RMP Hamiltonian for Hugh

This commit is contained in:
Pierre-Francois Loos 2020-11-30 11:24:27 +01:00
parent b4604532d1
commit 6d03501307

View File

@ -1272,10 +1272,21 @@ has a negative diagonal term in the one-electron Hamiltonian, representing the n
encoded in the Initialisation section such that the core Hamiltonian is encoded in the Initialisation section such that the core Hamiltonian is
To model the doubly-occupied atom, we can define our reference HF state as the configuration with $\theta = 0$ and energy To model the doubly-occupied atom, we can define our reference HF state as the configuration with $\theta = 0$ and energy
\begin{equation} \begin{equation}
\frac{1}{2} (2 U - 4 \epsilon) E_\text{HF}(0, 0) = \frac{1}{2} (2 U - 4 \epsilon)
\end{equation} \end{equation}
The RMP Hamiltonian then becomes The RMP Hamiltonian then becomes
... \begin{widetext}
\begin{equation}
\label{eq:H_RMP}
\bH_\text{RMP}\qty(\lambda) =
\begin{pmatrix}
-2 \delta \epsilon + 2U(1 - \lambda/2) & -\lambda t & -\lambda t & 0 \\
-\lambda t & - \delta \epsilon + (1-\lambda)U & 0 & -\lambda t \\
-\lambda t & 0 & - \delta \epsilon + (1-\lambda)U & -\lambda t \\
0 & -\lambda t & -\lambda t & \lambda U \\
\end{pmatrix},
\end{equation}
\end{widetext}
} }
\hughDraft{% \hughDraft{%