added shanks results... needs some references
This commit is contained in:
parent
4b78663462
commit
d0a7e3d362
Binary file not shown.
@ -1393,7 +1393,7 @@ often define a convergent perturbation series in cases where the Taylor series e
|
|||||||
\begin{tabular}{lccccc}
|
\begin{tabular}{lccccc}
|
||||||
& & \mc{2}{c}{$\abs{\lc}$} & \mc{2}{c}{$E_{-}(\lambda = 1)$} \\
|
& & \mc{2}{c}{$\abs{\lc}$} & \mc{2}{c}{$E_{-}(\lambda = 1)$} \\
|
||||||
\cline{3-4} \cline{5-6}
|
\cline{3-4} \cline{5-6}
|
||||||
Method & degree & $U/t = 3.5$ & $U/t = 4.5$ & $U/t = 3.5$ & $U/t = 4.5$ \\
|
Method & Degree & $U/t = 3.5$ & $U/t = 4.5$ & $U/t = 3.5$ & $U/t = 4.5$ \\
|
||||||
\hline
|
\hline
|
||||||
Taylor & 2 & & & $-1.01563$ & $-1.01563$ \\
|
Taylor & 2 & & & $-1.01563$ & $-1.01563$ \\
|
||||||
& 3 & & & $-1.01563$ & $-1.01563$ \\
|
& 3 & & & $-1.01563$ & $-1.01563$ \\
|
||||||
@ -1601,8 +1601,8 @@ provide a rapidly convergent series with essentially exact energies at low order
|
|||||||
|
|
||||||
|
|
||||||
\hugh{Finally, to emphasise the improvement that can be gained by using either Pad\'e, diagonal quadratic,
|
\hugh{Finally, to emphasise the improvement that can be gained by using either Pad\'e, diagonal quadratic,
|
||||||
or pole-free approximants, we consider the energy and error obtained using only the first 10 terms in the UMP
|
or pole-free quadratic approximants, we consider the energy and error obtained using only the first 10 terms of the UMP
|
||||||
in Table~\ref{tab:UMP_order10}.
|
Taylor series in Table~\ref{tab:UMP_order10}.
|
||||||
The accuracy of these approximants reinforces how our understanding of the MP
|
The accuracy of these approximants reinforces how our understanding of the MP
|
||||||
energy surface in the complex plane can be leveraged to significantly improve estimates of the exact
|
energy surface in the complex plane can be leveraged to significantly improve estimates of the exact
|
||||||
energy using low-order perturbation expansions.
|
energy using low-order perturbation expansions.
|
||||||
@ -1617,12 +1617,12 @@ energy using low-order perturbation expansions.
|
|||||||
\label{tab:UMP_order10}}
|
\label{tab:UMP_order10}}
|
||||||
\begin{ruledtabular}
|
\begin{ruledtabular}
|
||||||
\begin{tabular}{lccc}
|
\begin{tabular}{lccc}
|
||||||
\mc{2}{c}{Method} & $E_{-}(\lambda = 1)$ & Abs.\ Error \\
|
\mc{2}{c}{Method} & $E_{-}(\lambda = 1)$ & \% Abs.\ Error \\
|
||||||
\hline
|
\hline
|
||||||
Taylor & 10 & $-0.33338$ & $0.197290$ \\
|
Taylor & 10 & $-0.33338$ & $37.150$ \\
|
||||||
Pad\'e & [5/5] & $-0.35513$ & $0.176000$ \\
|
Pad\'e & [5/5] & $-0.35513$ & $33.140$ \\
|
||||||
Quadratic (diagonal) & [3/3,3] & $-0.53104$ & $0.000103$ \\
|
Quadratic (diagonal) & [3/3,3] & $-0.53103$ & $\hphantom{0}0.019$ \\
|
||||||
Quadratic (pole-free)& [3/0,6] & $-0.53113$ & $0.000003$ \\
|
Quadratic (pole-free)& [3/0,6] & $-0.53113$ & $\hphantom{0}0.005$ \\
|
||||||
\hline
|
\hline
|
||||||
Exact & & $-0.53113$ & \\
|
Exact & & $-0.53113$ & \\
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
@ -1642,18 +1642,72 @@ that can be used to extract further information about the exact result.
|
|||||||
The Shanks transformation presents one approach for extracting this information
|
The Shanks transformation presents one approach for extracting this information
|
||||||
and accelerating the rate of convergence of a sequence.\cite{Shanks_1955}
|
and accelerating the rate of convergence of a sequence.\cite{Shanks_1955}
|
||||||
|
|
||||||
Consider the partial sums $S_N$ defined from the truncated summation of an infinite series
|
\hugh{Consider the partial sums
|
||||||
|
$S_N = \sum_{k=0}^{N} a_k$
|
||||||
|
defined from the truncated summation of an infinite series
|
||||||
|
$ S = \sum_{k=0}^{\infty} a_k$.
|
||||||
|
If the series converges, then the partial sums will tend to the exact result
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
S_N = \sum_{k=0}^{N} a_k.
|
\lim_{N\rightarrow \infty} S_N = S.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
If the series converges, then the partial sums will tend to the exact result in the limit $N\rightarrow \infty$.
|
The Shanks transformation attempts to generate increasingly accurate estimates of this
|
||||||
The Shanks transformation attempts to generate increasingly accurate estimates of the
|
limt by defining a new series as
|
||||||
exact result by defining a new series as
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
T(S_N) = \frac{S_{N+1} S_{N-1} - S_{N}^2}{S_{N+1} + S_{N-1} - 2 S_{N}}.
|
T(S_N) = \frac{S_{N+1} S_{N-1} - S_{N}^2}{S_{N+1} + S_{N-1} - 2 S_{N}}.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
This series can converge faster than the original partial sums and can thus provide greater
|
This series can converge faster than the original partial sums and can thus provide greater
|
||||||
accuracy using only the first few terms in the series.
|
accuracy using only the first few terms in the series.
|
||||||
|
However, it is designed to accelerate exponentially converging partial sums with
|
||||||
|
the approximate form
|
||||||
|
\begin{equation}
|
||||||
|
S_N \approx S + a\,b^N.
|
||||||
|
\end{equation}
|
||||||
|
Furthermore, while this transformation can accelerate the convergence of a series,
|
||||||
|
there is no guarantee that this acceleration will be fast enough to significantly
|
||||||
|
improve the accuracy of low-order approximations.}
|
||||||
|
|
||||||
|
\hugh{To the best of our knowledge, the Shanks transformation has never previously been applied
|
||||||
|
to the acceleration of the MP series.
|
||||||
|
We have therefore applied it to the convergent Taylor series, Pad\'e approximants, and quadratic
|
||||||
|
approximants for RMP and UMP in the symmetric Hubbard dimer.
|
||||||
|
The UMP approximants converge too slowly for the Shanks transformation
|
||||||
|
to provide any improvement, even in the case where the quadratic approximants are already
|
||||||
|
very accurate.
|
||||||
|
In contrast, acceleration of the diagonal Pad\'e approximants for the RMP cases
|
||||||
|
can significantly improve the estimate of the energy using low-order perturbation terms,
|
||||||
|
as shown in Table~\ref{tab:RMP_shank}.
|
||||||
|
Even though the RMP series diverges at $U/t = 4.5$, the combination
|
||||||
|
of diagonal Pad\'e approximants with the Shanks transformation reduces the absolute error of
|
||||||
|
the best energy estimate to 0.002\,\%.}
|
||||||
|
|
||||||
|
\begin{table}[th]
|
||||||
|
\caption{
|
||||||
|
\hugh{%
|
||||||
|
Acceleration of the diagonal Pad\'e approximant sequence for the RMP energy
|
||||||
|
using the Shanks transformation.
|
||||||
|
}
|
||||||
|
\label{tab:RMP_shank}}
|
||||||
|
\begin{ruledtabular}
|
||||||
|
\begin{tabular}{lcccc}
|
||||||
|
& & & \mc{2}{c}{$E_{-}(\lambda = 1)$} \\
|
||||||
|
\cline{4-5}
|
||||||
|
Method & Degree & Series Term & $U/t = 3.5$ & $U/t = 4.5$ \\
|
||||||
|
\hline
|
||||||
|
Pad\'e & [1/1] & $S_1$ & $-1.61111$ & $-2.64286$ \\
|
||||||
|
& [2/2] & $S_2$ & $-0.82124$ & $-0.48446$ \\
|
||||||
|
& [3/3] & $S_3$ & $-0.91995$ & $-0.81929$ \\
|
||||||
|
& [4/4] & $S_4$ & $-0.90579$ & $-0.74866$ \\
|
||||||
|
& [5/5] & $S_5$ & $-0.90778$ & $-0.76277$ \\
|
||||||
|
\hline
|
||||||
|
Shanks & & $T(S_2)$ & $-0.90898$ & $-0.77432$ \\
|
||||||
|
& & $T(S_3)$ & $-0.90757$ & $-0.76096$ \\
|
||||||
|
& & $T(S_4)$ & $-0.90753$ & $-0.76042$ \\
|
||||||
|
\hline
|
||||||
|
Exact & & & $-0.90754$ & $-0.76040$ \\
|
||||||
|
\end{tabular}
|
||||||
|
\end{ruledtabular}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
%==========================================%
|
%==========================================%
|
||||||
|
Loading…
Reference in New Issue
Block a user