restoed 'Illustrative Example' title
This commit is contained in:
parent
c890dccfdb
commit
96d4eab66b
@ -2,7 +2,7 @@
|
||||
\BOOKMARK [1][-]{section*.1}{Abstract}{section*.2}% 1
|
||||
\BOOKMARK [1][-]{section*.3}{Introduction}{section*.2}% 3
|
||||
\BOOKMARK [2][-]{section*.4}{Background}{section*.3}% 4
|
||||
\BOOKMARK [2][-]{section*.5}{Exact Exceptional Points}{section*.3}% 5
|
||||
\BOOKMARK [2][-]{section*.5}{Illustrative Example}{section*.3}% 5
|
||||
\BOOKMARK [1][-]{section*.7}{Perturbation theory}{section*.2}% 6
|
||||
\BOOKMARK [2][-]{section*.8}{Rayleigh-Schr\366dinger perturbation theory}{section*.7}% 7
|
||||
\BOOKMARK [2][-]{section*.9}{The Hartree-Fock Hamiltonian}{section*.7}% 8
|
||||
|
@ -175,7 +175,7 @@ More dramatically, whilst eigenvectors remain orthogonal at conical intersection
|
||||
More importantly here, although EPs usually lie off the real axis, these singular points are intimately related to the convergence properties of perturbative methods and avoided crossing on the real axis are indicative of singularities in the complex plane. \cite{BenderBook,Olsen_1996,Olsen_2000,Olsen_2019,Mihalka_2017a,Mihalka_2017b,Mihalka_2019}
|
||||
|
||||
%===================================%
|
||||
\subsection{\hugh{Exact Exceptional Points}}
|
||||
\subsection{Illustrative Example}
|
||||
%===================================%
|
||||
|
||||
%%% FIG 1 %%%
|
||||
|
Loading…
Reference in New Issue
Block a user