ajout des slides
This commit is contained in:
parent
5e34d82799
commit
68cd9b3891
BIN
SlideToulouse/Ne.png
Normal file
BIN
SlideToulouse/Ne.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 22 KiB |
104
SlideToulouse/SlideToulouse.bib
Normal file
104
SlideToulouse/SlideToulouse.bib
Normal file
@ -0,0 +1,104 @@
|
||||
|
||||
@article{gill_why_1988,
|
||||
title = {Why does unrestricted Mo/ller–Plesset perturbation theory converge so slowly for spin‐contaminated wave functions?},
|
||||
volume = {89},
|
||||
issn = {0021-9606},
|
||||
url = {https://aip.scitation.org/doi/abs/10.1063/1.455312},
|
||||
doi = {10.1063/1.455312},
|
||||
pages = {7307--7314},
|
||||
number = {12},
|
||||
journaltitle = {The Journal of Chemical Physics},
|
||||
shortjournal = {J. Chem. Phys.},
|
||||
author = {Gill, Peter M. W. and Pople, John A. and Radom, Leo and Nobes, Ross H.},
|
||||
urldate = {2020-06-10},
|
||||
date = {1988-12-15},
|
||||
note = {Publisher: American Institute of Physics},
|
||||
file = {Snapshot:/home/amarie/Zotero/storage/4SDW37YN/1.html:text/html}
|
||||
}
|
||||
|
||||
@article{sergeev_nature_2005,
|
||||
title = {On the nature of the Møller-Plesset critical point},
|
||||
volume = {123},
|
||||
issn = {0021-9606},
|
||||
url = {https://aip.scitation.org/doi/10.1063/1.1991854},
|
||||
doi = {10.1063/1.1991854},
|
||||
pages = {064105},
|
||||
number = {6},
|
||||
journaltitle = {The Journal of Chemical Physics},
|
||||
shortjournal = {J. Chem. Phys.},
|
||||
author = {Sergeev, Alexey V. and Goodson, David Z. and Wheeler, Steven E. and Allen, Wesley D.},
|
||||
urldate = {2020-06-10},
|
||||
date = {2005-08-08},
|
||||
note = {Publisher: American Institute of Physics},
|
||||
file = {Snapshot:/home/amarie/Zotero/storage/5N2L8RQ6/1.html:text/html}
|
||||
}
|
||||
|
||||
@article{sergeev_singularities_2006,
|
||||
title = {Singularities of Møller-Plesset energy functions},
|
||||
volume = {124},
|
||||
issn = {0021-9606},
|
||||
url = {https://aip.scitation.org/doi/10.1063/1.2173989},
|
||||
doi = {10.1063/1.2173989},
|
||||
pages = {094111},
|
||||
number = {9},
|
||||
journaltitle = {The Journal of Chemical Physics},
|
||||
shortjournal = {J. Chem. Phys.},
|
||||
author = {Sergeev, Alexey V. and Goodson, David Z.},
|
||||
urldate = {2020-06-10},
|
||||
date = {2006-03-07},
|
||||
note = {Publisher: American Institute of Physics},
|
||||
file = {Snapshot:/home/amarie/Zotero/storage/IP28R6TR/1.html:text/html}
|
||||
}
|
||||
|
||||
@article{olsen_divergence_2000,
|
||||
title = {Divergence in Møller–Plesset theory: A simple explanation based on a two-state model},
|
||||
volume = {112},
|
||||
issn = {0021-9606},
|
||||
url = {https://aip.scitation.org/doi/10.1063/1.481611},
|
||||
doi = {10.1063/1.481611},
|
||||
shorttitle = {Divergence in Møller–Plesset theory},
|
||||
pages = {9736--9748},
|
||||
number = {22},
|
||||
journaltitle = {The Journal of Chemical Physics},
|
||||
shortjournal = {J. Chem. Phys.},
|
||||
author = {Olsen, Jeppe and Jørgensen, Poul and Helgaker, Trygve and Christiansen, Ove},
|
||||
urldate = {2020-06-10},
|
||||
date = {2000-05-31},
|
||||
note = {Publisher: American Institute of Physics},
|
||||
file = {Snapshot:/home/amarie/Zotero/storage/NNNBDR3R/1.html:text/html}
|
||||
}
|
||||
|
||||
@article{loos_ground_2009,
|
||||
title = {Ground state of two electrons on a sphere},
|
||||
volume = {79},
|
||||
url = {https://link.aps.org/doi/10.1103/PhysRevA.79.062517},
|
||||
doi = {10.1103/PhysRevA.79.062517},
|
||||
abstract = {We have performed a comprehensive study of the singlet ground state of two electrons on the surface of a sphere of radius R. We have used electronic structure models ranging from restricted and unrestricted Hartree-Fock theories to explicitly correlated treatments, the last of which leads to near-exact wave functions and energies for any value of R. Møller-Plesset energy corrections (up to fifth-order) are also considered, as well as the asymptotic solution in the large-R regime.},
|
||||
pages = {062517},
|
||||
number = {6},
|
||||
journaltitle = {Physical Review A},
|
||||
shortjournal = {Phys. Rev. A},
|
||||
author = {Loos, Pierre-François and Gill, Peter M. W.},
|
||||
urldate = {2020-06-11},
|
||||
date = {2009-06-30},
|
||||
note = {Publisher: American Physical Society},
|
||||
file = {APS Snapshot:/home/amarie/Zotero/storage/WWCNWCPS/PhysRevA.79.html:text/html;Submitted Version:/home/amarie/Zotero/storage/5DIQ69YK/Loos and Gill - 2009 - Ground state of two electrons on a sphere.pdf:application/pdf}
|
||||
}
|
||||
|
||||
@article{gill_deceptive_1986,
|
||||
title = {Deceptive convergence in møller-plesset perturbation energies},
|
||||
volume = {132},
|
||||
issn = {0009-2614},
|
||||
url = {http://www.sciencedirect.com/science/article/pii/0009261486806868},
|
||||
doi = {10.1016/0009-2614(86)80686-8},
|
||||
abstract = {Meller-Plesset perturbation calculations ({MPn}) up to fiftieth order, within both the restricted ({RHF}) and unrestricted Hartree-Fock ({UHF}) frameworks, have been used to examine the He2+2 ground-state potential curve. The bond lengths of the equilibrium and transition structures have been optimized at all orders of perturbation theory. It is found that {RMP} n describes the homolytic dissociation better than {UMPn} for all n {\textgreater} 2. This unexpected behaviour may be attributed to spin contamination in the {UHF} wavefunction. The {UMPn} barriers deceptively appear convergent for small n and the results may be indicative of dangers inherent generally in using the {UMP} approach with significantly spin-contaminated wavefunctions.},
|
||||
pages = {16--22},
|
||||
number = {1},
|
||||
journaltitle = {Chemical Physics Letters},
|
||||
shortjournal = {Chemical Physics Letters},
|
||||
author = {Gill, Peter M. W. and Radom, Leo},
|
||||
urldate = {2020-06-28},
|
||||
date = {1986-11-28},
|
||||
langid = {english},
|
||||
file = {ScienceDirect Snapshot:/home/amarie/Zotero/storage/YV2LVWML/0009261486806868.html:text/html;Submitted Version:/home/amarie/Zotero/storage/U8VEPSSU/Gill and Radom - 1986 - Deceptive convergence in møller-plesset perturbati.pdf:application/pdf}
|
||||
}
|
Binary file not shown.
After Width: | Height: | Size: 7.8 KiB |
BIN
SlideToulouse/avoidedcrossing.pdf
Normal file
BIN
SlideToulouse/avoidedcrossing.pdf
Normal file
Binary file not shown.
BIN
SlideToulouse/exemplesingu.pdf
Normal file
BIN
SlideToulouse/exemplesingu.pdf
Normal file
Binary file not shown.
BIN
SlideToulouse/figure-fig14.png
Normal file
BIN
SlideToulouse/figure-fig14.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 7.4 KiB |
BIN
SlideToulouse/gill1986.png
Normal file
BIN
SlideToulouse/gill1986.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 19 KiB |
542
SlideToulouse/main.tex
Normal file
542
SlideToulouse/main.tex
Normal file
@ -0,0 +1,542 @@
|
||||
\documentclass[xcolor=x11names,compress]{beamer}
|
||||
|
||||
%% General document %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\usepackage{graphicx}
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{decorations.fractals}
|
||||
\usepackage{mathpazo}
|
||||
\usepackage[english]{babel}
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage{xcolor}
|
||||
\usepackage{siunitx}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{physics}
|
||||
\usepackage{multimedia}
|
||||
\usepackage{subfigure}
|
||||
\usepackage[absolute,overlay]{textpos}
|
||||
\usepackage{ragged2e}
|
||||
\usepackage{amssymb}
|
||||
\usepackage[version=4]{mhchem}
|
||||
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
|
||||
%% Beamer Layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\useoutertheme[subsection=false,shadow]{miniframes}
|
||||
\useinnertheme{default}
|
||||
|
||||
|
||||
\setbeamerfont{title like}{shape=\scshape}
|
||||
\setbeamerfont{frametitle}{shape=\scshape}
|
||||
\setbeamerfont{framesubtitle}{size=\normalsize}
|
||||
\setbeamerfont{caption}{size=\scriptsize}
|
||||
\setbeamercolor*{lower separation line head}{bg=DeepSkyBlue4}
|
||||
\setbeamercolor*{normal text}{fg=black,bg=white}
|
||||
\setbeamercolor*{alerted text}{fg=red}
|
||||
\setbeamercolor*{example text}{fg=black}
|
||||
\setbeamercolor*{structure}{fg=black}
|
||||
|
||||
|
||||
\setbeamercolor*{palette tertiary}{fg=black,bg=black!10}
|
||||
\setbeamercolor*{palette quaternary}{fg=black,bg=black!10}
|
||||
\setbeamercolor{caption name}{fg=DeepSkyBlue4}
|
||||
\setbeamercolor{title}{fg=DeepSkyBlue4}
|
||||
\setbeamercolor{itemize item}{fg=DeepSkyBlue4}
|
||||
\setbeamercolor{frametitle}{fg=DeepSkyBlue4}
|
||||
\renewcommand{\(}{\begin{columns}}
|
||||
\renewcommand{\)}{\end{columns}}
|
||||
\newcommand{\<}[1]{\begin{column}{#1}}
|
||||
\renewcommand{\>}{\end{column}}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
|
||||
\setbeamertemplate{navigation symbols}{}
|
||||
\setbeamertemplate{footline}[frame number]
|
||||
\setbeamertemplate{caption}[numbered]
|
||||
\setbeamertemplate{section in toc}[ball]
|
||||
\setbeamertemplate{itemize items}[circle]
|
||||
\beamerboxesdeclarecolorscheme{clair}{Coral4}{Ivory2}
|
||||
\beamerboxesdeclarecolorscheme{foncé}{DarkSeaGreen4}{Ivory2}
|
||||
|
||||
\title[Title]{Perturbation theories in the complex plane}
|
||||
\author[]{Antoine \textsc{Marie}}
|
||||
\setbeamersize{text margin left=5mm}
|
||||
\setbeamersize{text margin right=5mm}
|
||||
\institute{Supervised by Pierre-François \textsc{LOOS}}
|
||||
|
||||
\begin{document}
|
||||
|
||||
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\begin{frame}[plain]
|
||||
|
||||
\date{30th June 2020}
|
||||
\titlepage
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\begin{frame}{Why do we use perturbation theories in computational chemistry?}
|
||||
|
||||
\pause[1]
|
||||
|
||||
The Hartree-Fock theory is \textcolor{Green4}{computationally cheap} and can be applied even to \textcolor{Green4}{large systems}.
|
||||
|
||||
But this method is missing the \textcolor{red}{correlation energy}...
|
||||
|
||||
\vspace{0.5cm}
|
||||
|
||||
\pause[2]
|
||||
|
||||
$\rightarrow$ We need methods to get this correlation energy!
|
||||
|
||||
\vspace{0.5cm}
|
||||
|
||||
\pause[3]
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{\centering A general method}
|
||||
In physics perturbation theory is often a good way to improve the obtained results with an approximated Hamiltonian.
|
||||
\end{beamerboxesrounded}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
\section{\textsc{Strange behaviors of the MP series}}
|
||||
|
||||
\begin{frame}{The Møller-Plesset perturbation theory}
|
||||
|
||||
\pause[1]
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{\centering Partitioning of the Hamiltonian}
|
||||
|
||||
\begin{equation}
|
||||
H = H_0 + \lambda V
|
||||
\end{equation}
|
||||
|
||||
\end{beamerboxesrounded}
|
||||
|
||||
\begin{itemize}
|
||||
\centering
|
||||
\item $H_0$: Unperturbed Hamiltonian
|
||||
\item $V$: Perturbation operator
|
||||
\end{itemize}
|
||||
|
||||
\pause[2]
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{\centering The Fock operator}
|
||||
|
||||
\begin{equation}
|
||||
F = T + J + K
|
||||
\end{equation}
|
||||
|
||||
\end{beamerboxesrounded}
|
||||
|
||||
\begin{itemize}
|
||||
\centering
|
||||
\item $T$: Kinetic energy operator
|
||||
\item $J$: Coulomb operator
|
||||
\item $K$: Exchange operator
|
||||
\end{itemize}
|
||||
|
||||
\pause[3]
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{}
|
||||
\centering
|
||||
Full Configuration Interaction gives us access to high order terms of the perturbation series !
|
||||
\end{beamerboxesrounded}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Deceptive or slow convergences}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.4\textwidth]{gill1986.png}
|
||||
\caption{\centering Barriers to homolytic fission of \ce{He2^2+} using minimal basis set MPn theory (n~=~1-20).\footnote{\cite{gill_deceptive_1986}}}
|
||||
\label{fig:my_label}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Multi-reference and spin contamination}
|
||||
\begin{table}
|
||||
\centering
|
||||
\begin{tabular}{c c c c c c c}
|
||||
\hline
|
||||
$r$ & UHF & UMP2 & UMP3 & UMP4 & $\expval{S^2}$ \\
|
||||
\hline
|
||||
0.75 & 0.0\% & 63.8\% & 87.4\% & 95.9\% & 0.00\\
|
||||
1.35 & 0.0\% & 15.2\% & 26.1\% & 34.9\% & 0.49\\
|
||||
2.00 & 0.0\% & 01.0\% & 01.8\% & 02.6\% & 0.95\\
|
||||
2.50 & 0.0\% & 00.1\% & 00.3\% & 00.4\% & 0.99\\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{\centering Percentage of electron correlation energy recovered and $\expval{S^2}$ for the \ce{H2} molecule as a function of bond length (r,\si{\angstrom}) in the minimal basis.}
|
||||
\label{tab:my_label}
|
||||
\end{table}
|
||||
|
||||
\footnotetext{\tiny{Gill et al. Why does unrestricted Møller–Plesset perturbation theory converge so slowly for spin-contaminated wave functions, \textit{Journal of chemical physics}, 1988}}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Divergent cases}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.6\textwidth]{The-energy-corrections-for-HF-at-stretched-geometry-in-the-cc-pVDZ-basis.png}
|
||||
\caption{The energy corrections for HF at stretched geometry in the cc-pVDZ basis.}
|
||||
\label{fig:my_label}
|
||||
\end{figure}
|
||||
|
||||
\footnotetext{\tiny{Olsen et al. Divergence in Møller–Plesset theory: A simple explanation based on a two-state model, \textit{Journal of chemical physics}, 2000}}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\section{The complex plane}
|
||||
|
||||
\begin{frame}{A simple example}
|
||||
|
||||
\begin{columns}
|
||||
|
||||
\column{0.48\textwidth}
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{An example function}
|
||||
|
||||
\begin{equation*}
|
||||
\frac{1}{1 + x^4}
|
||||
\end{equation*}
|
||||
|
||||
\end{beamerboxesrounded}
|
||||
|
||||
\vspace{1cm}
|
||||
|
||||
\begin{itemize}
|
||||
\item Smooth for $x \in \mathbb{R}$
|
||||
|
||||
\item Infinitely differentiable on $\mathbb{R}$
|
||||
\end{itemize}
|
||||
|
||||
\column{0.48\textwidth}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.6\textwidth]{exemplesingu.pdf}
|
||||
\caption{Plot of $1/(1+x^4)$}
|
||||
\label{fig:my_label}
|
||||
\end{figure}
|
||||
|
||||
\end{columns}
|
||||
|
||||
But the Taylor expansion of this function does not converge for $x\geq1$...
|
||||
\vspace{0.3cm}
|
||||
\centering Why ?
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{And if we look in the complex plane ?}
|
||||
|
||||
\begin{columns}
|
||||
|
||||
\column{0.48\textwidth}
|
||||
|
||||
\centering The function has 4 singularities in the complex plane !
|
||||
|
||||
\vspace{1cm}
|
||||
|
||||
$x = e^{i\pi/4}, e^{-i\pi/4}, e^{i3\pi/4}, e^{-i3\pi/4}$
|
||||
|
||||
\column{0.48\textwidth}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.6\textwidth]{possingu.pdf}
|
||||
\caption{\centering Singularities of the function $1/(1+x^4)$}
|
||||
\label{fig:my_label}
|
||||
\end{figure}
|
||||
|
||||
\end{columns}
|
||||
|
||||
The \textcolor{red}{radius of convergence} of the Taylor expansion of a function is equal to the distance of the \textcolor{red}{closest singularity} to the origin in the \textcolor{red}{complex plane}.
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Extending chemistry in the complex plane}
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{\centering $\lambda$ a complex variable}
|
||||
|
||||
\begin{equation*}
|
||||
H(\lambda) = H_0 + \lambda V
|
||||
\end{equation*}
|
||||
|
||||
\end{beamerboxesrounded}
|
||||
|
||||
\begin{columns}
|
||||
|
||||
\column{0.48\textwidth}
|
||||
|
||||
\begin{itemize}
|
||||
\item $n$ Riemann sheets
|
||||
\vspace{0.3cm}
|
||||
\item Exceptional points interconnecting the sheets
|
||||
\vspace{0.3cm}
|
||||
\item No ordering property in the complex plane
|
||||
\end{itemize}
|
||||
|
||||
\column{0.48\textwidth}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.7\textwidth]{riemannsheet.png}
|
||||
\label{fig:my_label}
|
||||
\end{figure}
|
||||
|
||||
\end{columns}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\section{Classifying the singularity}
|
||||
|
||||
\begin{frame}{Which features of the system localize the singularities ?}
|
||||
|
||||
\begin{itemize}
|
||||
\item Partitioning of the Hamiltonian: Möller-Plesset, Epstein-Nesbet,...
|
||||
\item Zeroth order reference: weak correlation or strongly correlated electrons.
|
||||
\item Finite or complete basis set.
|
||||
\item Localized or delocalized basis functions.
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{A two-state model}
|
||||
|
||||
\begin{columns}
|
||||
|
||||
\column{0.48\textwidth}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.8\textwidth]{avoidedcrossing.pdf}
|
||||
\caption{Example of an avoided crossing.}
|
||||
\label{fig:my_label}
|
||||
\end{figure}
|
||||
|
||||
\column{0.48\textwidth}
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{A 2x2 matrix}
|
||||
\centering \small{$\mqty(\alpha & \delta \\ \delta & \beta) =$}
|
||||
|
||||
\vspace{0.15cm}
|
||||
|
||||
\small{$\mqty(\alpha + \alpha_s & 0 \\ 0 & \beta + \beta_s ) + \mqty(- \alpha_s & \delta \\ \delta & - \beta_s)$}
|
||||
|
||||
\end{beamerboxesrounded}
|
||||
\vspace{1cm}
|
||||
\end{columns}
|
||||
|
||||
\footnotetext{\tiny{Olsen et al. Divergence in Møller–Plesset theory: A simple explanation based on a two-state model, \textit{Journal of chemical physics}, 2000}}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Two-state model}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=0.6\textwidth]{figure-fig14.png}
|
||||
\caption{\centering The energy corrections for HF at stretched geometry in the aug'-cc-pVDZ basis with the two-state model.\textsuperscript{a}}
|
||||
\label{fig:my_label}
|
||||
\end{figure}
|
||||
|
||||
\footnotetext{\tiny{Olsen et al. Divergence in Møller–Plesset theory: A simple explanation based on a two-state model, \textit{Journal of chemical physics}, 2000}}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Existence of a critical point}
|
||||
|
||||
For $\lambda<0$:
|
||||
|
||||
\begin{equation*}
|
||||
H(\lambda)=\sum\limits_{j=1}^{2n}\left[ \underbrace{-\frac{1}{2}\grad_j^2 - \sum\limits_{k=1}^{N} \frac{Z_k}{|\vb{r}_j-\vb{R}_k|}}_{\text{Independant of }\lambda} + \overbrace{(1-\lambda)V_j^{(scf)}}^{\textcolor{red}{Repulsive}}+\underbrace{\lambda\sum\limits_{j<l}^{2n}\frac{1}{|\vb{r}_j-\vb{r}_l|}}_{\textcolor{blue}{Attractive}} \right]
|
||||
\end{equation*}
|
||||
|
||||
\footnote{stillinger, sergeev, baker}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Critical point in a finite basis set}
|
||||
|
||||
\pause[1]
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{\centering Exact energy $E(z)$}
|
||||
$E(z)$ has a critical point on the negative real axis and $E(z)$ is continue for real values below $z_{crit}$.
|
||||
\end{beamerboxesrounded}
|
||||
|
||||
\vspace{0.5cm}
|
||||
|
||||
\pause[2]
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{\centering In a finite basis set}
|
||||
The singularities occur in complex conjugate pairs with non-zero imaginary parts and the energies are discrete.
|
||||
\end{beamerboxesrounded}
|
||||
|
||||
\vspace{0.5cm}
|
||||
|
||||
\pause[3]
|
||||
|
||||
\centering \Large{How is this connected???}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Singularities $\alpha$ and $\beta$}
|
||||
|
||||
\pause[1]
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{\centering Observation}
|
||||
We can separate singularities in two parts.
|
||||
\end{beamerboxesrounded}
|
||||
|
||||
\pause[2]
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{\centering Singularity $\alpha$}
|
||||
\begin{itemize}
|
||||
\item Large avoided crossing
|
||||
\item Non-zero imaginary part
|
||||
\item Interaction with a low lying doubly excited states
|
||||
\end{itemize}
|
||||
\end{beamerboxesrounded}
|
||||
|
||||
\pause[3]
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{\centering Singularity $\alpha$}
|
||||
\begin{itemize}
|
||||
\item Sharp avoided crossing
|
||||
\item Very small imaginary part
|
||||
\item Interaction with a diffuse function
|
||||
\end{itemize}
|
||||
\end{beamerboxesrounded}
|
||||
|
||||
\footnote{sergeev}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
\begin{frame}{Modeling the critical point}
|
||||
|
||||
\pause[1]
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{\centering Stillinger}
|
||||
\begin{quote}
|
||||
\textit{"One might expect that $E_{FCI}(z) $ would try to model a continuum at $z_c$ with a grouping of discrete but closely spaced eigenstates that undergo sharp avoided crossing with the ground states."}
|
||||
\end{quote}
|
||||
\end{beamerboxesrounded}
|
||||
|
||||
\vspace{0.5cm}
|
||||
|
||||
\pause[2]
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{\centering Sergeev et al.}
|
||||
Proof of the existence of this group of sharp avoided crossings for Ne, He and HF when the basis set contains diffuse functions.
|
||||
\end{beamerboxesrounded}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\section{The spherium model}
|
||||
|
||||
\begin{frame}{Spherium: a theoretical playground}
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{\centering Two electrons on a sphere Hamiltonian}
|
||||
\begin{equation*}
|
||||
H=-\frac{1}{2}(\grad_1^2 + \grad_2^2) + \frac{1}{r_{12}}
|
||||
\end{equation*}
|
||||
\end{beamerboxesrounded}
|
||||
\vspace{0.5cm}
|
||||
|
||||
\begin{columns}
|
||||
|
||||
\column{0.48\textwidth}
|
||||
|
||||
\centering{Small $R$}
|
||||
\vspace{0.5cm}
|
||||
|
||||
\begin{itemize}
|
||||
\item $E_{kin} >> E_p$
|
||||
\item Uniform density of electrons
|
||||
\item \textcolor{red}{Weak correlation}
|
||||
\end{itemize}
|
||||
|
||||
\vspace{0.5cm}
|
||||
|
||||
\column{0.48\textwidth}
|
||||
|
||||
\centering{Large $R$}
|
||||
\vspace{0.5cm}
|
||||
|
||||
\begin{itemize}
|
||||
\item $E_{kin} << E_p$
|
||||
\item Electrons on the opposite sides of the sphere
|
||||
\item \textcolor{red}{Strong correlation}
|
||||
\end{itemize}
|
||||
|
||||
\end{columns}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Apparition of a class $\beta$ singularity}
|
||||
|
||||
\pause[1]
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{\centering Expectation}
|
||||
The electrons are restricted to the surface of the sphere so we should not observe singularities characteristic of ionization processes.
|
||||
\end{beamerboxesrounded}
|
||||
|
||||
\vspace{0.5cm}
|
||||
|
||||
\pause[2]
|
||||
|
||||
\large But for some values of R... we actually observe some $\beta$ singularities!
|
||||
\centering Why?
|
||||
|
||||
\vspace{0.5cm}
|
||||
|
||||
\pause[3]
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{\centering Symmetry breaking}
|
||||
The $\beta$ singularities observed are connected to the symmetry breaking of the wave function.
|
||||
\end{beamerboxesrounded}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Conclusion}
|
||||
|
||||
\pause[1]
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{\centering Møller-Plesset perturbation theory}
|
||||
By understanding how the singularities are localized in the complex plane we hope that it will gives us a deep understanding of the strengths and weaknesses of the Møller-Plesset method to get the correlation energy.
|
||||
\end{beamerboxesrounded}
|
||||
|
||||
\pause[2]
|
||||
|
||||
\vspace{0.5cm}
|
||||
|
||||
But there is an other secret application of exceptional points...
|
||||
|
||||
\pause[3]
|
||||
|
||||
\vspace{0.5cm}
|
||||
|
||||
\begin{beamerboxesrounded}[scheme=foncé]{\centering A new way to excited states energies}
|
||||
The exceptionnal points connect ground and excited states in the complex plane. Using those properties one can smoothly morph a ground state in an excited state.
|
||||
\end{beamerboxesrounded}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\end{document}
|
BIN
SlideToulouse/possingu.pdf
Normal file
BIN
SlideToulouse/possingu.pdf
Normal file
Binary file not shown.
BIN
SlideToulouse/riemannsheet.png
Normal file
BIN
SlideToulouse/riemannsheet.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 83 KiB |
Loading…
Reference in New Issue
Block a user