one more ref to Hirata
This commit is contained in:
parent
436be485b5
commit
98218db0d8
@ -6,7 +6,7 @@
|
|||||||
%Control: page (0) single
|
%Control: page (0) single
|
||||||
%Control: year (1) truncated
|
%Control: year (1) truncated
|
||||||
%Control: production of eprint (0) enabled
|
%Control: production of eprint (0) enabled
|
||||||
\begin{thebibliography}{174}%
|
\begin{thebibliography}{175}%
|
||||||
\makeatletter
|
\makeatletter
|
||||||
\providecommand \@ifxundefined [1]{%
|
\providecommand \@ifxundefined [1]{%
|
||||||
\@ifx{#1\undefined}
|
\@ifx{#1\undefined}
|
||||||
@ -1546,6 +1546,17 @@
|
|||||||
}\href {\doibase 10.1063/1.4926327} {\bibfield {journal} {\bibinfo
|
}\href {\doibase 10.1063/1.4926327} {\bibfield {journal} {\bibinfo
|
||||||
{journal} {J. Chem. Phys.}\ }\textbf {\bibinfo {volume} {143}},\ \bibinfo
|
{journal} {J. Chem. Phys.}\ }\textbf {\bibinfo {volume} {143}},\ \bibinfo
|
||||||
{pages} {024108} (\bibinfo {year} {2015})}\BibitemShut {NoStop}%
|
{pages} {024108} (\bibinfo {year} {2015})}\BibitemShut {NoStop}%
|
||||||
|
\bibitem [{\citenamefont {Hirata}\ \emph {et~al.}(2015)\citenamefont {Hirata},
|
||||||
|
\citenamefont {Hermes}, \citenamefont {Simons},\ and\ \citenamefont
|
||||||
|
{Ortiz}}]{Hirata_2015}%
|
||||||
|
\BibitemOpen
|
||||||
|
\bibfield {author} {\bibinfo {author} {\bibfnamefont {S.}~\bibnamefont
|
||||||
|
{Hirata}}, \bibinfo {author} {\bibfnamefont {M.~R.}\ \bibnamefont {Hermes}},
|
||||||
|
\bibinfo {author} {\bibfnamefont {J.}~\bibnamefont {Simons}}, \ and\ \bibinfo
|
||||||
|
{author} {\bibfnamefont {J.~V.}\ \bibnamefont {Ortiz}},\ }\href {\doibase
|
||||||
|
10.1021/acs.jctc.5b00005} {\bibfield {journal} {\bibinfo {journal} {J.
|
||||||
|
Chem. Theory Comput.}\ }\textbf {\bibinfo {volume} {11}},\ \bibinfo {pages}
|
||||||
|
{1595} (\bibinfo {year} {2015})}\BibitemShut {NoStop}%
|
||||||
\bibitem [{\citenamefont {Tarantino}\ \emph {et~al.}(2017)\citenamefont
|
\bibitem [{\citenamefont {Tarantino}\ \emph {et~al.}(2017)\citenamefont
|
||||||
{Tarantino}, \citenamefont {Romaniello}, \citenamefont {Berger},\ and\
|
{Tarantino}, \citenamefont {Romaniello}, \citenamefont {Berger},\ and\
|
||||||
\citenamefont {Reining}}]{Tarantino_2017}%
|
\citenamefont {Reining}}]{Tarantino_2017}%
|
||||||
|
@ -1,136 +1,175 @@
|
|||||||
%% This BibTeX bibliography file was created using BibDesk.
|
%% This BibTeX bibliography file was created using BibDesk.
|
||||||
%% http://bibdesk.sourceforge.net/
|
%% http://bibdesk.sourceforge.net/
|
||||||
|
|
||||||
%% Created for Pierre-Francois Loos at 2020-12-04 09:51:06 +0100
|
%% Created for Pierre-Francois Loos at 2020-12-04 17:07:40 +0100
|
||||||
|
|
||||||
|
|
||||||
%% Saved with string encoding Unicode (UTF-8)
|
%% Saved with string encoding Unicode (UTF-8)
|
||||||
%
|
|
||||||
|
|
||||||
|
|
||||||
|
@article{Hirata_2017,
|
||||||
|
author = {Hirata, So and Doran, Alexander E. and Knowles, Peter J. and Ortiz, J. V.},
|
||||||
|
date-added = {2020-12-04 17:07:30 +0100},
|
||||||
|
date-modified = {2020-12-04 17:07:40 +0100},
|
||||||
|
doi = {10.1063/1.4994837},
|
||||||
|
journal = {J. Chem. Phys.},
|
||||||
|
pages = {044108},
|
||||||
|
title = {One-Particle Many-Body {{Green}}'s Function Theory: {{Algebraic}} Recursive Definitions, Linked-Diagram Theorem, Irreducible-Diagram Theorem, and General-Order Algorithms},
|
||||||
|
volume = {147},
|
||||||
|
year = {2017},
|
||||||
|
Bdsk-Url-1 = {https://dx.doi.org/10.1063/1.4994837}}
|
||||||
|
|
||||||
|
@article{Hirata_2015,
|
||||||
|
author = {Hirata, So and Hermes, Matthew R. and Simons, Jack and Ortiz, J. V.},
|
||||||
|
date-added = {2020-12-04 17:07:12 +0100},
|
||||||
|
date-modified = {2020-12-04 17:07:20 +0100},
|
||||||
|
doi = {10.1021/acs.jctc.5b00005},
|
||||||
|
journal = {J. Chem. Theory Comput.},
|
||||||
|
language = {en},
|
||||||
|
pages = {1595--1606},
|
||||||
|
title = {General-{{Order Many}}-{{Body Green}}'s {{Function Method}}},
|
||||||
|
volume = {11},
|
||||||
|
year = {2015},
|
||||||
|
Bdsk-Url-1 = {https://dx.doi.org/10.1021/acs.jctc.5b00005}}
|
||||||
|
|
||||||
@article{Rauhut_1998,
|
@article{Rauhut_1998,
|
||||||
author = {G. Rauhut, P. Pulay and Hans-Joachim Werner},
|
author = {G. Rauhut, P. Pulay and Hans-Joachim Werner},
|
||||||
|
doi = {10.1002/(SICI)1096-987X(199808)19:11<1241::AID-JCC4>3.0.CO;2-K},
|
||||||
journal = {J. Comp. Chem.},
|
journal = {J. Comp. Chem.},
|
||||||
year ={1998},
|
|
||||||
volume ={19},
|
|
||||||
pages = {1241},
|
pages = {1241},
|
||||||
title = {Integral transformation with low‐order scaling for large local second‐order {M\oller--Plesset} calculations},
|
title = {Integral transformation with low‐order scaling for large local second‐order {M\oller--Plesset} calculations},
|
||||||
doi ={10.1002/(SICI)1096-987X(199808)19:11<1241::AID-JCC4>3.0.CO;2-K},
|
volume = {19},
|
||||||
}
|
year = {1998},
|
||||||
|
Bdsk-Url-1 = {https://doi.org/10.1002/(SICI)1096-987X(199808)19:11%3C1241::AID-JCC4%3E3.0.CO;2-K}}
|
||||||
|
|
||||||
@article{Schutz_1999,
|
@article{Schutz_1999,
|
||||||
author = {M. Sch{\"u}tz and G. Hetzer and Hans-Joachim Werner},
|
author = {M. Sch{\"u}tz and G. Hetzer and Hans-Joachim Werner},
|
||||||
|
doi = {10.1063/1.479957},
|
||||||
journal = {J. Chem. Phys.},
|
journal = {J. Chem. Phys.},
|
||||||
year ={1999},
|
|
||||||
volume ={111},
|
|
||||||
pages = {5691},
|
pages = {5691},
|
||||||
title = {Low-order scaling local electron correlation methods. I. Linear scaling local MP2},
|
title = {Low-order scaling local electron correlation methods. I. Linear scaling local MP2},
|
||||||
doi ={10.1063/1.479957}
|
volume = {111},
|
||||||
}
|
year = {1999},
|
||||||
|
Bdsk-Url-1 = {https://doi.org/10.1063/1.479957}}
|
||||||
|
|
||||||
@article{Takeshita_2017,
|
@article{Takeshita_2017,
|
||||||
author = {T. Y. Takeshita and W. A. {de Jong} and D. Neuhauser and R. Baer and E. Rabani},
|
author = {T. Y. Takeshita and W. A. {de Jong} and D. Neuhauser and R. Baer and E. Rabani},
|
||||||
|
doi = {10.1021/acs.jctc.7b00343},
|
||||||
journal = {J. Chem. Theory Comput.},
|
journal = {J. Chem. Theory Comput.},
|
||||||
year ={2017},
|
|
||||||
volume ={13},
|
|
||||||
pages = {4605},
|
pages = {4605},
|
||||||
title = {Stochastic Formulation of the Resolution of Identity: Application to Second Order {M\oller--Plesset} Perturbation Theory},
|
title = {Stochastic Formulation of the Resolution of Identity: Application to Second Order {M\oller--Plesset} Perturbation Theory},
|
||||||
doi ={10.1021/acs.jctc.7b00343},
|
volume = {13},
|
||||||
}
|
year = {2017},
|
||||||
|
Bdsk-Url-1 = {https://doi.org/10.1021/acs.jctc.7b00343}}
|
||||||
|
|
||||||
@article{Li_2019,
|
@article{Li_2019,
|
||||||
author = {Zhendong Li},
|
author = {Zhendong Li},
|
||||||
|
doi = {10.1063/1.5128719},
|
||||||
journal = {J. Chem. Phys.},
|
journal = {J. Chem. Phys.},
|
||||||
year ={2019},
|
|
||||||
volume ={151},
|
|
||||||
pages = {244114},
|
pages = {244114},
|
||||||
title = {Stochastic many-body perturbation theory for electron correlation energies},
|
title = {Stochastic many-body perturbation theory for electron correlation energies},
|
||||||
doi ={10.1063/1.5128719},
|
volume = {151},
|
||||||
}
|
year = {2019},
|
||||||
|
Bdsk-Url-1 = {https://doi.org/10.1063/1.5128719}}
|
||||||
|
|
||||||
@article{Thom_2007,
|
@article{Thom_2007,
|
||||||
author = {A. J. W. Thom and A. Alavi},
|
author = {A. J. W. Thom and A. Alavi},
|
||||||
journal={Phys. Rev. Lett.},
|
|
||||||
year ={2007},
|
|
||||||
pages ={143001},
|
|
||||||
volume ={99},
|
|
||||||
title ={Stochastic Perturbation Theory: A Low-Scaling Approach to Correlated Electronic Energies},
|
|
||||||
doi = {10.1103/PhysRevLett.99.143001},
|
doi = {10.1103/PhysRevLett.99.143001},
|
||||||
}
|
journal = {Phys. Rev. Lett.},
|
||||||
|
pages = {143001},
|
||||||
|
title = {Stochastic Perturbation Theory: A Low-Scaling Approach to Correlated Electronic Energies},
|
||||||
|
volume = {99},
|
||||||
|
year = {2007},
|
||||||
|
Bdsk-Url-1 = {https://doi.org/10.1103/PhysRevLett.99.143001}}
|
||||||
|
|
||||||
@article{Willow_2012,
|
@article{Willow_2012,
|
||||||
author = {S. Y. Willow and K. S. Kim and S. Hirata},
|
author = {S. Y. Willow and K. S. Kim and S. Hirata},
|
||||||
|
doi = {10.1063/1.4768697},
|
||||||
journal = {J. Chem. Phys.},
|
journal = {J. Chem. Phys.},
|
||||||
year ={2012},
|
|
||||||
volume ={137},
|
|
||||||
pages = {204122},
|
pages = {204122},
|
||||||
title = {Stochastic evaluation of second-order many-body perturbation energies},
|
title = {Stochastic evaluation of second-order many-body perturbation energies},
|
||||||
doi ={10.1063/1.4768697},
|
volume = {137},
|
||||||
}
|
year = {2012},
|
||||||
|
Bdsk-Url-1 = {https://doi.org/10.1063/1.4768697}}
|
||||||
|
|
||||||
@article{Neuhauser_2012,
|
@article{Neuhauser_2012,
|
||||||
author = {D. Neuhauser and E. Rabani and R. Baer},
|
author = {D. Neuhauser and E. Rabani and R. Baer},
|
||||||
journal={J. Chem. Theory Comput.},
|
|
||||||
year ={2012},
|
|
||||||
pages ={24},
|
|
||||||
volume ={9},
|
|
||||||
title ={Expeditious Stochastic Approach for MP2 Energies in Large Electronic Systems},
|
|
||||||
doi = {10.1021/ct.300946j},
|
doi = {10.1021/ct.300946j},
|
||||||
}
|
journal = {J. Chem. Theory Comput.},
|
||||||
|
pages = {24},
|
||||||
|
title = {Expeditious Stochastic Approach for MP2 Energies in Large Electronic Systems},
|
||||||
|
volume = {9},
|
||||||
|
year = {2012},
|
||||||
|
Bdsk-Url-1 = {https://doi.org/10.1021/ct.300946j}}
|
||||||
|
|
||||||
@article{Lee_2018,
|
@article{Lee_2018,
|
||||||
author = {J. Lee and M. Head-Gordon},
|
author = {J. Lee and M. Head-Gordon},
|
||||||
journal={J. Chem. Theory Comput.},
|
|
||||||
year ={2018},
|
|
||||||
|
|
||||||
pages ={5203},
|
|
||||||
title ={Regularized Orbital-Optimized Second-Order Møller–Plesset Perturbation Theory: A Reliable Fifth-Order-Scaling Electron Correlation Model with Orbital Energy Dependent Regularizers},
|
|
||||||
doi = {10.1021/acs.jctc.8b00731},
|
doi = {10.1021/acs.jctc.8b00731},
|
||||||
}
|
journal = {J. Chem. Theory Comput.},
|
||||||
|
pages = {5203},
|
||||||
|
title = {Regularized Orbital-Optimized Second-Order M{\o}ller--Plesset Perturbation Theory: A Reliable Fifth-Order-Scaling Electron Correlation Model with Orbital Energy Dependent Regularizers},
|
||||||
|
year = {2018},
|
||||||
|
Bdsk-Url-1 = {https://doi.org/10.1021/acs.jctc.8b00731}}
|
||||||
|
|
||||||
@article{Bertels_2019,
|
@article{Bertels_2019,
|
||||||
author = {L. W. Bertels and J. Lee and M. Head-Gordon},
|
author = {L. W. Bertels and J. Lee and M. Head-Gordon},
|
||||||
journal={J. Phys. Chem. Lett.},
|
|
||||||
year ={2019},
|
|
||||||
volume ={10},
|
|
||||||
pages ={4170},
|
|
||||||
title ={Third-Order {M\oller–Plesset} Perturbation Theory Made Useful? Choice of Orbitals and Scaling Greatly Improves Accuracy for Thermochemistry, Kinetics, and Intermolecular Interactions},
|
|
||||||
doi = {10.1021/acs.jpclett.9b01641},
|
doi = {10.1021/acs.jpclett.9b01641},
|
||||||
}
|
journal = {J. Phys. Chem. Lett.},
|
||||||
|
pages = {4170},
|
||||||
|
title = {Third-Order {M\oller--Plesset} Perturbation Theory Made Useful? Choice of Orbitals and Scaling Greatly Improves Accuracy for Thermochemistry, Kinetics, and Intermolecular Interactions},
|
||||||
|
volume = {10},
|
||||||
|
year = {2019},
|
||||||
|
Bdsk-Url-1 = {https://doi.org/10.1021/acs.jpclett.9b01641}}
|
||||||
|
|
||||||
@article{CarterFenk_2020,
|
@article{CarterFenk_2020,
|
||||||
author = {K. Carter-Fenk and J. M. Herbert},
|
author = {K. Carter-Fenk and J. M. Herbert},
|
||||||
|
doi = {10.1021/acs.jctc.0c00502},
|
||||||
journal = {J. Chem. Teory Comput.},
|
journal = {J. Chem. Teory Comput.},
|
||||||
year ={2020},
|
|
||||||
volume ={16},
|
|
||||||
pages = {5067},
|
pages = {5067},
|
||||||
title = {State-Targeted Energy Projection: A Simple and Robust Approach to Orbital Relaxation of Non-Aufbau Self-Consistent Field Solutions},
|
title = {State-Targeted Energy Projection: A Simple and Robust Approach to Orbital Relaxation of Non-Aufbau Self-Consistent Field Solutions},
|
||||||
doi ={10.1021/acs.jctc.0c00502},
|
volume = {16},
|
||||||
}
|
year = {2020},
|
||||||
|
Bdsk-Url-1 = {https://doi.org/10.1021/acs.jctc.0c00502}}
|
||||||
|
|
||||||
@article{Rettig_2020,
|
@article{Rettig_2020,
|
||||||
author = {A. Rettig and D. Hait and L. W. Bertels and M. Head-Gordon},
|
author = {A. Rettig and D. Hait and L. W. Bertels and M. Head-Gordon},
|
||||||
journal={J. Chem. Teory Comput.},
|
|
||||||
year ={2020},
|
|
||||||
title ={Third-Order {M\oller--Plesset} Theory Made More Useful? The Role of Density Functional Theory Orbitals},
|
|
||||||
doi = {10.1021/acs.jctc.0c00986},
|
doi = {10.1021/acs.jctc.0c00986},
|
||||||
}
|
journal = {J. Chem. Teory Comput.},
|
||||||
|
title = {Third-Order {M\oller--Plesset} Theory Made More Useful? The Role of Density Functional Theory Orbitals},
|
||||||
|
year = {2020},
|
||||||
|
Bdsk-Url-1 = {https://doi.org/10.1021/acs.jctc.0c00986}}
|
||||||
|
|
||||||
@article{Neese_2009,
|
@article{Neese_2009,
|
||||||
author = {F. Neese and T. Schwabe and S. Kossmann and B. Schirmer and S. Grimme},
|
author = {F. Neese and T. Schwabe and S. Kossmann and B. Schirmer and S. Grimme},
|
||||||
|
doi = {10.1021/ct9003299},
|
||||||
journal = {J. Chem. Teory Comput.},
|
journal = {J. Chem. Teory Comput.},
|
||||||
volume ={5},
|
|
||||||
pages = {3060},
|
pages = {3060},
|
||||||
title = {Assessment of Orbital-Optimized, Spin-Component Scaled Second-Order Many-Body Perturbation Theory for Thermochemistry and Kinetics},
|
title = {Assessment of Orbital-Optimized, Spin-Component Scaled Second-Order Many-Body Perturbation Theory for Thermochemistry and Kinetics},
|
||||||
|
volume = {5},
|
||||||
year = {2009},
|
year = {2009},
|
||||||
doi ={10.1021/ct9003299}
|
Bdsk-Url-1 = {https://doi.org/10.1021/ct9003299}}
|
||||||
}
|
|
||||||
@article{Bozkaya_2011,
|
@article{Bozkaya_2011,
|
||||||
author = {U. Bozkaya},
|
author = {U. Bozkaya},
|
||||||
|
doi = {10.1063/1.3665134},
|
||||||
journal = {J. Chem. Phys.},
|
journal = {J. Chem. Phys.},
|
||||||
volume ={135},
|
|
||||||
pages = {224103},
|
pages = {224103},
|
||||||
title = {Orbital-optimized third-order {M\oller--Plesset} perturbation theory and its spin-component and spin-opposite scaled variants: Application to symmetry breaking problems},
|
title = {Orbital-optimized third-order {M\oller--Plesset} perturbation theory and its spin-component and spin-opposite scaled variants: Application to symmetry breaking problems},
|
||||||
|
volume = {135},
|
||||||
year = {2011},
|
year = {2011},
|
||||||
doi ={10.1063/1.3665134},
|
Bdsk-Url-1 = {https://doi.org/10.1063/1.3665134}}
|
||||||
}
|
|
||||||
@article{Lee_2019,
|
@article{Lee_2019,
|
||||||
author = {Joonho Lee and David W. Small and Martin Head-Gordon},
|
author = {Joonho Lee and David W. Small and Martin Head-Gordon},
|
||||||
|
doi = {10.1063/1.5128795},
|
||||||
journal = {J. Chem. Phys.},
|
journal = {J. Chem. Phys.},
|
||||||
pages = {214103},
|
pages = {214103},
|
||||||
title = {Excited states via coupled cluster theory without equation-of-motion methods: Seeking higher roots with application to doubly excited states and double core hole states},
|
title = {Excited states via coupled cluster theory without equation-of-motion methods: Seeking higher roots with application to doubly excited states and double core hole states},
|
||||||
volume = {151},
|
volume = {151},
|
||||||
year = {2019},
|
year = {2019},
|
||||||
doi ={10.1063/1.5128795}
|
Bdsk-Url-1 = {https://doi.org/10.1063/1.5128795}}
|
||||||
}
|
|
||||||
@article{Shepherd_2016,
|
@article{Shepherd_2016,
|
||||||
author = {Shepherd,James J. and Henderson,Thomas M. and Scuseria,Gustavo E.},
|
author = {Shepherd,James J. and Henderson,Thomas M. and Scuseria,Gustavo E.},
|
||||||
date-added = {2020-12-04 09:50:38 +0100},
|
date-added = {2020-12-04 09:50:38 +0100},
|
||||||
|
@ -1912,7 +1912,7 @@ on the symmetric (or asymmetric in one occasion) Hubbard dimer at half-filling.
|
|||||||
Although extremely simple, these illustrations highlight the incredible versatility of the Hubbard model
|
Although extremely simple, these illustrations highlight the incredible versatility of the Hubbard model
|
||||||
for understanding the subtle features of perturbation theory in the complex plane, alongisde other examples
|
for understanding the subtle features of perturbation theory in the complex plane, alongisde other examples
|
||||||
such as Kohn-Sham DFT, \cite{Carrascal_2015,Cohen_2016} linear-response theory,\cite{Carrascal_2018}
|
such as Kohn-Sham DFT, \cite{Carrascal_2015,Cohen_2016} linear-response theory,\cite{Carrascal_2018}
|
||||||
many-body perturbation theory,\cite{Romaniello_2009,Romaniello_2012,DiSabatino_2015,Tarantino_2017,Olevano_2019}
|
many-body perturbation theory,\cite{Romaniello_2009,Romaniello_2012,DiSabatino_2015,Hirata_2015,Tarantino_2017,Olevano_2019}
|
||||||
ensemble DFT, \cite{Deur_2017,Deur_2018,Senjean_2018,Sagredo_2018,Fromager_2020} thermal DFT,\cite{Smith_2016,Smith_2018}
|
ensemble DFT, \cite{Deur_2017,Deur_2018,Senjean_2018,Sagredo_2018,Fromager_2020} thermal DFT,\cite{Smith_2016,Smith_2018}
|
||||||
coupled cluster theory,\cite{Stein_2014,Henderson_2015,Shepherd_2016} and many more.
|
coupled cluster theory,\cite{Stein_2014,Henderson_2015,Shepherd_2016} and many more.
|
||||||
In particular, we have shown that the Hubbard dimer contains sufficient flexibility to describe
|
In particular, we have shown that the Hubbard dimer contains sufficient flexibility to describe
|
||||||
|
Loading…
Reference in New Issue
Block a user