one more ref to Hirata

This commit is contained in:
Pierre-Francois Loos 2020-12-04 17:09:01 +01:00
parent 436be485b5
commit 98218db0d8
3 changed files with 170 additions and 120 deletions

View File

@ -6,7 +6,7 @@
%Control: page (0) single %Control: page (0) single
%Control: year (1) truncated %Control: year (1) truncated
%Control: production of eprint (0) enabled %Control: production of eprint (0) enabled
\begin{thebibliography}{174}% \begin{thebibliography}{175}%
\makeatletter \makeatletter
\providecommand \@ifxundefined [1]{% \providecommand \@ifxundefined [1]{%
\@ifx{#1\undefined} \@ifx{#1\undefined}
@ -1546,6 +1546,17 @@
}\href {\doibase 10.1063/1.4926327} {\bibfield {journal} {\bibinfo }\href {\doibase 10.1063/1.4926327} {\bibfield {journal} {\bibinfo
{journal} {J. Chem. Phys.}\ }\textbf {\bibinfo {volume} {143}},\ \bibinfo {journal} {J. Chem. Phys.}\ }\textbf {\bibinfo {volume} {143}},\ \bibinfo
{pages} {024108} (\bibinfo {year} {2015})}\BibitemShut {NoStop}% {pages} {024108} (\bibinfo {year} {2015})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Hirata}\ \emph {et~al.}(2015)\citenamefont {Hirata},
\citenamefont {Hermes}, \citenamefont {Simons},\ and\ \citenamefont
{Ortiz}}]{Hirata_2015}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {S.}~\bibnamefont
{Hirata}}, \bibinfo {author} {\bibfnamefont {M.~R.}\ \bibnamefont {Hermes}},
\bibinfo {author} {\bibfnamefont {J.}~\bibnamefont {Simons}}, \ and\ \bibinfo
{author} {\bibfnamefont {J.~V.}\ \bibnamefont {Ortiz}},\ }\href {\doibase
10.1021/acs.jctc.5b00005} {\bibfield {journal} {\bibinfo {journal} {J.
Chem. Theory Comput.}\ }\textbf {\bibinfo {volume} {11}},\ \bibinfo {pages}
{1595} (\bibinfo {year} {2015})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Tarantino}\ \emph {et~al.}(2017)\citenamefont \bibitem [{\citenamefont {Tarantino}\ \emph {et~al.}(2017)\citenamefont
{Tarantino}, \citenamefont {Romaniello}, \citenamefont {Berger},\ and\ {Tarantino}, \citenamefont {Romaniello}, \citenamefont {Berger},\ and\
\citenamefont {Reining}}]{Tarantino_2017}% \citenamefont {Reining}}]{Tarantino_2017}%

View File

@ -1,136 +1,175 @@
%% This BibTeX bibliography file was created using BibDesk. %% This BibTeX bibliography file was created using BibDesk.
%% http://bibdesk.sourceforge.net/ %% http://bibdesk.sourceforge.net/
%% Created for Pierre-Francois Loos at 2020-12-04 09:51:06 +0100 %% Created for Pierre-Francois Loos at 2020-12-04 17:07:40 +0100
%% Saved with string encoding Unicode (UTF-8) %% Saved with string encoding Unicode (UTF-8)
%
@article{Hirata_2017,
author = {Hirata, So and Doran, Alexander E. and Knowles, Peter J. and Ortiz, J. V.},
date-added = {2020-12-04 17:07:30 +0100},
date-modified = {2020-12-04 17:07:40 +0100},
doi = {10.1063/1.4994837},
journal = {J. Chem. Phys.},
pages = {044108},
title = {One-Particle Many-Body {{Green}}'s Function Theory: {{Algebraic}} Recursive Definitions, Linked-Diagram Theorem, Irreducible-Diagram Theorem, and General-Order Algorithms},
volume = {147},
year = {2017},
Bdsk-Url-1 = {https://dx.doi.org/10.1063/1.4994837}}
@article{Hirata_2015,
author = {Hirata, So and Hermes, Matthew R. and Simons, Jack and Ortiz, J. V.},
date-added = {2020-12-04 17:07:12 +0100},
date-modified = {2020-12-04 17:07:20 +0100},
doi = {10.1021/acs.jctc.5b00005},
journal = {J. Chem. Theory Comput.},
language = {en},
pages = {1595--1606},
title = {General-{{Order Many}}-{{Body Green}}'s {{Function Method}}},
volume = {11},
year = {2015},
Bdsk-Url-1 = {https://dx.doi.org/10.1021/acs.jctc.5b00005}}
@article{Rauhut_1998, @article{Rauhut_1998,
author = {G. Rauhut, P. Pulay and Hans-Joachim Werner}, author = {G. Rauhut, P. Pulay and Hans-Joachim Werner},
doi = {10.1002/(SICI)1096-987X(199808)19:11<1241::AID-JCC4>3.0.CO;2-K},
journal = {J. Comp. Chem.}, journal = {J. Comp. Chem.},
year ={1998},
volume ={19},
pages = {1241}, pages = {1241},
title = {Integral transformation with loworder scaling for large local secondorder {M\oller--Plesset} calculations}, title = {Integral transformation with loworder scaling for large local secondorder {M\oller--Plesset} calculations},
doi ={10.1002/(SICI)1096-987X(199808)19:11<1241::AID-JCC4>3.0.CO;2-K}, volume = {19},
} year = {1998},
Bdsk-Url-1 = {https://doi.org/10.1002/(SICI)1096-987X(199808)19:11%3C1241::AID-JCC4%3E3.0.CO;2-K}}
@article{Schutz_1999, @article{Schutz_1999,
author = {M. Sch{\"u}tz and G. Hetzer and Hans-Joachim Werner}, author = {M. Sch{\"u}tz and G. Hetzer and Hans-Joachim Werner},
doi = {10.1063/1.479957},
journal = {J. Chem. Phys.}, journal = {J. Chem. Phys.},
year ={1999},
volume ={111},
pages = {5691}, pages = {5691},
title = {Low-order scaling local electron correlation methods. I. Linear scaling local MP2}, title = {Low-order scaling local electron correlation methods. I. Linear scaling local MP2},
doi ={10.1063/1.479957} volume = {111},
} year = {1999},
Bdsk-Url-1 = {https://doi.org/10.1063/1.479957}}
@article{Takeshita_2017, @article{Takeshita_2017,
author = {T. Y. Takeshita and W. A. {de Jong} and D. Neuhauser and R. Baer and E. Rabani}, author = {T. Y. Takeshita and W. A. {de Jong} and D. Neuhauser and R. Baer and E. Rabani},
doi = {10.1021/acs.jctc.7b00343},
journal = {J. Chem. Theory Comput.}, journal = {J. Chem. Theory Comput.},
year ={2017},
volume ={13},
pages = {4605}, pages = {4605},
title = {Stochastic Formulation of the Resolution of Identity: Application to Second Order {M\oller--Plesset} Perturbation Theory}, title = {Stochastic Formulation of the Resolution of Identity: Application to Second Order {M\oller--Plesset} Perturbation Theory},
doi ={10.1021/acs.jctc.7b00343}, volume = {13},
} year = {2017},
Bdsk-Url-1 = {https://doi.org/10.1021/acs.jctc.7b00343}}
@article{Li_2019, @article{Li_2019,
author = {Zhendong Li}, author = {Zhendong Li},
doi = {10.1063/1.5128719},
journal = {J. Chem. Phys.}, journal = {J. Chem. Phys.},
year ={2019},
volume ={151},
pages = {244114}, pages = {244114},
title = {Stochastic many-body perturbation theory for electron correlation energies}, title = {Stochastic many-body perturbation theory for electron correlation energies},
doi ={10.1063/1.5128719}, volume = {151},
} year = {2019},
Bdsk-Url-1 = {https://doi.org/10.1063/1.5128719}}
@article{Thom_2007, @article{Thom_2007,
author = {A. J. W. Thom and A. Alavi}, author = {A. J. W. Thom and A. Alavi},
journal={Phys. Rev. Lett.},
year ={2007},
pages ={143001},
volume ={99},
title ={Stochastic Perturbation Theory: A Low-Scaling Approach to Correlated Electronic Energies},
doi = {10.1103/PhysRevLett.99.143001}, doi = {10.1103/PhysRevLett.99.143001},
} journal = {Phys. Rev. Lett.},
pages = {143001},
title = {Stochastic Perturbation Theory: A Low-Scaling Approach to Correlated Electronic Energies},
volume = {99},
year = {2007},
Bdsk-Url-1 = {https://doi.org/10.1103/PhysRevLett.99.143001}}
@article{Willow_2012, @article{Willow_2012,
author = {S. Y. Willow and K. S. Kim and S. Hirata}, author = {S. Y. Willow and K. S. Kim and S. Hirata},
doi = {10.1063/1.4768697},
journal = {J. Chem. Phys.}, journal = {J. Chem. Phys.},
year ={2012},
volume ={137},
pages = {204122}, pages = {204122},
title = {Stochastic evaluation of second-order many-body perturbation energies}, title = {Stochastic evaluation of second-order many-body perturbation energies},
doi ={10.1063/1.4768697}, volume = {137},
} year = {2012},
Bdsk-Url-1 = {https://doi.org/10.1063/1.4768697}}
@article{Neuhauser_2012, @article{Neuhauser_2012,
author = {D. Neuhauser and E. Rabani and R. Baer}, author = {D. Neuhauser and E. Rabani and R. Baer},
journal={J. Chem. Theory Comput.},
year ={2012},
pages ={24},
volume ={9},
title ={Expeditious Stochastic Approach for MP2 Energies in Large Electronic Systems},
doi = {10.1021/ct.300946j}, doi = {10.1021/ct.300946j},
} journal = {J. Chem. Theory Comput.},
pages = {24},
title = {Expeditious Stochastic Approach for MP2 Energies in Large Electronic Systems},
volume = {9},
year = {2012},
Bdsk-Url-1 = {https://doi.org/10.1021/ct.300946j}}
@article{Lee_2018, @article{Lee_2018,
author = {J. Lee and M. Head-Gordon}, author = {J. Lee and M. Head-Gordon},
journal={J. Chem. Theory Comput.},
year ={2018},
pages ={5203},
title ={Regularized Orbital-Optimized Second-Order MøllerPlesset Perturbation Theory: A Reliable Fifth-Order-Scaling Electron Correlation Model with Orbital Energy Dependent Regularizers},
doi = {10.1021/acs.jctc.8b00731}, doi = {10.1021/acs.jctc.8b00731},
} journal = {J. Chem. Theory Comput.},
pages = {5203},
title = {Regularized Orbital-Optimized Second-Order M{\o}ller--Plesset Perturbation Theory: A Reliable Fifth-Order-Scaling Electron Correlation Model with Orbital Energy Dependent Regularizers},
year = {2018},
Bdsk-Url-1 = {https://doi.org/10.1021/acs.jctc.8b00731}}
@article{Bertels_2019, @article{Bertels_2019,
author = {L. W. Bertels and J. Lee and M. Head-Gordon}, author = {L. W. Bertels and J. Lee and M. Head-Gordon},
journal={J. Phys. Chem. Lett.},
year ={2019},
volume ={10},
pages ={4170},
title ={Third-Order {M\ollerPlesset} Perturbation Theory Made Useful? Choice of Orbitals and Scaling Greatly Improves Accuracy for Thermochemistry, Kinetics, and Intermolecular Interactions},
doi = {10.1021/acs.jpclett.9b01641}, doi = {10.1021/acs.jpclett.9b01641},
} journal = {J. Phys. Chem. Lett.},
pages = {4170},
title = {Third-Order {M\oller--Plesset} Perturbation Theory Made Useful? Choice of Orbitals and Scaling Greatly Improves Accuracy for Thermochemistry, Kinetics, and Intermolecular Interactions},
volume = {10},
year = {2019},
Bdsk-Url-1 = {https://doi.org/10.1021/acs.jpclett.9b01641}}
@article{CarterFenk_2020, @article{CarterFenk_2020,
author = {K. Carter-Fenk and J. M. Herbert}, author = {K. Carter-Fenk and J. M. Herbert},
doi = {10.1021/acs.jctc.0c00502},
journal = {J. Chem. Teory Comput.}, journal = {J. Chem. Teory Comput.},
year ={2020},
volume ={16},
pages = {5067}, pages = {5067},
title = {State-Targeted Energy Projection: A Simple and Robust Approach to Orbital Relaxation of Non-Aufbau Self-Consistent Field Solutions}, title = {State-Targeted Energy Projection: A Simple and Robust Approach to Orbital Relaxation of Non-Aufbau Self-Consistent Field Solutions},
doi ={10.1021/acs.jctc.0c00502}, volume = {16},
} year = {2020},
Bdsk-Url-1 = {https://doi.org/10.1021/acs.jctc.0c00502}}
@article{Rettig_2020, @article{Rettig_2020,
author = {A. Rettig and D. Hait and L. W. Bertels and M. Head-Gordon}, author = {A. Rettig and D. Hait and L. W. Bertels and M. Head-Gordon},
journal={J. Chem. Teory Comput.},
year ={2020},
title ={Third-Order {M\oller--Plesset} Theory Made More Useful? The Role of Density Functional Theory Orbitals},
doi = {10.1021/acs.jctc.0c00986}, doi = {10.1021/acs.jctc.0c00986},
} journal = {J. Chem. Teory Comput.},
title = {Third-Order {M\oller--Plesset} Theory Made More Useful? The Role of Density Functional Theory Orbitals},
year = {2020},
Bdsk-Url-1 = {https://doi.org/10.1021/acs.jctc.0c00986}}
@article{Neese_2009, @article{Neese_2009,
author = {F. Neese and T. Schwabe and S. Kossmann and B. Schirmer and S. Grimme}, author = {F. Neese and T. Schwabe and S. Kossmann and B. Schirmer and S. Grimme},
doi = {10.1021/ct9003299},
journal = {J. Chem. Teory Comput.}, journal = {J. Chem. Teory Comput.},
volume ={5},
pages = {3060}, pages = {3060},
title = {Assessment of Orbital-Optimized, Spin-Component Scaled Second-Order Many-Body Perturbation Theory for Thermochemistry and Kinetics}, title = {Assessment of Orbital-Optimized, Spin-Component Scaled Second-Order Many-Body Perturbation Theory for Thermochemistry and Kinetics},
volume = {5},
year = {2009}, year = {2009},
doi ={10.1021/ct9003299} Bdsk-Url-1 = {https://doi.org/10.1021/ct9003299}}
}
@article{Bozkaya_2011, @article{Bozkaya_2011,
author = {U. Bozkaya}, author = {U. Bozkaya},
doi = {10.1063/1.3665134},
journal = {J. Chem. Phys.}, journal = {J. Chem. Phys.},
volume ={135},
pages = {224103}, pages = {224103},
title = {Orbital-optimized third-order {M\oller--Plesset} perturbation theory and its spin-component and spin-opposite scaled variants: Application to symmetry breaking problems}, title = {Orbital-optimized third-order {M\oller--Plesset} perturbation theory and its spin-component and spin-opposite scaled variants: Application to symmetry breaking problems},
volume = {135},
year = {2011}, year = {2011},
doi ={10.1063/1.3665134}, Bdsk-Url-1 = {https://doi.org/10.1063/1.3665134}}
}
@article{Lee_2019, @article{Lee_2019,
author = {Joonho Lee and David W. Small and Martin Head-Gordon}, author = {Joonho Lee and David W. Small and Martin Head-Gordon},
doi = {10.1063/1.5128795},
journal = {J. Chem. Phys.}, journal = {J. Chem. Phys.},
pages = {214103}, pages = {214103},
title = {Excited states via coupled cluster theory without equation-of-motion methods: Seeking higher roots with application to doubly excited states and double core hole states}, title = {Excited states via coupled cluster theory without equation-of-motion methods: Seeking higher roots with application to doubly excited states and double core hole states},
volume = {151}, volume = {151},
year = {2019}, year = {2019},
doi ={10.1063/1.5128795} Bdsk-Url-1 = {https://doi.org/10.1063/1.5128795}}
}
@article{Shepherd_2016, @article{Shepherd_2016,
author = {Shepherd,James J. and Henderson,Thomas M. and Scuseria,Gustavo E.}, author = {Shepherd,James J. and Henderson,Thomas M. and Scuseria,Gustavo E.},
date-added = {2020-12-04 09:50:38 +0100}, date-added = {2020-12-04 09:50:38 +0100},

View File

@ -1912,7 +1912,7 @@ on the symmetric (or asymmetric in one occasion) Hubbard dimer at half-filling.
Although extremely simple, these illustrations highlight the incredible versatility of the Hubbard model Although extremely simple, these illustrations highlight the incredible versatility of the Hubbard model
for understanding the subtle features of perturbation theory in the complex plane, alongisde other examples for understanding the subtle features of perturbation theory in the complex plane, alongisde other examples
such as Kohn-Sham DFT, \cite{Carrascal_2015,Cohen_2016} linear-response theory,\cite{Carrascal_2018} such as Kohn-Sham DFT, \cite{Carrascal_2015,Cohen_2016} linear-response theory,\cite{Carrascal_2018}
many-body perturbation theory,\cite{Romaniello_2009,Romaniello_2012,DiSabatino_2015,Tarantino_2017,Olevano_2019} many-body perturbation theory,\cite{Romaniello_2009,Romaniello_2012,DiSabatino_2015,Hirata_2015,Tarantino_2017,Olevano_2019}
ensemble DFT, \cite{Deur_2017,Deur_2018,Senjean_2018,Sagredo_2018,Fromager_2020} thermal DFT,\cite{Smith_2016,Smith_2018} ensemble DFT, \cite{Deur_2017,Deur_2018,Senjean_2018,Sagredo_2018,Fromager_2020} thermal DFT,\cite{Smith_2016,Smith_2018}
coupled cluster theory,\cite{Stein_2014,Henderson_2015,Shepherd_2016} and many more. coupled cluster theory,\cite{Stein_2014,Henderson_2015,Shepherd_2016} and many more.
In particular, we have shown that the Hubbard dimer contains sufficient flexibility to describe In particular, we have shown that the Hubbard dimer contains sufficient flexibility to describe