goign through Hugh stuff and starting working on HF

This commit is contained in:
Pierre-Francois Loos 2020-11-17 13:31:03 +01:00
parent df71ca5a8a
commit 98a2f04d55

View File

@ -101,10 +101,12 @@
\newcommand{\bbR}{\mathbb{R}}
\newcommand{\bbC}{\mathbb{C}}
\newcommand{\Lup}{\text{L}^{\uparrow}}
\newcommand{\Ldown}{\text{L}^{\downarrow}}
\newcommand{\Rup}{\text{R}^{\uparrow}}
\newcommand{\Rdown}{\text{R}^{\downarrow}}
\newcommand{\Lup}{\mathcal{L}^{\uparrow}}
\newcommand{\Ldown}{\mathcal{L}^{\downarrow}}
\newcommand{\Lsi}{\mathcal{L}^{\sigma}}
\newcommand{\Rup}{\mathcal{R}^{\uparrow}}
\newcommand{\Rdown}{\mathcal{R}^{\downarrow}}
\newcommand{\Rsi}{\mathcal{R}^{\sigma}}
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France.}
@ -189,38 +191,32 @@ More importantly here, although EPs usually lie off the real axis, these singula
\subcaption{\label{subfig:FCI_cplx}}
\end{subfigure}
\caption{%
\hugh{Exact energies for the Hubbard dimer ($U=4t$) as functions of $\lambda$ on the real axis (\subref{subfig:FCI_real}) and in the complex plane (\subref{subfig:FCI_cplx}).
Only the interacting closed-shell singlets are plotted in the complex plane, becoming degenerate at the EP (black dot).}
Exact energies for the Hubbard dimer ($U=4t$) as functions of $\lambda$ on the real axis (\subref{subfig:FCI_real}) and in the complex plane (\subref{subfig:FCI_cplx}).
Only the interacting closed-shell singlets are plotted in the complex plane, becoming degenerate at the EP (black dot).
\label{fig:FCI}}
\end{figure*}
\hugh{To illustrate the concepts discussed throughout this article, we will consider the symmetric Hubbard dimer at half filling, \ie\ with two opposite-spin fermions.
Using the localised Wannier basis, the Hilbert space for this system comprises the four configurations
\begin{equation}
\ket{\Lup \Ldown} \qquad \ket{\Lup\Rdown} \qquad \ket{\Rup\Ldown} \qquad \ket{\Rup\Rdown}
\end{equation}
%\begin{tabularx}{\linewidth}{YYYY}
%$\ket{\Lup \Ldown}$ & $\ket{\Lup\Rdown}$ & $\ket{\Rup\Ldown}$ & $\ket{\Rup\Rdown}$
%\\
%$\uddot \quad \vac$ & $\updot \quad \dwdot$ & $\dwdot \quad \updot$ & $\vac \quad \uddot$
%\end{tabularx}
where $\text{L}^{\sigma}$ ($\text{R}^{\sigma}$) denotes an electron with spin $\sigma$ on the left (right) site.
To illustrate the concepts discussed throughout this article, we will consider the symmetric Hubbard dimer at half filling, \ie\ with two opposite-spin fermions.
Using the localised site basis, the Hilbert space for this system comprises the four configurations
\begin{align}
& \ket{\Lup \Ldown} & & \ket{\Lup\Rdown} & & \ket{\Rup\Ldown} & & \ket{\Rup\Rdown}
\end{align}
where $\Lsi$ ($\Rsi$) denotes an electron with spin $\sigma$ on the left (right) site.
The exact Hamiltonian is then
\begin{equation}
\label{eq:H_FCI}
\bH =
\begin{pmatrix}
U & - t & - t & 0 \\
U & - t & + t & 0 \\
- t & 0 & 0 & - t \\
- t & 0 & 0 & - t \\
0 & - t & - t & U \\
+ t & 0 & 0 & + t \\
0 & - t & + t & U \\
\end{pmatrix},
\end{equation}
where $t$ is the hopping parameter and $U$ is the on-site Coulomb repulsion.}
where $t$ is the hopping parameter and $U$ is the on-site Coulomb repulsion.
We refer the interested reader to Refs.~\onlinecite{Carrascal_2015,Carrascal_2018} for more details about this system.
\hugh{%
To illustrate the formation of an exceptional points, we scale the off-diagonal coupling strength by introducing the complex parameter $\lambda$ through the transformation $t\rightarrow \lambda t$.
When $\lambda$ is real, the Hamiltonian~\eqref{eq:H_FCI} is Hermitian with the distinct (real-valued) eigenvalues
\begin{subequations}
@ -233,10 +229,10 @@ E_{\text{T}} &= 0,
E_{\text{S}} &= U.
\end{align}
\end{subequations}
While the open-shell triplet ($E_{\text{T}}$) and singlet ($E_{\text{S}}$) are independent of $\lambda$, the closed-shell singlet ground state ($E_{-}$) and doubly-excited state ($E_{+}$) couple strongly to form an avoided crossing at $\lambda=0$ (see Figure~\ref{subfig:FCI_real}).
While the open-shell triplet ($E_{\text{T}}$) and singlet ($E_{\text{S}}$) are independent of $\lambda$, the closed-shell singlet ground state ($E_{-}$) and doubly-excited state ($E_{+}$) couple strongly to form an avoided crossing at $\lambda=0$ (see Fig.~\ref{subfig:FCI_real}).
At non-zero values of $U$ and $t$, these closed-shell singlets can only become degenerate at a pair of complex conjugate points in the complex $\lambda$ plane
\begin{equation}
\lambda_{\text{EP}} = \pm \frac{U}{4t} \i,
\lambda_{\text{EP}} = \pm \i \frac{U}{4t},
\end{equation}
with energy
\begin{equation}
@ -247,9 +243,7 @@ These $\lambda$ values correspond to so-called EPs and connect the ground and ex
Crucially, the energy surface becomes non-analytic at $\lambda_{\text{EP}}$ and a square-root singularity forms with two branch cuts running along the imaginary axis from $\lambda_{\text{EP}}$ to $\pm \i \infty$ (see Fig.~\ref{subfig:FCI_cplx}).
On the real $\lambda$ axis, these EPs lead to the singlet avoided crossing at $\lambda = \Re(\lambda_{\text{EP}})$.
The ``shape'' of this avoided crossing is related to the magnitude of $\Im(\lambda_{\text{EP}})$, with smaller values giving a ``sharper'' interaction.
}
\hugh{
Remarkably, the existence of these square-root singularities means that following a complex contour around an EP in the complex $\lambda$ plane will interconvert the closed-shell ground and excited states.
This behaviour can be seen by expanding the radicand in Eq.~\eqref{eq:singletE} as a Taylor series around $\lambda_{\text{EP}}$ to give
\begin{equation}
@ -259,7 +253,7 @@ Parametrising the complex contour as $\lambda(\theta) = \lambda_{\text{EP}} + R
\begin{equation}
E_{\pm} \qty(\theta) \approx E_{\text{EP}} \pm \sqrt{32t^2 \lambda_{\text{EP}} R}\, \exp(\i \theta/2)
\end{equation}
such that}
such that
\begin{align}
E_{\pm}(2\pi) & = E_{\mp}(0),
&
@ -394,13 +388,28 @@ is the HF mean-field potential with
\begin{subequations}
\begin{gather}
\label{eq:CoulOp}
J_i(\vb{x})\phi_p(\vb{x})=\qty[\int\dd\vb{x}'\phi_i(\vb{x}')\frac{1}{\abs{\vb{r} - \vb{r}'}}\phi_i(\vb{x}') ] \phi_p(\vb{x})
J_i(\vb{x})\phi_p(\vb{x})=\qty[\int \phi_i(\vb{x}')\frac{1}{\abs{\vb{r} - \vb{r}'}}\phi_i(\vb{x}') \dd\vb{x}' ] \phi_p(\vb{x})
\\
\label{eq:ExcOp}
K_i(\vb{x})\phi_p(\vb{x})=\qty[\int\dd\vb{x}'\phi_i(\vb{x}')\frac{1}{\abs{\vb{r} - \vb{r}'}}\phi_p(\vb{x}') ] \phi_i(\vb{x})
K_i(\vb{x})\phi_p(\vb{x})=\qty[\int \phi_i(\vb{x}')\frac{1}{\abs{\vb{r} - \vb{r}'}}\phi_p(\vb{x}') \dd\vb{x}'] \phi_i(\vb{x})
\end{gather}
\end{subequations}
being the Coulomb and exchange operators (respectively) in the spin-orbital basis. \cite{SzaboBook}
The HF energy is then defined as
\begin{equation}
\label{eq:E_HF}
E_\text{HF} = \sum_i h_i + \frac{1}{2} \sum_{ij} \qty( J_{ij} - K_{ij} )
\end{equation}
with
\begin{subequations}
\begin{gather}
h_i = \int \phi_i(\vb{x}) h(\vb{x}) \phi_i(\vb{x}) \dd\vb{x}
\\
J_{ij} = \int \phi_i(\vb{x}) J_j(\vb{x}) \phi_i(\vb{x}) \dd\vb{x}
\\
K_{ij} = \int \phi_i(\vb{x}) K_j(\vb{x}) \phi_i(\vb{x}) \dd\vb{x}
\end{gather}
\end{subequations}
If the spatial part of the spin-orbitals are restricted to be the same for spin-up and spin-down electrons, one talks about restricted HF (RHF) theory, whereas if one does not enforce this constrain it leads to the so-called unrestricted HF (UHF) theory.
From hereon, $i$ and $j$ are occupied orbitals, $a$ and $b$ are unoccupied (or virtual) orbitals, while $p$, $q$, $r$, and $s$ indicate arbitrary orbitals.
@ -409,17 +418,17 @@ Rather than solving Eq.~\eqref{eq:SchrEq}, HF theory uses the variational princi
\hH^{\text{HF}} = \sum_{i} f(\vb{x}_i).
\end{equation}
Coming back to the Hubbard dimer, the HF energy is
Coming back to the Hubbard dimer, the HF energy is [see Eq.~\eqref{eq:E_HF}]
\begin{equation}
E_\text{HF} = -t \qty[ \sin \theta_\alpha + \sin \theta_\beta ] + \frac{U}{2} \qty[ 1 + \cos \theta_\alpha \cos \theta_\beta ]
\end{equation}
where
\begin{align}
\psi_{1\sigma} & = \cos(\frac{\theta_\sigma}{2}) s_1 - \sin(\frac{\theta_\sigma}{2})s_2
\psi_{1\sigma} & = \cos(\frac{\theta_\sigma}{2}) \Lsi - \sin(\frac{\theta_\sigma}{2}) \Rsi
\\
\psi_{2\sigma} & = \sin(\frac{\theta_\sigma}{2}) s_1 + \cos(\frac{\theta_\sigma}{2})s_2
\psi_{2\sigma} & = \sin(\frac{\theta_\sigma}{2}) \Lsi + \cos(\frac{\theta_\sigma}{2}) \Rsi
\end{align}
are the one-electron molecule orbitals for the spin-$\sigma$ electrons and the angles which makes the energy stationnary, \ie, $\pdv*{E_\text{HF}}{\theta_\sigma} = 0$ are given by
\begin{align}
\theta_\alpha & = \arctan (-\frac{\sqrt{U^2 - 4t^2}}{U},\frac{2t}{U})
\\