starting working on pade and stuff
This commit is contained in:
parent
cdad5bbf2b
commit
8281a2e66b
@ -1167,7 +1167,46 @@ We believe that $\alpha$ singularities are connected to states with non-negligib
|
||||
%==========================================%
|
||||
\subsection{Pad\'e approximant}
|
||||
%==========================================%
|
||||
According to Wikipedia, \textit{``a Pad\'e approximant is the best approximation of a function by a rational function of given order''}.
|
||||
A $[d_A/d_B]$ Pad\'e approximant is defined as
|
||||
\begin{equation}
|
||||
\label{eq:PadeApp}
|
||||
E(\lambda) = \frac{A(\lambda)}{B(\lambda)} = \frac{\sum_{k=0}^{d_A} a_k \lambda^k}{\sum_{k=0}^{d_B} b_k \lambda^k}
|
||||
\end{equation}
|
||||
with $b_0 = 1$.
|
||||
Pad\'e approximants are nice and they can model poles, but they cannot model functions with square-root branch points, and that sucks.
|
||||
|
||||
%==========================================%
|
||||
\subsection{Quadratic approximant}
|
||||
%==========================================%
|
||||
In a nutshell, the idea behind quadratic approximant is to model the singularity structure of the energy function $E(\lambda)$ via a generalized version of the square-root singularity expression
|
||||
\begin{equation}
|
||||
\label{eq:QuadApp}
|
||||
E(\lambda) = \frac{1}{2 Q(\lambda)} \qty[ P(\lambda) \pm \sqrt{P^2(\lambda) - 4 Q(\lambda) R(\lambda)} ]
|
||||
\end{equation}
|
||||
where
|
||||
\begin{align}
|
||||
\label{eq:PQR}
|
||||
P(\lambda) & = \sum_{k=0}^{d_P} p_k \lambda^k,
|
||||
&
|
||||
Q(\lambda) & = \sum_{k=0}^{d_Q} q_k \lambda^k,
|
||||
&
|
||||
R(\lambda) & = \sum_{k=0}^{d_R} r_k \lambda^k
|
||||
\end{align}
|
||||
are polynomials, such that $d_P + d_Q + d_R = n - 1$ where $n$ is the highest-order series coefficient known from the Taylor expansion of $E(\lambda)$.
|
||||
Recasting Eq.~\eqref{eq:QuadApp} as a second-order expression in $E(\lambda)$, \ie,
|
||||
\begin{equation}
|
||||
Q(\lambda) E^2(\lambda) - P(\lambda) E(\lambda) + R(\lambda) \sim \order*{\lambda^{n+1}}
|
||||
\end{equation}
|
||||
and substituting $E(\lambda$) by its $n$th-order expansion and the polynomials by their respective expressions \eqref{eq:PQR} yields $n+1$ linear equations for the coefficients $p_k$, $q_k$, and $r_k$ (where we are free to assume that $q_0 = 1$).
|
||||
A quadratic approximant, characterised by the label $[d_P/d_Q,d_R]$, generates, by construction, $\max(2d_p,d_q+d_r)$ branch points.
|
||||
The diagonal sequence of quadratic approximant, \ie, $[0/0,0]$, $[1/0,0]$, $[1/0,1]$, $[1/1,1]$, $[2/1,1]$, is of particular interest.
|
||||
|
||||
For the RMP series of the Hubbard dimer, the $[0/0,0]$ and $[1/0,0]$ quadratic approximant are quite poor approximation, but its $[1/0,1]$ version already model perfectly the RMP energy function by predicting a single pair of EPs at $\lambda_{EP} = \pm i 4t/U$.
|
||||
This is expected knowing the form of the RMP energy [see Eq.~\eqref{eq:E0MP}] which perfectly suits the purpose of quadratic approximants.
|
||||
|
||||
We can anticipate that the singularity structure of the UMP energy function is going to be much more challenging to model properly, and this is indeed the case.
|
||||
However, by ramping up high enough the degree of the polynomials, one is able to get an accurate estimates of the radius of convergence of the UMP series as shown in Fig.~??.
|
||||
|
||||
%==========================================%
|
||||
\subsection{Analytic continuation}
|
||||
@ -1188,7 +1227,6 @@ Their method consists in refining self-consistently the values of $E(\lambda)$ c
|
||||
When the values of $E(\lambda)$ on the so-called contour are converged, Cauchy's integrals formula \eqref{eq:Cauchy} is invoked to compute the values at $E(\lambda=1)$ which corresponds to the final estimate of the FCI energy.
|
||||
The authors illustrate this protocol on the dissociation curve of \ce{LiH} and the stretched water molecule showing encouraging results. \cite{Mihalka_2019}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Conclusion}
|
||||
%%%%%%%%%%%%%%%%%%%%
|
||||
|
@ -10,10 +10,10 @@
|
||||
NotebookFileLineBreakTest
|
||||
NotebookFileLineBreakTest
|
||||
NotebookDataPosition[ 158, 7]
|
||||
NotebookDataLength[ 2279647, 38118]
|
||||
NotebookOptionsPosition[ 2277740, 38081]
|
||||
NotebookOutlinePosition[ 2278133, 38097]
|
||||
CellTagsIndexPosition[ 2278090, 38094]
|
||||
NotebookDataLength[ 2281460, 38159]
|
||||
NotebookOptionsPosition[ 2279091, 38114]
|
||||
NotebookOutlinePosition[ 2279484, 38130]
|
||||
CellTagsIndexPosition[ 2279441, 38127]
|
||||
WindowFrame->Normal*)
|
||||
|
||||
(* Beginning of Notebook Content *)
|
||||
@ -30,7 +30,7 @@ Cell[BoxData[{
|
||||
mhchem}\>\"", ",", "\"\<\\\\definecolor{darkgreen}{RGB}{0, 180, 0}\>\""}],
|
||||
"}"}]}]}], "]"}], ";"}]}], "Input",
|
||||
InitializationCell->True,
|
||||
CellLabel->"In[68]:=",ExpressionUUID->"f65877ba-d36d-4ae9-8f97-c73d075e0edb"],
|
||||
CellLabel->"In[50]:=",ExpressionUUID->"f65877ba-d36d-4ae9-8f97-c73d075e0edb"],
|
||||
|
||||
Cell[BoxData[{
|
||||
RowBox[{
|
||||
@ -257,8 +257,7 @@ Cell[BoxData[{
|
||||
3.814787502518868*^9, 3.8147875329756193`*^9}, {3.814790254319269*^9,
|
||||
3.814790269605897*^9}, {3.814791606376205*^9, 3.814791618911272*^9}, {
|
||||
3.814791684156201*^9, 3.81479168421588*^9}},
|
||||
CellLabel->
|
||||
"In[166]:=",ExpressionUUID->"d6fb1ea0-3b9d-4259-8695-accb31630f7a"],
|
||||
CellLabel->"In[52]:=",ExpressionUUID->"d6fb1ea0-3b9d-4259-8695-accb31630f7a"],
|
||||
|
||||
Cell[BoxData[{
|
||||
RowBox[{
|
||||
@ -33041,8 +33040,7 @@ Cell[BoxData[
|
||||
3.8147877447332697`*^9}, {3.81478799048967*^9, 3.81478799859051*^9}, {
|
||||
3.814790299925262*^9, 3.8147903002514277`*^9}, {3.814791633969879*^9,
|
||||
3.814791704585639*^9}, {3.814791887853818*^9, 3.814791890911656*^9}},
|
||||
CellLabel->
|
||||
"In[187]:=",ExpressionUUID->"a04bf6cf-d810-420b-ae95-90fd4eb15c89"],
|
||||
CellLabel->"In[55]:=",ExpressionUUID->"a04bf6cf-d810-420b-ae95-90fd4eb15c89"],
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{
|
||||
@ -33084,8 +33082,35 @@ Cell[BoxData[
|
||||
RowBox[{"\[CapitalEpsilon]", ",", "\[Lambda]"}], "}"}]}], "]"}]}],
|
||||
"\[IndentingNewLine]", "]"}], "//", "DeleteDuplicates"}]}]], "Input",
|
||||
CellChangeTimes->{{3.8147917067005177`*^9, 3.814791715286832*^9}},
|
||||
CellLabel->
|
||||
"In[171]:=",ExpressionUUID->"31b4dd58-0663-420b-9770-afef161e267c"],
|
||||
CellLabel->"In[56]:=",ExpressionUUID->"31b4dd58-0663-420b-9770-afef161e267c"],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{"RsbUMP", "[",
|
||||
RowBox[{"1", ",", "3."}], "]"}]], "Input",
|
||||
CellChangeTimes->{{3.815242507266938*^9, 3.8152425082218227`*^9},
|
||||
3.8152425653051767`*^9},
|
||||
CellLabel->"In[68]:=",ExpressionUUID->"a2c89052-deda-45c0-8bab-30f0939f619f"],
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{"{",
|
||||
RowBox[{
|
||||
"0", ",",
|
||||
"0.5961527307547023675614369026278853571377157378628311940772`29.\
|
||||
373770037979853", ",",
|
||||
"1.0691673935377354519852838669994411559740214826903825566099`29.\
|
||||
378831599535044", ",",
|
||||
"4.73604180716902416750913491771138986571`29.367481548072956", ",",
|
||||
"253096.68257062381809477900752273801303424696`29.346787486230085", ",",
|
||||
"253098.38257673314352786791889168589167684217`29.69897000433602", ",",
|
||||
"8.006399337547544133762265010723303443282123093960268994`29.\
|
||||
69897000433602*^16"}], "}"}]], "Output",
|
||||
CellChangeTimes->{3.815242508644435*^9, 3.8152425656515293`*^9},
|
||||
CellLabel->"Out[68]=",ExpressionUUID->"ba3c72b4-a9b3-4dd7-8933-8aa162ae3a4c"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
Cell[BoxData[{
|
||||
RowBox[{
|
||||
@ -33128,8 +33153,16 @@ Cell[BoxData[{
|
||||
3.8147880514507236`*^9}, {3.814788154398356*^9, 3.814788230514646*^9}, {
|
||||
3.814790377704077*^9, 3.8147903829577103`*^9}, {3.814791725136023*^9,
|
||||
3.814791742602434*^9}, {3.81479177370127*^9, 3.814791773846849*^9}},
|
||||
CellLabel->
|
||||
"In[175]:=",ExpressionUUID->"4bbbb749-5282-4f1e-84cb-b0f31f18b12a"],
|
||||
CellLabel->"In[57]:=",ExpressionUUID->"4bbbb749-5282-4f1e-84cb-b0f31f18b12a"],
|
||||
|
||||
Cell[BoxData["$Aborted"], "Output",
|
||||
CellChangeTimes->{3.815242494307056*^9},
|
||||
CellLabel->"Out[57]=",ExpressionUUID->"53ede771-f91f-428f-9d1f-761bb2d95980"],
|
||||
|
||||
Cell[BoxData["$Aborted"], "Output",
|
||||
CellChangeTimes->{3.815242494710631*^9},
|
||||
CellLabel->"Out[58]=",ExpressionUUID->"d56572ae-0032-40a0-bfe2-3271c564b2c6"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[BoxData[
|
||||
RowBox[{
|
||||
@ -38098,27 +38131,35 @@ CellTagsIndex->{}
|
||||
Notebook[{
|
||||
Cell[558, 20, 533, 12, 89, "Input",ExpressionUUID->"f65877ba-d36d-4ae9-8f97-c73d075e0edb",
|
||||
InitializationCell->True],
|
||||
Cell[1094, 34, 7775, 226, 413, "Input",ExpressionUUID->"d6fb1ea0-3b9d-4259-8695-accb31630f7a"],
|
||||
Cell[8872, 262, 755, 20, 52, "Input",ExpressionUUID->"f89ff25e-e4ab-4dad-a96c-3a3c58a93e40"],
|
||||
Cell[1094, 34, 7771, 225, 413, "Input",ExpressionUUID->"d6fb1ea0-3b9d-4259-8695-accb31630f7a"],
|
||||
Cell[8868, 261, 755, 20, 52, "Input",ExpressionUUID->"f89ff25e-e4ab-4dad-a96c-3a3c58a93e40"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[9652, 286, 3625, 94, 296, "Input",ExpressionUUID->"59c9d55f-9509-4f2f-900c-7c13a5cfdc1b"],
|
||||
Cell[13280, 382, 981653, 16149, 495, "Output",ExpressionUUID->"dd4ec4f7-3b13-407e-b97c-30804ac27a78"]
|
||||
Cell[9648, 285, 3625, 94, 296, "Input",ExpressionUUID->"59c9d55f-9509-4f2f-900c-7c13a5cfdc1b"],
|
||||
Cell[13276, 381, 981653, 16149, 510, "Output",ExpressionUUID->"dd4ec4f7-3b13-407e-b97c-30804ac27a78"]
|
||||
}, Open ]],
|
||||
Cell[CellGroupData[{
|
||||
Cell[994970, 16536, 3652, 95, 296, "Input",ExpressionUUID->"980b047c-ab04-4f1b-b482-243d9f2f42c9"],
|
||||
Cell[998625, 16633, 990014, 16287, 534, "Output",ExpressionUUID->"bcf1bcd0-ebbb-478c-be33-3696247d4e4a"]
|
||||
Cell[994966, 16535, 3652, 95, 296, "Input",ExpressionUUID->"980b047c-ab04-4f1b-b482-243d9f2f42c9"],
|
||||
Cell[998621, 16632, 990014, 16287, 529, "Output",ExpressionUUID->"bcf1bcd0-ebbb-478c-be33-3696247d4e4a"]
|
||||
}, Open ]],
|
||||
Cell[CellGroupData[{
|
||||
Cell[1988676, 32925, 1316, 34, 94, "Input",ExpressionUUID->"f5d6c0b4-c0b8-409a-818e-cf7c82587db9"],
|
||||
Cell[1989995, 32961, 1202, 34, 51, "Output",ExpressionUUID->"68dccab9-4a30-4432-867c-7a962bb736ef"]
|
||||
Cell[1988672, 32924, 1316, 34, 94, "Input",ExpressionUUID->"f5d6c0b4-c0b8-409a-818e-cf7c82587db9"],
|
||||
Cell[1989991, 32960, 1202, 34, 51, "Output",ExpressionUUID->"68dccab9-4a30-4432-867c-7a962bb736ef"]
|
||||
}, Open ]],
|
||||
Cell[1991212, 32998, 2084, 46, 157, "Input",ExpressionUUID->"a04bf6cf-d810-420b-ae95-90fd4eb15c89"],
|
||||
Cell[1993299, 33046, 1735, 41, 157, "Input",ExpressionUUID->"31b4dd58-0663-420b-9770-afef161e267c"],
|
||||
Cell[1995037, 33089, 1578, 42, 88, "Input",ExpressionUUID->"4bbbb749-5282-4f1e-84cb-b0f31f18b12a"],
|
||||
Cell[1996618, 33133, 676, 20, 48, "Input",ExpressionUUID->"e08e38fa-a990-4763-ad32-26555f7fc933"],
|
||||
Cell[1991208, 32997, 2080, 45, 157, "Input",ExpressionUUID->"a04bf6cf-d810-420b-ae95-90fd4eb15c89"],
|
||||
Cell[1993291, 33044, 1731, 40, 157, "Input",ExpressionUUID->"31b4dd58-0663-420b-9770-afef161e267c"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[1997319, 33157, 3921, 87, 241, "Input",ExpressionUUID->"66c0e28b-0c04-44b6-8c55-b452aabb2fe4"],
|
||||
Cell[2001243, 33246, 276481, 4832, 343, "Output",ExpressionUUID->"45d89134-f461-45a3-a003-27672fc979ca"]
|
||||
Cell[1995047, 33088, 258, 5, 30, "Input",ExpressionUUID->"a2c89052-deda-45c0-8bab-30f0939f619f"],
|
||||
Cell[1995308, 33095, 717, 14, 60, "Output",ExpressionUUID->"ba3c72b4-a9b3-4dd7-8933-8aa162ae3a4c"]
|
||||
}, Open ]],
|
||||
Cell[CellGroupData[{
|
||||
Cell[1996062, 33114, 1574, 41, 88, "Input",ExpressionUUID->"4bbbb749-5282-4f1e-84cb-b0f31f18b12a"],
|
||||
Cell[1997639, 33157, 156, 2, 34, "Output",ExpressionUUID->"53ede771-f91f-428f-9d1f-761bb2d95980"],
|
||||
Cell[1997798, 33161, 156, 2, 34, "Output",ExpressionUUID->"d56572ae-0032-40a0-bfe2-3271c564b2c6"]
|
||||
}, Open ]],
|
||||
Cell[1997969, 33166, 676, 20, 48, "Input",ExpressionUUID->"e08e38fa-a990-4763-ad32-26555f7fc933"],
|
||||
Cell[CellGroupData[{
|
||||
Cell[1998670, 33190, 3921, 87, 241, "Input",ExpressionUUID->"66c0e28b-0c04-44b6-8c55-b452aabb2fe4"],
|
||||
Cell[2002594, 33279, 276481, 4832, 343, "Output",ExpressionUUID->"45d89134-f461-45a3-a003-27672fc979ca"]
|
||||
}, Open ]]
|
||||
}
|
||||
]
|
||||
|
Loading…
Reference in New Issue
Block a user