update sec 5.1

This commit is contained in:
Antoine Marie 2020-07-20 13:42:18 +02:00
parent e8f8e6508f
commit 70d9521b3e

View File

@ -540,13 +540,27 @@ In addition, we can also consider the symmetry-broken solutions beyond their res
\subsection{Evolution of the radius of convergence} \subsection{Evolution of the radius of convergence}
Different partitioning In this part, we will try to investigate how some parameters of $\bH(\lambda)$ influence the radius of convergence of the perturbation series. The radius of convergence is equal to the closest singularity to the origin of $E(\lambda)$. The exceptional points are simultaneous solution of \eqref{eq:PolChar} and \eqref{eq:DPolChar} so we solve this system to find their position.
$Y_{l0}$ vs $P_l(\cos(\theta))$ \begin{equation}\label{eq:PolChar}
\text{det}[E-\bH(\lambda)]=0
\end{equation}
\begin{equation}\label{eq:DPolChar}
\pdv{E}\text{det}[E-\bH(\lambda)]=0
\end{equation}
We will take the simple case of the M{\o}ller-Plesset partitioning with a restricted Hartree-Fock minimal basis set as our starting point for this analysis. \\
Puis on rajoute les 3 autres partitionnements \\
Puis différence entre $Y_{l0}$ et $P_l(\cos(\theta))$ (CSF). Parler de la possibilité de la base strong coupling. \\
Différence RHF/UHF, Hamiltonien non-bloc diagonal, coefficients complexe pour R<3/2 \\
Influence de la taille de la base en RHF et UHF \\
Size of the basis set
Strong coupling ???
\subsection{Exceptional points in the UHF formalism} \subsection{Exceptional points in the UHF formalism}
@ -562,7 +576,7 @@ PT broken symmetry sb UHF
\begin{itemize} \begin{itemize}
\item Corriger les erreurs dans la biblio \item Corriger les erreurs dans la biblio
\item tableau nrj uhf, citation spin density wave et charge density wave \item citation spin density wave et charge density wave
\end{itemize} \end{itemize}
\section{Conclusion} \section{Conclusion}