulation of the Resolution of Identity: Application to Second Order {M\oller--Plesset} Perturbation Theory},
|
||||||
|
doi ={10.1021/acs.jctc.7b00343},
|
||||||
|
}
|
||||||
|
@article{Li_2019,
|
||||||
|
author ={Zhendong Li},
|
||||||
|
journal={J. Chem. Phys.},
|
||||||
|
year ={2019},
|
||||||
|
volume ={151},
|
||||||
|
pages ={244114},
|
||||||
|
title ={Stochastic many-body perturbation theory for electron correlation energies},
|
||||||
|
doi ={10.1063/1.5128719},
|
||||||
|
}
|
||||||
|
@article{Thom_2007,
|
||||||
|
author ={A. J. W. Thom and A. Alavi},
|
||||||
|
journal={Phys. Rev. Lett.},
|
||||||
|
year ={2007},
|
||||||
|
pages ={143001},
|
||||||
|
volume ={99},
|
||||||
|
title ={Stochastic Perturbation Theory: A Low-Scaling Approach to Correlated Electronic Energies},
|
||||||
|
doi ={10.1103/PhysRevLett.99.143001},
|
||||||
|
}
|
||||||
|
@article{Willow_2012,
|
||||||
|
author ={S. Y. Willow and K. S. Kim and S. Hirata},
|
||||||
|
journal={J. Chem. Phys.},
|
||||||
|
year ={2012},
|
||||||
|
volume ={137},
|
||||||
|
pages ={204122},
|
||||||
|
title ={Stochastic evaluation of second-order many-body perturbation energies},
|
||||||
|
doi ={10.1063/1.4768697},
|
||||||
|
}
|
||||||
|
@article{Neuhauser_2012,
|
||||||
|
author ={D. Neuhauser and E. Rabani and R. Baer},
|
||||||
|
journal={J. Chem. Theory Comput.},
|
||||||
|
year ={2012},
|
||||||
|
pages ={24},
|
||||||
|
volume ={9},
|
||||||
|
title ={Expeditious Stochastic Approach for MP2 Energies in Large Electronic Systems},
|
||||||
|
doi ={10.1021/ct.300946j},
|
||||||
|
}
|
||||||
|
@article{Lee_2018,
|
||||||
|
author ={J. Lee and M. Head-Gordon},
|
||||||
|
journal={J. Chem. Theory Comput.},
|
||||||
|
year ={2018},
|
||||||
|
|
||||||
|
pages ={5203},
|
||||||
|
title ={Regularized Orbital-Optimized Second-Order Møller–Plesset Perturbation Theory: A Reliable Fifth-Order-Scaling Electron Correlation Model with Orbital Energy Dependent Regularizers},
|
||||||
|
doi ={10.1021/acs.jctc.8b00731},
|
||||||
|
}
|
||||||
|
@article{Bertels_2019,
|
||||||
|
author ={L. W. Bertels and J. Lee and M. Head-Gordon},
|
||||||
|
journal={J. Phys. Chem. Lett.},
|
||||||
|
year ={2019},
|
||||||
|
volume ={10},
|
||||||
|
pages ={4170},
|
||||||
|
title ={Third-Order {M\oller–Plesset} Perturbation Theory Made Useful? Choice of Orbitals and Scaling Greatly Improves Accuracy for Thermochemistry, Kinetics, and Intermolecular Interactions},
|
||||||
|
doi ={10.1021/acs.jpclett.9b01641},
|
||||||
|
}
|
||||||
|
@article{CarterFenk_2020,
|
||||||
|
author ={K. Carter-Fenk and J. M. Herbert},
|
||||||
|
journal={J. Chem. Teory Comput.},
|
||||||
|
year ={2020},
|
||||||
|
volume ={16},
|
||||||
|
pages ={5067},
|
||||||
|
title ={State-Targeted Energy Projection: A Simple and Robust Approach to Orbital Relaxation of Non-Aufbau Self-Consistent Field Solutions},
|
||||||
|
doi ={10.1021/acs.jctc.0c00502},
|
||||||
|
}
|
||||||
|
@article{Rettig_2020,
|
||||||
|
author ={A. Rettig and D. Hait and L. W. Bertels and M. Head-Gordon},
|
||||||
|
journal={J. Chem. Teory Comput.},
|
||||||
|
year ={2020},
|
||||||
|
title ={Third-Order {M\oller--Plesset} Theory Made More Useful? The Role of Density Functional Theory Orbitals},
|
||||||
|
doi ={10.1021/acs.jctc.0c00986},
|
||||||
|
}
|
||||||
@article{Neese_2009,
|
@article{Neese_2009,
|
||||||
author ={F. Neese and T. Schwabe and S. Kossmann and B. Schirmer and S. Grimme},
|
author ={F. Neese and T. Schwabe and S. Kossmann and B. Schirmer and S. Grimme},
|
||||||
journal={J. Chem. Teory Comput.},
|
journal={J. Chem. Teory Comput.},
|
||||||
|
@ -1871,8 +1871,9 @@ worth highlighting.
|
|||||||
In Cremer and He's original classification, ``class A'' systems exhibit monotonic convergence and generally
|
In Cremer and He's original classification, ``class A'' systems exhibit monotonic convergence and generally
|
||||||
correspond to weakly correlated electron pairs, while ``class B'' systems show erratic convergence after initial
|
correspond to weakly correlated electron pairs, while ``class B'' systems show erratic convergence after initial
|
||||||
oscillations and generally contain spatially dense electron clusters.\cite{Cremer_1996}
|
oscillations and generally contain spatially dense electron clusters.\cite{Cremer_1996}
|
||||||
Further insights were provided by Olsen and coworkers\cite{Christiansen_1996,Olsen_1996,Olsen_2000,Olsen_2019}
|
Further insights were provided by Olsen and coworkers
|
||||||
who employed a two-state model to understand the various convergence behaviours of Hermitian and non-Hermitian perturbation series.
|
who employed a two-state model to understand the various convergence behaviours of Hermitian and non-Hermitian
|
||||||
|
perturbation series.\cite{Christiansen_1996,Olsen_1996,Olsen_2000,Olsen_2019}
|
||||||
The careful analysis from Sergeev and Goodson later refined these classes depending on the position of the
|
The careful analysis from Sergeev and Goodson later refined these classes depending on the position of the
|
||||||
singularity closest to the origin, giving $\alpha$ singularities which have large imaginary component,
|
singularity closest to the origin, giving $\alpha$ singularities which have large imaginary component,
|
||||||
and $\beta$ singularities which have a very small imaginary component.%
|
and $\beta$ singularities which have a very small imaginary component.%
|
||||||
@ -1893,7 +1894,8 @@ systematically improvable series can dramatically improve the accuracy and appli
|
|||||||
\hugh{However, the application of these approaches requires the evaluation of higher-order MP coefficents
|
\hugh{However, the application of these approaches requires the evaluation of higher-order MP coefficents
|
||||||
(\eg, MP3, MP4, MP5, etc) that are generally expensive to compute in practice.
|
(\eg, MP3, MP4, MP5, etc) that are generally expensive to compute in practice.
|
||||||
There is therefore a strong demand for computationally efficient approaches to evaluate general terms in the MP
|
There is therefore a strong demand for computationally efficient approaches to evaluate general terms in the MP
|
||||||
series, and the development of stochastic, resolution-of-the-identity, or linear-scaling approximations
|
series, and the development of stochastic,\cite{Thom_2007,Neuhauser_2012,Willow_2012,Takeshita_2017,Li_2019}
|
||||||
|
or linear-scaling approximations\cite{Rauhut_1998,Schutz_1999}
|
||||||
may prove fruitful avenues in this direction.
|
may prove fruitful avenues in this direction.
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1902,14 +1904,14 @@ may prove fruitful avenues in this direction.
|
|||||||
The present review has only considered the convergence of the MP series using the RHF or UHF
|
The present review has only considered the convergence of the MP series using the RHF or UHF
|
||||||
reference orbitals.
|
reference orbitals.
|
||||||
However, numerous recent studies have shown that the use of orbitals optimised in the presence of the MP2
|
However, numerous recent studies have shown that the use of orbitals optimised in the presence of the MP2
|
||||||
correction or using Kohn--Sham density-functional theory (DFT) orbitals
|
correction\cite{Bozkaya_2011,Neese_2009,Lee_2018} or Kohn--Sham density-functional theory (DFT) orbitals
|
||||||
can significantly improve the accuracy of the MP3 correction,
|
can significantly improve the accuracy of the MP3 correction,\cite{Bertels_2019,Rettig_2020}
|
||||||
particularly in the presence of symmetry-breaking.
|
particularly in the presence of symmetry-breaking.
|
||||||
Beyond intuitive heuristics, it is not clear why these alternative orbitals provide such accurate results,
|
Beyond intuitive heuristics, it is not clear why these alternative orbitals provide such accurate results,
|
||||||
and a detailed investigation of their MP energy function in the complex plane is therefore bound to provide
|
and a detailed investigation of their MP energy function in the complex plane is therefore bound to provide
|
||||||
fascinating insights.
|
fascinating insights.
|
||||||
Furthermore, the convergence properties of the excited-state MP series using orbital-optimised higher energy
|
Furthermore, the convergence properties of the excited-state MP series using orbital-optimised higher energy
|
||||||
HF solutions remains entirely unexplored.
|
HF solutions\cite{Gilbert_2008} remains entirely unexplored.\cite{Lee_2019,CarterFenk_2020}
|
||||||
}
|
}
|
||||||
|
|
||||||
% HUBBARD
|
% HUBBARD
|
||||||
|
Loading…
Reference in New Issue
Block a user