Unified all figures

This commit is contained in:
Hugh Burton 2020-12-03 13:05:08 +00:00
parent 8cbda3eb9c
commit 91242b6af9
27 changed files with 28 additions and 27 deletions

View File

@ -235,6 +235,7 @@ the two following terms account for the electron-nucleus attraction and the elec
% EXACT SCHRODINGER EQUATION % EXACT SCHRODINGER EQUATION
The exact many-electron wave function at a given nuclear geometry $\Psi(\vb{R})$ corresponds The exact many-electron wave function at a given nuclear geometry $\Psi(\vb{R})$ corresponds
of using adjacent partial sums
to the solution of the (time-independent) Schr\"{o}dinger equation to the solution of the (time-independent) Schr\"{o}dinger equation
\begin{equation} \begin{equation}
\hH(\vb{R})\, \Psi(\vb{R}) = E(\vb{R})\, \Psi(\vb{R}), \hH(\vb{R})\, \Psi(\vb{R}) = E(\vb{R})\, \Psi(\vb{R}),
@ -507,7 +508,7 @@ the total spin operator $\hat{\mathcal{S}}^2$, leading to ``spin-contamination''
% HF energies as a function of U/t % HF energies as a function of U/t
%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%
\begin{figure} \begin{figure}
\includegraphics[width=\linewidth]{HF_real.pdf} \includegraphics[width=\linewidth]{fig2}
\caption{\label{fig:HF_real} \caption{\label{fig:HF_real}
RHF and UHF energies \titou{in the Hubbard dimer} as a function of the correlation strength $U/t$. RHF and UHF energies \titou{in the Hubbard dimer} as a function of the correlation strength $U/t$.
The symmetry-broken UHF solution emerges at the coalescence point $U=2t$ (black dot), often known as the Coulson-Fischer point.} The symmetry-broken UHF solution emerges at the coalescence point $U=2t$ (black dot), often known as the Coulson-Fischer point.}
@ -551,15 +552,15 @@ modelling the correct physics with the two electrons on opposite sites.
%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%
\begin{figure*}[t] \begin{figure*}[t]
\begin{subfigure}{0.49\textwidth} \begin{subfigure}{0.49\textwidth}
\includegraphics[height=0.65\textwidth,trim={0pt 0pt 0pt -35pt},clip]{HF_cplx_angle} \includegraphics[height=0.65\textwidth,trim={0pt 0pt 0pt -35pt},clip]{fig3a}
\subcaption{\label{subfig:UHF_cplx_angle}} \subcaption{\label{subfig:UHF_cplx_angle}}
\end{subfigure} \end{subfigure}
\begin{subfigure}{0.49\textwidth} \begin{subfigure}{0.49\textwidth}
\includegraphics[height=0.65\textwidth]{HF_cplx_energy} \includegraphics[height=0.65\textwidth]{fig3b}
\subcaption{\label{subfig:UHF_cplx_energy}} \subcaption{\label{subfig:UHF_cplx_energy}}
\end{subfigure} \end{subfigure}
\caption{% \caption{%
(\subref{subfig:UHF_cplx_angle}) Real component of the UHF angle $\ta^{\text{UHF}}$ for $\lambda \in \bbC$ \titou{in the Hubbard dimer for $U/t = ??$}. (\subref{subfig:UHF_cplx_angle}) Real component of the UHF angle $\ta^{\text{UHF}}$ for $\lambda \in \bbC$ in the Hubbard dimer for $U/t = 2$.
Symmetry-broken solutions correspond to individual sheets and become equivalent at Symmetry-broken solutions correspond to individual sheets and become equivalent at
the \textit{quasi}-EP $\lambda_{\text{c}}$ (black dot). the \textit{quasi}-EP $\lambda_{\text{c}}$ (black dot).
The RHF solution is independent of $\lambda$, giving the constant plane at $\pi/2$. The RHF solution is independent of $\lambda$, giving the constant plane at $\pi/2$.
@ -794,17 +795,17 @@ gradient discontinuities or spurious minima.
%%% FIG 2 %%% %%% FIG 2 %%%
\begin{figure*} \begin{figure*}
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{fig2a} \includegraphics[height=0.75\textwidth]{fig4a}
\subcaption{\label{subfig:RMP_3.5} $U/t = 3.5$} \subcaption{\label{subfig:RMP_3.5} $U/t = 3.5$}
\end{subfigure} \end{subfigure}
% %
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{fig2b} \includegraphics[height=0.75\textwidth]{fig4b}
\subcaption{\label{subfig:RMP_cvg}} \subcaption{\label{subfig:RMP_cvg}}
\end{subfigure} \end{subfigure}
% %
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{fig2c} \includegraphics[height=0.75\textwidth]{fig4c}
\subcaption{\label{subfig:RMP_4.5} $U/t = 4.5$} \subcaption{\label{subfig:RMP_4.5} $U/t = 4.5$}
\end{subfigure} \end{subfigure}
\caption{ \caption{
@ -849,7 +850,7 @@ The Taylor expansion of the RMP energy can then be evaluated to obtain the $k$th
% RADIUS OF CONVERGENCE PLOTS % RADIUS OF CONVERGENCE PLOTS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{figure}[htb] \begin{figure}[htb]
\includegraphics[width=\linewidth]{RadConv} \includegraphics[width=\linewidth]{fig5}
\caption{ \caption{
Radius of convergence $r_c$ for the RMP ground state (red), the UMP ground state (blue), and the UMP excited state (orange) Radius of convergence $r_c$ for the RMP ground state (red), the UMP ground state (blue), and the UMP excited state (orange)
series as functions of the ratio $U/t$. series as functions of the ratio $U/t$.
@ -871,17 +872,17 @@ for the two states using the ground-state RHF orbitals is identical.
%%% FIG 3 %%% %%% FIG 3 %%%
\begin{figure*} \begin{figure*}
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{fig3a} \includegraphics[height=0.75\textwidth]{fig6a}
\subcaption{\label{subfig:UMP_3} $U/t = 3$} \subcaption{\label{subfig:UMP_3} $U/t = 3$}
\end{subfigure} \end{subfigure}
% %
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{fig3b} \includegraphics[height=0.75\textwidth]{fig6b}
\subcaption{\label{subfig:UMP_cvg}} \subcaption{\label{subfig:UMP_cvg}}
\end{subfigure} \end{subfigure}
% %
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{fig3c} \includegraphics[height=0.75\textwidth]{fig6c}
\subcaption{\label{subfig:UMP_7} $U/t = 7$} \subcaption{\label{subfig:UMP_7} $U/t = 7$}
\end{subfigure} \caption{ \end{subfigure} \caption{
Convergence of the UMP series as a function of the perturbation order $n$ for the Hubbard dimer at $U/t = 3$ and $7$. Convergence of the UMP series as a function of the perturbation order $n$ for the Hubbard dimer at $U/t = 3$ and $7$.
@ -1153,17 +1154,17 @@ states which share the symmetry of the ground state,\cite{Goodson_2004} and are
%------------------------------------------------------------------% %------------------------------------------------------------------%
\begin{figure*}[t] \begin{figure*}[t]
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{rmp_cp} \includegraphics[height=0.75\textwidth]{fig7a}
\subcaption{\label{subfig:rmp_cp}} \subcaption{\label{subfig:rmp_cp}}
\end{subfigure} \end{subfigure}
% %
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{rmp_cp_surf} \includegraphics[height=0.75\textwidth]{fig7b}
\subcaption{\label{subfig:rmp_cp_surf}} \subcaption{\label{subfig:rmp_cp_surf}}
\end{subfigure} \end{subfigure}
% %
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{rmp_ep_to_cp} \includegraphics[height=0.75\textwidth]{fig7c}
\subcaption{\label{subfig:rmp_ep_to_cp}} \subcaption{\label{subfig:rmp_ep_to_cp}}
\end{subfigure} \end{subfigure}
\caption{% \caption{%
@ -1253,17 +1254,17 @@ set representations of the MP critical point.\cite{Sergeev_2006}
%------------------------------------------------------------------% %------------------------------------------------------------------%
\begin{figure*}[t] \begin{figure*}[t]
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth,trim={0pt 5pt -10pt 15pt},clip]{ump_cp} \includegraphics[height=0.75\textwidth,trim={0pt 5pt -10pt 15pt},clip]{fig8a}
\subcaption{\label{subfig:ump_cp}} \subcaption{\label{subfig:ump_cp}}
\end{subfigure} \end{subfigure}
% %
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{ump_cp_surf} \includegraphics[height=0.75\textwidth]{fig8b}
\subcaption{\label{subfig:ump_cp_surf}} \subcaption{\label{subfig:ump_cp_surf}}
\end{subfigure} \end{subfigure}
% %
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{ump_ep_to_cp} \includegraphics[height=0.75\textwidth]{fig8c}
\subcaption{\label{subfig:ump_ep_to_cp}} \subcaption{\label{subfig:ump_ep_to_cp}}
\end{subfigure} \end{subfigure}
% \includegraphics[height=0.65\textwidth,trim={0pt 5pt 0pt 15pt}, clip]{ump_critical_point} % \includegraphics[height=0.65\textwidth,trim={0pt 5pt 0pt 15pt}, clip]{ump_critical_point}
@ -1329,8 +1330,8 @@ radius of convergence (see Fig.~\ref{fig:RadConv}).
%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%
\begin{figure*} \begin{figure*}
\includegraphics[height=0.23\textheight]{PadeRMP35} \includegraphics[height=0.23\textheight]{fig9a}
\includegraphics[height=0.23\textheight]{PadeRMP45} \includegraphics[height=0.23\textheight]{fig9b}
\caption{\label{fig:PadeRMP} \caption{\label{fig:PadeRMP}
RMP ground-state energy as a function of $\lambda$ obtained using various resummation RMP ground-state energy as a function of $\lambda$ obtained using various resummation
techniques at $U/t = 3.5$ (left) and $U/t = 4.5$ (right).} techniques at $U/t = 3.5$ (left) and $U/t = 4.5$ (right).}
@ -1429,7 +1430,7 @@ a convergent series.
%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%
\begin{figure}[t] \begin{figure}[t]
\includegraphics[width=\linewidth]{QuadUMP} \includegraphics[width=\linewidth]{fig10}
\caption{\label{fig:QuadUMP} \caption{\label{fig:QuadUMP}
UMP energies as a function of $\lambda$ obtained using various resummation techniques at $U/t = 3$.} UMP energies as a function of $\lambda$ obtained using various resummation techniques at $U/t = 3$.}
\end{figure} \end{figure}
@ -1541,18 +1542,18 @@ The remedy for this problem involves applying a suitable transformation of the c
\begin{figure*} \begin{figure*}
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.85\textwidth]{ump_qa322} \includegraphics[height=0.85\textwidth]{fig11a}
\subcaption{\label{subfig:ump_ep_to_cp} [3/2,2] Quadratic} \subcaption{\label{subfig:322quad} [3/2,2] Quadratic}
\end{subfigure} \end{subfigure}
% %
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.85\textwidth]{ump_exact} \includegraphics[height=0.85\textwidth]{fig11b}
\subcaption{\label{subfig:ump_cp_surf} Exact} \subcaption{\label{subfig:exact} Exact}
\end{subfigure} \end{subfigure}
% %
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.85\textwidth]{ump_qa304} \includegraphics[height=0.85\textwidth]{fig11c}
\subcaption{\label{subfig:ump_cp} [3/0,4] Quadratic} \subcaption{\label{subfig:304quad} [3/0,4] Quadratic}
\end{subfigure} \end{subfigure}
\caption{% \caption{%
Comparison of the [3/2,2] and [3/0,4] quadratic approximants with the exact UMP energy surface in the complex $\lambda$ Comparison of the [3/2,2] and [3/0,4] quadratic approximants with the exact UMP energy surface in the complex $\lambda$
@ -1716,7 +1717,7 @@ However, like the UMP series in stretched \ce{H2},\cite{Lepetit_1988}
the cost of larger denominators is an overall slower rate of convergence. the cost of larger denominators is an overall slower rate of convergence.
\begin{figure} \begin{figure}
\includegraphics[width=\linewidth]{rmp_anal_cont} \includegraphics[width=\linewidth]{fig12}
\caption{% \caption{%
Comparison of the scaled RMP10 Taylor expansion with the exact RMP energy as a function Comparison of the scaled RMP10 Taylor expansion with the exact RMP energy as a function
of $\lambda$ for the symmetric Hubbard dimer at $U/t = 4$. of $\lambda$ for the symmetric Hubbard dimer at $U/t = 4$.

Binary file not shown.

Binary file not shown.

BIN
Manuscript/fig2.pdf Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
Manuscript/fig4a.pdf Normal file

Binary file not shown.

BIN
Manuscript/fig4b.pdf Normal file

Binary file not shown.

BIN
Manuscript/fig4c.pdf Normal file

Binary file not shown.

BIN
Manuscript/fig6a.pdf Normal file

Binary file not shown.

BIN
Manuscript/fig6b.pdf Normal file

Binary file not shown.

BIN
Manuscript/fig6c.pdf Normal file

Binary file not shown.

BIN
Manuscript/fig7b.pdf Normal file

Binary file not shown.

BIN
Manuscript/fig8b.pdf Normal file

Binary file not shown.

Binary file not shown.