update sec 5.1

This commit is contained in:
Antoine Marie 2020-07-20 13:42:18 +02:00
parent e8f8e6508f
commit 70d9521b3e

View File

@ -540,13 +540,27 @@ In addition, we can also consider the symmetry-broken solutions beyond their res
\subsection{Evolution of the radius of convergence}
Different partitioning
In this part, we will try to investigate how some parameters of $\bH(\lambda)$ influence the radius of convergence of the perturbation series. The radius of convergence is equal to the closest singularity to the origin of $E(\lambda)$. The exceptional points are simultaneous solution of \eqref{eq:PolChar} and \eqref{eq:DPolChar} so we solve this system to find their position.
$Y_{l0}$ vs $P_l(\cos(\theta))$
\begin{equation}\label{eq:PolChar}
\text{det}[E-\bH(\lambda)]=0
\end{equation}
\begin{equation}\label{eq:DPolChar}
\pdv{E}\text{det}[E-\bH(\lambda)]=0
\end{equation}
We will take the simple case of the M{\o}ller-Plesset partitioning with a restricted Hartree-Fock minimal basis set as our starting point for this analysis. \\
Puis on rajoute les 3 autres partitionnements \\
Puis différence entre $Y_{l0}$ et $P_l(\cos(\theta))$ (CSF). Parler de la possibilité de la base strong coupling. \\
Différence RHF/UHF, Hamiltonien non-bloc diagonal, coefficients complexe pour R<3/2 \\
Influence de la taille de la base en RHF et UHF \\
Size of the basis set
Strong coupling ???
\subsection{Exceptional points in the UHF formalism}
@ -562,7 +576,7 @@ PT broken symmetry sb UHF
\begin{itemize}
\item Corriger les erreurs dans la biblio
\item tableau nrj uhf, citation spin density wave et charge density wave
\item citation spin density wave et charge density wave
\end{itemize}
\section{Conclusion}