Cremer and He's part update
This commit is contained in:
parent
ceb5794392
commit
88ba1b9f60
@ -402,6 +402,9 @@ Handy and coworkers reported the same behavior of the series (oscillatory and sl
|
||||
They concluded that the slow convergence is due to the coupling of the singly- and doubly-excited configurations.
|
||||
Cremer and He analyzed 29 atomic and molecular systems at the FCI level \cite{Cremer_1996} and grouped them in two classes: i) the \textit{class A} systems where one observes a monotonic convergence to the FCI energy, and ii) the \textit{class B} systems for which convergence is erratic after initial oscillations. Their system set contains stretched molecules as well as molecules at their equilibrium geometry for various basis sets. They highlighted that \cite{Cremer_1996}
|
||||
\textit{``Class A systems are characterized by electronic structures with well-separated electron pairs while class B systems are characterized by electronic structures with electron clustering in one or more regions.''}
|
||||
Moreover, they analyzed the contribution of the triple (T) excitations to the MP4, MP5 and MP6 energies next to the single, double and quadruple (SDQ) excitations contribution.
|
||||
They showed that class A systems have very little contribution from the triple excitations and that most of the correlation energy is due to pair correlation. On the other hand, class B systems have an important contribution from the triple excitations which alternates in sign resulting in an oscillation of the total correlation energy.
|
||||
This observation on the contribution to the MPn energy corroborates the electronic structure discussed above.
|
||||
As one can only compute the first terms of the MP series, a smart way of getting more accurate results is to use extrapolation formula, \ie, estimating the limit of the series with only few terms.
|
||||
Cremer and He proved that using specific extrapolation formulas of the MP series for class A and class B systems improves the precision of the results compared to the formula used without resorting to classes. The mean absolute deviation taking the FCI correlation energies as reference is $0.3$ millihartree with the class-specific formula whereas the deviation increases to 12 millihartree using the general formula.
|
||||
Even if there were still shaded areas in their analysis and that their classification was incomplete, the work of Cremer and He clearly evidenced that understanding the origin of the different modes of convergence could potentially lead to a more rationalized use of MP perturbation theory and, hence, to more accurate correlation energy estimates.
|
||||
@ -452,7 +455,7 @@ In Ref.~\onlinecite{Olsen_2019}, the simple two-state model proposed by Olsen \t
|
||||
allowing an analysis of various choice of perturbation (not only the MP partioning) such as coupled cluster perturbation expansions \cite{Pawlowski_2019a,Pawlowski_2019b,Pawlowski_2019c,Pawlowski_2019d,Pawlowski_2019e} and other non-Hermitian perturbation methods.
|
||||
It is worth noting that only cases where $\text{sgn}(\delta_1) = - \text{sgn}(\delta_2)$ leads to new forms of perturbation expansions.
|
||||
Interestingly, they showed that the convergence pattern of a given perturbation method can be characterized by its archetype which defines the overall ``shape'' of the energy convergence. These so-called archetypes can be subdivided in five classes for Hermitian Hamiltonians (zigzag, interspersed zigzag, triadic, ripples, and geometric), while two additional archetypes (zigzag-geometric and convex-geometric) are observed in non-Hermitian Hamiltonians.
|
||||
Importantly, they observed that the the geometric archetype is the most common for MP expansions but that the ripples archetype sometimes occurs. \cite{Handy_1985,Lepetit_1988,Leininger_2000}
|
||||
Importantly, they observed that the geometric archetype is the most common for MP expansions but that the ripples archetype sometimes occurs. \cite{Handy_1985,Lepetit_1988,Leininger_2000}
|
||||
Other features characterizing the convergence behavior of a perturbation method are its rate of convergence, its length of recurring period, and its sign pattern;
|
||||
the three remaining archetypes seem to be rarely observed in MP perturbation theory.
|
||||
However, in the non-Hermitian setting of coupled cluster perturbation theory, \cite{Pawlowski_2019a,Pawlowski_2019b,Pawlowski_2019c,Pawlowski_2019d,Pawlowski_2019e} on can encounter interspersed zigzag, triadic, ripple, geometric, and zigzag-geometric archetypes.
|
||||
@ -477,7 +480,7 @@ To understand the convergence properties of the perturbation series at $\lambda=
|
||||
\Bigg].
|
||||
\end{multline}
|
||||
|
||||
The major difference between these two terms is that the repulsive mean field is localized around the nuclei whereas the interelectronic interaction persist away from the nuclei. If $\lambda$ becomes more and more negative the mean field becomes more and more repulsive so there exists a critical (negative) value of $\lambda$, $\lambda_\text{c}$, for which the Coulombic field created by the nuclei cannot bind the electrons anymore because of the $\lambda$-independent nature of the the electron-nucleus attraction. For $\lambda = \lambda_c$, the electrons dissociate from the nuclei and form a bound cluster which is infinitely separated from the nuclei. According to Baker, \cite{Baker_1971} this value is a critical point of the system and, by analogy with thermodynamics, the energy $E(\lambda)$ exhibits a singularity at $\lambda_\text{c}$. At this point the system undergo a phase transition and a symmetry breaking.
|
||||
The major difference between these two terms is that the repulsive mean field is localized around the nuclei whereas the interelectronic interaction persist away from the nuclei. If $\lambda$ becomes more and more negative the mean field becomes more and more repulsive so there exists a critical (negative) value of $\lambda$, $\lambda_\text{c}$, for which the Coulombic field created by the nuclei cannot bind the electrons anymore because of the $\lambda$-independent nature of the electron-nucleus attraction. For $\lambda = \lambda_c$, the electrons dissociate from the nuclei and form a bound cluster which is infinitely separated from the nuclei. According to Baker, \cite{Baker_1971} this value is a critical point of the system and, by analogy with thermodynamics, the energy $E(\lambda)$ exhibits a singularity at $\lambda_\text{c}$. At this point the system undergo a phase transition and a symmetry breaking.
|
||||
Beyond $\lambda_c$ there is a continuum of eigenstates thanks to which the electrons dissociated from the nuclei.
|
||||
|
||||
This reasoning is done on the exact Hamiltonian and energy, \ie, the Hamiltonian in the complete Hilbert space, this is the exact energy which exhibits this singularity on the negative real axis. However, in a finite basis set which does not span the complete Hilbert space, one can prove that, for a Hermitian Hamiltonian, the singularities of $E(\lambda)$ occurs in complex conjugate pairs with non-zero imaginary parts. Sergeev and Goodson proved, \cite{Sergeev_2005} as predicted by Stillinger, \cite{Stillinger_2000} that in a finite basis set the critical point on the real axis is modeled by a cluster of sharp avoided crossings with diffuse functions, equivalently by a cluster of $\beta$ singularities in the negative half plane. This explains that Olsen \textit{et al.}, because they used a simple $2\times2$ model, only observed the first singularity of this cluster of singularities causing the divergence. \cite{Olsen_2000}
|
||||
@ -493,7 +496,7 @@ To the best of our knowledge, the effect of bond stretching on singularities, it
|
||||
|
||||
In the previous section, we saw that a careful analysis of the structure of the Hamiltonian allows us to predict the existence of a critical point. In a finite basis set this critical point is model by a cluster of $\beta$ singularities. It is now well known that this phenomenon is a special case of a more general phenomenon. Indeed, theoretical physicists proved that EPs close to the real axis are connected to \textit{quantum phase transitions} (QPTs). \cite{Heiss_1988,Heiss_2002,Cejnar_2005, Cejnar_2007, Cejnar_2009, Borisov_2015, Sindelka_2017} In quantum mechanics, the Hamiltonian is almost always dependent of, at least, one parameter. In some cases the variation of a parameter can lead to abrupt changes at a critical point. These QPTs exist both for ground and excited states as shown by Cejnar and coworkers. \cite{Cejnar_2009, Sachdev_2011, Cejnar_2015, Cejnar_2016, Caprio_2008, Macek_2019} A ground-state QPT is characterized by the derivatives of the ground-state energy with respect to a non-thermal control parameter. \cite{Cejnar_2009, Sachdev_2011} The transition is called discontinuous and of first order if the first derivative is discontinuous at the critical parameter value. Otherwise, it is called continuous and of $m$th order if the $m$th derivative is discontinuous. A QPT can also be identify by the discontinuity of an appropriate order parameter (or one of its derivatives).
|
||||
|
||||
The presence of an EP close to the real axis is characteristic of a sharp avoided crossing. Yet, at such an avoided crossing, eigenstates change abruptly. Although it is now well understood that EPs are closely related to QPTs, the link between the type of QPT (ground state or excited state, first or higher order) and EPs still need to be clarified. One of the major obstacles that one faces in order to achieve this resides in the ability to compute the distribution of EPs. The numerical assignment of an EP to two energies on the real axis is very difficult in large dimensions. Hence, the design of specific methods are required to get information on the location of EPs. Following this idea, Cejnar \textit{et al.}~developed a method based on a Coulomb analogy giving access to the density of EP close to the real axis. \cite{Cejnar_2005, Cejnar_2007} More recently Stransky and coworkers proved that the distribution of EPs is characteristic on the order of the QPT. \cite{Stransky_2018} In the thermodynamic limit, some of the EPs converge towards a critical point $\lambda_\text{c}$ on the real axis. They showed that, within the interaction boson model, \cite{Lipkin_1965} EPs associated to first- and second-order QPT behave differently when the number of particles increases. The position of these singularities converge towards the critical point on the real axis at different rates (exponentially and algebraically for the first and second orders, respectively) with respect to the number of particles.
|
||||
The presence of an EP close to the real axis is characteristic of a sharp avoided crossing. Yet, at such an avoided crossing, eigenstates change abruptly. Although it is now well understood that EPs are closely related to QPTs, the link between the type of QPT (ground state or excited state, first or higher order) and EPs still need to be clarified. One of the major obstacles that one faces in order to achieve this resides in the ability to compute the distribution of EPs. The numerical assignment of an EP to two energies on the real axis is very difficult in large dimensions. Hence, the design of specific methods are required to get information on the location of EPs. Following this idea, Cejnar \textit{et al.}~developed a method based on a Coulomb analogy giving access to the density of EP close to the real axis. \cite{Cejnar_2005, Cejnar_2007} More recently Stransky and coworkers proved that the distribution of EPs is characteristic on the order of the QPT. \cite{Stransky_2018} In the thermodynamic limit, some of the EPs converge towards a critical point $\lambda_\text{c}$ on the real axis. They showed that, within the interacting boson model, \cite{Lipkin_1965} EPs associated to first- and second-order QPT behave differently when the number of particles increases. The position of these singularities converge towards the critical point on the real axis at different rates (exponentially and algebraically for the first and second orders, respectively) with respect to the number of particles.
|
||||
|
||||
It seems like our understanding of the physics of spatial and/or spin symmetry breaking in HF theory can be enlightened by QPT theory. Indeed, the second derivative of the HF ground-state energy is discontinuous at the point of spin symmetry-breaking which means that the system undergo a second-order QPT. Moreover, the $\beta$ singularities introduced by Sergeev and coworkers to describe the EPs modeling the formation of a bound cluster of electrons are actually a more general class of singularities. The EPs close to the real axis (the so-called $\beta$ singularities) are connected to QPT because they result from a sharp avoided crossings at which the eigenstates change quickly. However, the $\alpha$ singularities arise from large avoided crossings. Thus, they cannot be connected to QPT. The avoided crossings generating $\alpha$ singularities generally involve the ground state and low-lying doubly-excited states. Those excited states have a non-negligible contribution to the exact FCI solution because they have (usually) the same spatial and spin symmetry as the ground state. We believe that $\alpha$ singularities are connected to states with non-negligible contribution in the CI expansion thus to the dynamical part of the correlation energy, while $\beta$ singularities are linked to symmetry breaking and phase transitions of the wave function, \ie, to the multi-reference nature of the wave function thus to the static part of the correlation energy.
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user