starting working on response letter
This commit is contained in:
parent
517df5cb1b
commit
8efc787470
@ -6,7 +6,7 @@
|
||||
%Control: page (0) single
|
||||
%Control: year (1) truncated
|
||||
%Control: production of eprint (0) enabled
|
||||
\begin{thebibliography}{179}%
|
||||
\begin{thebibliography}{183}%
|
||||
\makeatletter
|
||||
\providecommand \@ifxundefined [1]{%
|
||||
\@ifx{#1\undefined}
|
||||
@ -234,6 +234,15 @@
|
||||
{journal} {\bibinfo {journal} {J. Chem. Phys.}\ }\textbf {\bibinfo {volume}
|
||||
{89}},\ \bibinfo {pages} {998} (\bibinfo {year} {1988})}\BibitemShut
|
||||
{NoStop}%
|
||||
\bibitem [{\citenamefont {Malrieu}\ and\ \citenamefont
|
||||
{Angeli}(2013)}]{Malrieu_2003}%
|
||||
\BibitemOpen
|
||||
\bibfield {author} {\bibinfo {author} {\bibfnamefont {J.-P.}\ \bibnamefont
|
||||
{Malrieu}}\ and\ \bibinfo {author} {\bibfnamefont {C.}~\bibnamefont
|
||||
{Angeli}},\ }\href {\doibase 10.1080/00268976.2013.788745} {\bibfield
|
||||
{journal} {\bibinfo {journal} {Mol. Phys.}\ }\textbf {\bibinfo {volume}
|
||||
{111}},\ \bibinfo {pages} {1092} (\bibinfo {year} {2013})}\BibitemShut
|
||||
{NoStop}%
|
||||
\bibitem [{\citenamefont {Bender}(2019)}]{BenderPTBook}%
|
||||
\BibitemOpen
|
||||
\bibfield {author} {\bibinfo {author} {\bibfnamefont {C.~M.}\ \bibnamefont
|
||||
@ -896,6 +905,20 @@
|
||||
}\href {\doibase 10.1063/1.481764} {\bibfield {journal} {\bibinfo {journal}
|
||||
{J. Chem. Phys.}\ }\textbf {\bibinfo {volume} {112}},\ \bibinfo {pages}
|
||||
{9213} (\bibinfo {year} {2000})}\BibitemShut {NoStop}%
|
||||
\bibitem [{\citenamefont {Surj{\'a}n}\ and\ \citenamefont
|
||||
{Szabados}(2004)}]{Surjan_2004}%
|
||||
\BibitemOpen
|
||||
\bibfield {author} {\bibinfo {author} {\bibfnamefont {P.~R.}\ \bibnamefont
|
||||
{Surj{\'a}n}}\ and\ \bibinfo {author} {\bibfnamefont {{\'A}.}~\bibnamefont
|
||||
{Szabados}},\ }\enquote {\bibinfo {title} {Appendix to ``studies in
|
||||
perturbation theory'': The problem of partitioning},}\ in\ \href {\doibase
|
||||
10.1007/978-94-017-0448-9_8} {\emph {\bibinfo {booktitle} {Fundamental World
|
||||
of Quantum Chemistry: A Tribute to the Memory of Per-Olov L{\"o}wdin Volume
|
||||
III}}},\ \bibinfo {editor} {edited by\ \bibinfo {editor} {\bibfnamefont
|
||||
{E.~J.}\ \bibnamefont {Br{\"a}ndas}}\ and\ \bibinfo {editor} {\bibfnamefont
|
||||
{E.~S.}\ \bibnamefont {Kryachko}}}\ (\bibinfo {publisher} {Springer
|
||||
Netherlands},\ \bibinfo {address} {Dordrecht},\ \bibinfo {year} {2004})\ pp.\
|
||||
\bibinfo {pages} {129--185}\BibitemShut {NoStop}%
|
||||
\bibitem [{\citenamefont {Nesbet}\ and\ \citenamefont
|
||||
{Hartree}(1955)}]{Nesbet_1955}%
|
||||
\BibitemOpen
|
||||
@ -1361,6 +1384,15 @@
|
||||
{Shanks}},\ }\href {\doibase https://doi.org/10.1002/sapm19553411} {\bibfield
|
||||
{journal} {\bibinfo {journal} {J. Math. Phys.}\ }\textbf {\bibinfo {volume}
|
||||
{34}},\ \bibinfo {pages} {1} (\bibinfo {year} {1955})}\BibitemShut {NoStop}%
|
||||
\bibitem [{\citenamefont {Szabados}\ and\ \citenamefont
|
||||
{Surjan}(1999)}]{Szabados_1999}%
|
||||
\BibitemOpen
|
||||
\bibfield {author} {\bibinfo {author} {\bibfnamefont {A.}~\bibnamefont
|
||||
{Szabados}}\ and\ \bibinfo {author} {\bibfnamefont {P.}~\bibnamefont
|
||||
{Surjan}},\ }\href {\doibase https://doi.org/10.1016/S0009-2614(99)00647-8}
|
||||
{\bibfield {journal} {\bibinfo {journal} {Chem. Phys. Lett.}\ }\textbf
|
||||
{\bibinfo {volume} {308}},\ \bibinfo {pages} {303 } (\bibinfo {year}
|
||||
{1999})}\BibitemShut {NoStop}%
|
||||
\bibitem [{\citenamefont {Surj{\'a}n}\ and\ \citenamefont
|
||||
{Szabados}(2000)}]{Surjan_2000}%
|
||||
\BibitemOpen
|
||||
@ -1369,6 +1401,15 @@
|
||||
{Szabados}},\ }\href {\doibase 10.1063/1.481006} {\bibfield {journal}
|
||||
{\bibinfo {journal} {J. Chem. Phys.}\ }\textbf {\bibinfo {volume} {112}},\
|
||||
\bibinfo {pages} {4438} (\bibinfo {year} {2000})}\BibitemShut {NoStop}%
|
||||
\bibitem [{\citenamefont {Szabados}\ and\ \citenamefont
|
||||
{Surj{\'a}n}(2003)}]{Szabados_2003}%
|
||||
\BibitemOpen
|
||||
\bibfield {author} {\bibinfo {author} {\bibfnamefont {{\'A}.}~\bibnamefont
|
||||
{Szabados}}\ and\ \bibinfo {author} {\bibfnamefont {P.~R.}\ \bibnamefont
|
||||
{Surj{\'a}n}},\ }\href {\doibase https://doi.org/10.1002/qua.10502}
|
||||
{\bibfield {journal} {\bibinfo {journal} {Int. J. Quantum Chem.}\ }\textbf
|
||||
{\bibinfo {volume} {92}},\ \bibinfo {pages} {160} (\bibinfo {year}
|
||||
{2003})}\BibitemShut {NoStop}%
|
||||
\bibitem [{\citenamefont {Surj{\'a}n}\ \emph {et~al.}(2018)\citenamefont
|
||||
{Surj{\'a}n}, \citenamefont {Mih{\'a}lka},\ and\ \citenamefont
|
||||
{Szabados}}]{Surjan_2018}%
|
||||
|
@ -1,7 +1,7 @@
|
||||
%% This BibTeX bibliography file was created using BibDesk.
|
||||
%% http://bibdesk.sourceforge.net/
|
||||
|
||||
%% Created for Pierre-Francois Loos at 2020-12-14 09:50:05 +0100
|
||||
%% Created for Pierre-Francois Loos at 2021-01-29 20:57:57 +0100
|
||||
|
||||
|
||||
%% Saved with string encoding Unicode (UTF-8)
|
||||
|
@ -165,7 +165,7 @@ The popularity of MP theory stems from its black-box nature, size-extensivity, a
|
||||
making it easily applied in a broad range of molecular research.\cite{HelgakerBook}
|
||||
However, it is now widely recognised that the series of MP approximations (defined for a given perturbation
|
||||
order $n$ as MP$n$) can show erratic, slow, or divergent behaviour that limit its systematic improvability.%
|
||||
\cite{Laidig_1985,Knowles_1985,Handy_1985,Gill_1986,Laidig_1987,Nobes_1987,Gill_1988,Gill_1988a,Lepetit_1988}
|
||||
\cite{Laidig_1985,Knowles_1985,Handy_1985,Gill_1986,Laidig_1987,Nobes_1987,Gill_1988,Gill_1988a,Lepetit_1988,Malrieu_2003}
|
||||
As a result, practical applications typically employ only the lowest-order MP2 approach, while
|
||||
the successive MP3, MP4, and MP5 (and higher order) terms are generally not considered to offer enough improvement
|
||||
to justify their increased cost.
|
||||
@ -447,6 +447,7 @@ As a result, the radius of convergence for a function is equal to the distance f
|
||||
in the complex plane, referred to as the ``dominant'' singularity.
|
||||
This singularity may represent a pole of the function, or a branch point (\eg, square-root or logarithmic)
|
||||
in a multi-valued function.
|
||||
\titou{T2: define here critical point.}
|
||||
|
||||
For example, the simple function
|
||||
\begin{equation} \label{eq:DivExample}
|
||||
@ -551,18 +552,22 @@ the total spin operator $\hat{\mathcal{S}}^2$, leading to ``spin-contamination''
|
||||
|
||||
In the Hubbard dimer, the HF energy can be parametrised using two rotation angles $\ta$ and $\tb$ as
|
||||
\begin{equation}
|
||||
\label{eq:EHF}
|
||||
E_\text{HF}(\ta, \tb) = -t\, \qty( \sin \ta + \sin \tb ) + \frac{U}{2} \qty( 1 + \cos \ta \cos \tb ),
|
||||
\end{equation}
|
||||
where we have introduced bonding $\mathcal{B}^{\sigma}$ and antibonding $\mathcal{A}^{\sigma}$ molecular orbitals for
|
||||
where we have introduced \titou{occupied $\psi_1^{\sigma}$} and \titou{unoccupied $\psi_2^{\sigma}$} molecular orbitals for
|
||||
the spin-$\sigma$ electrons as
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
\mathcal{B}^{\sigma} & = \hphantom{-} \cos(\frac{\ts}{2}) \Lsi + \sin(\frac{\ts}{2}) \Rsi,
|
||||
\label{eq:psi1}
|
||||
\titou{\psi_1^{\sigma}} & = \hphantom{-} \cos(\frac{\ts}{2}) \Lsi + \sin(\frac{\ts}{2}) \Rsi,
|
||||
\\
|
||||
\mathcal{A}^{\sigma} & = - \sin(\frac{\ts}{2}) \Lsi + \cos(\frac{\ts}{2}) \Rsi
|
||||
\label{eq:psi2}
|
||||
\titou{\psi_2^{\sigma}} & = - \sin(\frac{\ts}{2}) \Lsi + \cos(\frac{\ts}{2}) \Rsi
|
||||
\end{align}
|
||||
\label{eq:RHF_orbs}
|
||||
\end{subequations}
|
||||
\titou{Equations \eqref{eq:EHF}, \eqref{eq:psi1}, and \eqref{eq:psi2} are valid for both RHF and UHF.}
|
||||
In the weak correlation regime $0 \le U \le 2t$, the angles which minimise the HF energy,
|
||||
\ie, $\pdv*{E_\text{HF}}{\ts} = 0$, are
|
||||
\begin{equation}
|
||||
@ -570,9 +575,9 @@ In the weak correlation regime $0 \le U \le 2t$, the angles which minimise the H
|
||||
\end{equation}
|
||||
giving the symmetry-pure molecular orbitals
|
||||
\begin{align}
|
||||
\mathcal{B}_\text{RHF}^{\sigma} & = \frac{\Lsi + \Rsi}{\sqrt{2}},
|
||||
\titou{\psi_{1,\text{RHF}}^{\sigma}} & = \frac{\Lsi + \Rsi}{\sqrt{2}},
|
||||
&
|
||||
\mathcal{A}_\text{RHF}^{\sigma} & = \frac{\Lsi - \Rsi}{\sqrt{2}},
|
||||
\titou{\psi_{2,\text{RHF}}^{\sigma}} & = \frac{\Lsi - \Rsi}{\sqrt{2}},
|
||||
\end{align}
|
||||
and the ground-state RHF energy (Fig.~\ref{fig:HF_real})
|
||||
\begin{equation}
|
||||
@ -733,12 +738,12 @@ be computed to understand the convergence of the MP$n$ series.\cite{Handy_1985}
|
||||
systematically improvable theory.
|
||||
In fact, when the reference HF wave function is a poor approximation to the exact wave function,
|
||||
for example in multi-configurational systems, MP theory can yield highly oscillatory,
|
||||
slowly convergent, or catastrophically divergent results.\cite{Gill_1986,Gill_1988,Handy_1985,Lepetit_1988,Leininger_2000}
|
||||
slowly convergent, or catastrophically divergent results.\cite{Gill_1986,Gill_1988,Handy_1985,Lepetit_1988,Leininger_2000,Malrieu_2003}
|
||||
Furthermore, the convergence properties of the MP series can depend strongly on the choice of restricted or
|
||||
unrestricted reference orbitals.
|
||||
|
||||
Although practically convenient for electronic structure calculations, the MP partitioning is not
|
||||
the only possibility and alternative partitionings have been considered including:
|
||||
the only possibility and alternative partitionings have been considered \cite{Surjan_2004} including:
|
||||
i) the Epstein-Nesbet (EN) partitioning which consists in taking the diagonal elements of $\hH$ as the zeroth-order Hamiltonian, \cite{Nesbet_1955,Epstein_1926}
|
||||
ii) the weak correlation partitioning in which the one-electron part is consider as the unperturbed Hamiltonian $\hH^{(0)}$ and the two-electron part is the perturbation operator $\hV$, and
|
||||
iii) the strong coupling partitioning where the two operators are inverted compared to the weak correlation partitioning. \cite{Seidl_2018,Daas_2020}
|
||||
@ -1047,8 +1052,8 @@ Their analysis is based on Darboux's theorem: \cite{Goodson_2011}
|
||||
\textit{``In the limit of large order, the series coefficients become equivalent to
|
||||
the Taylor series coefficients of the singularity closest to the origin. ''}
|
||||
\end{quote}
|
||||
Following this theory, a singularity in the unit circle is designated as an intruder state,
|
||||
with a front-door (or back-door) intruder state if the real part of the singularity is positive (or negative).
|
||||
\titou{Following this theory, a singularity in the unit circle is designated as an intruder state,
|
||||
with a front-door (or back-door) intruder state if the real part of the singularity is positive (or negative).}
|
||||
|
||||
Using their observations in Ref.~\onlinecite{Olsen_1996}, Olsen and collaborators proposed
|
||||
a simple method that performs a scan of the real axis to detect the avoided crossing responsible
|
||||
@ -1100,7 +1105,7 @@ For Hermitian Hamiltonians, these archetypes can be subdivided into five classes
|
||||
while two additional archetypes (zigzag-geometric and convex-geometric) are observed in non-Hermitian Hamiltonians.
|
||||
%
|
||||
The geometric archetype appears to be the most common for MP expansions,\cite{Olsen_2019} but the
|
||||
ripples archetype corresponds to some of the early examples of MP convergence. \cite{Handy_1985,Lepetit_1988,Leininger_2000}
|
||||
ripples archetype corresponds to some of the early examples of MP convergence. \cite{Handy_1985,Lepetit_1988,Leininger_2000,Malrieu_2003}
|
||||
The three remaining Hermitian archetypes seem to be rarely observed in MP perturbation theory.
|
||||
In contrast, the non-Hermitian coupled cluster perturbation theory,%
|
||||
\cite{Pawlowski_2019a,Pawlowski_2019b,Pawlowski_2019c,Pawlowski_2019d,Pawlowski_2019e} exhibits a range of archetypes
|
||||
@ -1751,7 +1756,7 @@ terms of a perturbation series, even if it diverges.
|
||||
|
||||
Recently, Mih\'alka \etal\ have studied the effect of different partitionings, such as MP or EN theory, on the position of
|
||||
branch points and the convergence properties of Rayleigh--Schr\"odinger perturbation theory\cite{Mihalka_2017b} (see also
|
||||
Ref.~\onlinecite{Surjan_2000}).
|
||||
Refs.~\onlinecite{Szabados_1999,Surjan_2000,Szabados_2003}).
|
||||
Taking the equilibrium and stretched water structures as an example, they estimated the radius of convergence using quadratic
|
||||
Pad\'e approximants.
|
||||
The EN partitioning provided worse convergence properties than the MP partitioning, which is believed to be
|
||||
@ -1825,7 +1830,7 @@ We then provided a comprehensive review of the various research that has been pe
|
||||
around the physics of complex singularities in perturbation theory, with a particular focus on M{\o}ller--Plesset theory.
|
||||
Seminal contributions from various research groups have revealed highly oscillatory,
|
||||
slowly convergent, or catastrophically divergent behaviour of the restricted and/or unrestricted MP perturbation series.%
|
||||
\cite{Laidig_1985,Knowles_1985,Handy_1985,Gill_1986,Laidig_1987,Nobes_1987,Gill_1988,Gill_1988a,Lepetit_1988}
|
||||
\cite{Laidig_1985,Knowles_1985,Handy_1985,Gill_1986,Laidig_1987,Nobes_1987,Gill_1988,Gill_1988a,Lepetit_1988,Malrieu_2003}
|
||||
In particular, the spin-symmetry-broken unrestricted MP series is notorious
|
||||
for giving incredibly slow convergence.\cite{Gill_1986,Nobes_1987,Gill_1988a,Gill_1988}
|
||||
All these behaviours can be rationalised and explained by the position of exceptional points
|
||||
|
@ -124,7 +124,8 @@ We look forward to hearing from you.
|
||||
I raise this point because the journal is JPCM, and these terms are not common in condensed matter literature.
|
||||
Are intruder states equivalent to states creating exceptional points that ruin the series convergence?}
|
||||
\\
|
||||
\alert{The classification of front-door and back-door intruder states have been clarified.}
|
||||
\alert{The classification of front-door and back-door intruder states have been clarified.
|
||||
"Following this theory, a singularity in the unit circle is designated as an intruder state, with a front-door (or back-door) intruder state if the real part of the singularity is positive (or negative)."}
|
||||
|
||||
\item
|
||||
{IIIe.\\
|
||||
|
Loading…
Reference in New Issue
Block a user