ajout des slides

This commit is contained in:
AntoineMarie2 2020-06-28 17:42:47 +02:00
parent 5e34d82799
commit 68cd9b3891
10 changed files with 646 additions and 0 deletions

BIN
SlideToulouse/Ne.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

View File

@ -0,0 +1,104 @@
@article{gill_why_1988,
title = {Why does unrestricted Mo/llerPlesset perturbation theory converge so slowly for spincontaminated wave functions?},
volume = {89},
issn = {0021-9606},
url = {https://aip.scitation.org/doi/abs/10.1063/1.455312},
doi = {10.1063/1.455312},
pages = {7307--7314},
number = {12},
journaltitle = {The Journal of Chemical Physics},
shortjournal = {J. Chem. Phys.},
author = {Gill, Peter M. W. and Pople, John A. and Radom, Leo and Nobes, Ross H.},
urldate = {2020-06-10},
date = {1988-12-15},
note = {Publisher: American Institute of Physics},
file = {Snapshot:/home/amarie/Zotero/storage/4SDW37YN/1.html:text/html}
}
@article{sergeev_nature_2005,
title = {On the nature of the Møller-Plesset critical point},
volume = {123},
issn = {0021-9606},
url = {https://aip.scitation.org/doi/10.1063/1.1991854},
doi = {10.1063/1.1991854},
pages = {064105},
number = {6},
journaltitle = {The Journal of Chemical Physics},
shortjournal = {J. Chem. Phys.},
author = {Sergeev, Alexey V. and Goodson, David Z. and Wheeler, Steven E. and Allen, Wesley D.},
urldate = {2020-06-10},
date = {2005-08-08},
note = {Publisher: American Institute of Physics},
file = {Snapshot:/home/amarie/Zotero/storage/5N2L8RQ6/1.html:text/html}
}
@article{sergeev_singularities_2006,
title = {Singularities of Møller-Plesset energy functions},
volume = {124},
issn = {0021-9606},
url = {https://aip.scitation.org/doi/10.1063/1.2173989},
doi = {10.1063/1.2173989},
pages = {094111},
number = {9},
journaltitle = {The Journal of Chemical Physics},
shortjournal = {J. Chem. Phys.},
author = {Sergeev, Alexey V. and Goodson, David Z.},
urldate = {2020-06-10},
date = {2006-03-07},
note = {Publisher: American Institute of Physics},
file = {Snapshot:/home/amarie/Zotero/storage/IP28R6TR/1.html:text/html}
}
@article{olsen_divergence_2000,
title = {Divergence in MøllerPlesset theory: A simple explanation based on a two-state model},
volume = {112},
issn = {0021-9606},
url = {https://aip.scitation.org/doi/10.1063/1.481611},
doi = {10.1063/1.481611},
shorttitle = {Divergence in MøllerPlesset theory},
pages = {9736--9748},
number = {22},
journaltitle = {The Journal of Chemical Physics},
shortjournal = {J. Chem. Phys.},
author = {Olsen, Jeppe and Jørgensen, Poul and Helgaker, Trygve and Christiansen, Ove},
urldate = {2020-06-10},
date = {2000-05-31},
note = {Publisher: American Institute of Physics},
file = {Snapshot:/home/amarie/Zotero/storage/NNNBDR3R/1.html:text/html}
}
@article{loos_ground_2009,
title = {Ground state of two electrons on a sphere},
volume = {79},
url = {https://link.aps.org/doi/10.1103/PhysRevA.79.062517},
doi = {10.1103/PhysRevA.79.062517},
abstract = {We have performed a comprehensive study of the singlet ground state of two electrons on the surface of a sphere of radius R. We have used electronic structure models ranging from restricted and unrestricted Hartree-Fock theories to explicitly correlated treatments, the last of which leads to near-exact wave functions and energies for any value of R. Møller-Plesset energy corrections (up to fifth-order) are also considered, as well as the asymptotic solution in the large-R regime.},
pages = {062517},
number = {6},
journaltitle = {Physical Review A},
shortjournal = {Phys. Rev. A},
author = {Loos, Pierre-François and Gill, Peter M. W.},
urldate = {2020-06-11},
date = {2009-06-30},
note = {Publisher: American Physical Society},
file = {APS Snapshot:/home/amarie/Zotero/storage/WWCNWCPS/PhysRevA.79.html:text/html;Submitted Version:/home/amarie/Zotero/storage/5DIQ69YK/Loos and Gill - 2009 - Ground state of two electrons on a sphere.pdf:application/pdf}
}
@article{gill_deceptive_1986,
title = {Deceptive convergence in møller-plesset perturbation energies},
volume = {132},
issn = {0009-2614},
url = {http://www.sciencedirect.com/science/article/pii/0009261486806868},
doi = {10.1016/0009-2614(86)80686-8},
abstract = {Meller-Plesset perturbation calculations ({MPn}) up to fiftieth order, within both the restricted ({RHF}) and unrestricted Hartree-Fock ({UHF}) frameworks, have been used to examine the He2+2 ground-state potential curve. The bond lengths of the equilibrium and transition structures have been optimized at all orders of perturbation theory. It is found that {RMP} n describes the homolytic dissociation better than {UMPn} for all n {\textgreater} 2. This unexpected behaviour may be attributed to spin contamination in the {UHF} wavefunction. The {UMPn} barriers deceptively appear convergent for small n and the results may be indicative of dangers inherent generally in using the {UMP} approach with significantly spin-contaminated wavefunctions.},
pages = {16--22},
number = {1},
journaltitle = {Chemical Physics Letters},
shortjournal = {Chemical Physics Letters},
author = {Gill, Peter M. W. and Radom, Leo},
urldate = {2020-06-28},
date = {1986-11-28},
langid = {english},
file = {ScienceDirect Snapshot:/home/amarie/Zotero/storage/YV2LVWML/0009261486806868.html:text/html;Submitted Version:/home/amarie/Zotero/storage/U8VEPSSU/Gill and Radom - 1986 - Deceptive convergence in møller-plesset perturbati.pdf:application/pdf}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.8 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.4 KiB

BIN
SlideToulouse/gill1986.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

542
SlideToulouse/main.tex Normal file
View File

@ -0,0 +1,542 @@
\documentclass[xcolor=x11names,compress]{beamer}
%% General document %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{graphicx}
\usepackage{tikz}
\usetikzlibrary{decorations.fractals}
\usepackage{mathpazo}
\usepackage[english]{babel}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{xcolor}
\usepackage{siunitx}
\usepackage{graphicx}
\usepackage{physics}
\usepackage{multimedia}
\usepackage{subfigure}
\usepackage[absolute,overlay]{textpos}
\usepackage{ragged2e}
\usepackage{amssymb}
\usepackage[version=4]{mhchem}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Beamer Layout %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\useoutertheme[subsection=false,shadow]{miniframes}
\useinnertheme{default}
\setbeamerfont{title like}{shape=\scshape}
\setbeamerfont{frametitle}{shape=\scshape}
\setbeamerfont{framesubtitle}{size=\normalsize}
\setbeamerfont{caption}{size=\scriptsize}
\setbeamercolor*{lower separation line head}{bg=DeepSkyBlue4}
\setbeamercolor*{normal text}{fg=black,bg=white}
\setbeamercolor*{alerted text}{fg=red}
\setbeamercolor*{example text}{fg=black}
\setbeamercolor*{structure}{fg=black}
\setbeamercolor*{palette tertiary}{fg=black,bg=black!10}
\setbeamercolor*{palette quaternary}{fg=black,bg=black!10}
\setbeamercolor{caption name}{fg=DeepSkyBlue4}
\setbeamercolor{title}{fg=DeepSkyBlue4}
\setbeamercolor{itemize item}{fg=DeepSkyBlue4}
\setbeamercolor{frametitle}{fg=DeepSkyBlue4}
\renewcommand{\(}{\begin{columns}}
\renewcommand{\)}{\end{columns}}
\newcommand{\<}[1]{\begin{column}{#1}}
\renewcommand{\>}{\end{column}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setbeamertemplate{navigation symbols}{}
\setbeamertemplate{footline}[frame number]
\setbeamertemplate{caption}[numbered]
\setbeamertemplate{section in toc}[ball]
\setbeamertemplate{itemize items}[circle]
\beamerboxesdeclarecolorscheme{clair}{Coral4}{Ivory2}
\beamerboxesdeclarecolorscheme{foncé}{DarkSeaGreen4}{Ivory2}
\title[Title]{Perturbation theories in the complex plane}
\author[]{Antoine \textsc{Marie}}
\setbeamersize{text margin left=5mm}
\setbeamersize{text margin right=5mm}
\institute{Supervised by Pierre-François \textsc{LOOS}}
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[plain]
\date{30th June 2020}
\titlepage
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Why do we use perturbation theories in computational chemistry?}
\pause[1]
The Hartree-Fock theory is \textcolor{Green4}{computationally cheap} and can be applied even to \textcolor{Green4}{large systems}.
But this method is missing the \textcolor{red}{correlation energy}...
\vspace{0.5cm}
\pause[2]
$\rightarrow$ We need methods to get this correlation energy!
\vspace{0.5cm}
\pause[3]
\begin{beamerboxesrounded}[scheme=foncé]{\centering A general method}
In physics perturbation theory is often a good way to improve the obtained results with an approximated Hamiltonian.
\end{beamerboxesrounded}
\end{frame}
\section{\textsc{Strange behaviors of the MP series}}
\begin{frame}{The Møller-Plesset perturbation theory}
\pause[1]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Partitioning of the Hamiltonian}
\begin{equation}
H = H_0 + \lambda V
\end{equation}
\end{beamerboxesrounded}
\begin{itemize}
\centering
\item $H_0$: Unperturbed Hamiltonian
\item $V$: Perturbation operator
\end{itemize}
\pause[2]
\begin{beamerboxesrounded}[scheme=foncé]{\centering The Fock operator}
\begin{equation}
F = T + J + K
\end{equation}
\end{beamerboxesrounded}
\begin{itemize}
\centering
\item $T$: Kinetic energy operator
\item $J$: Coulomb operator
\item $K$: Exchange operator
\end{itemize}
\pause[3]
\begin{beamerboxesrounded}[scheme=foncé]{}
\centering
Full Configuration Interaction gives us access to high order terms of the perturbation series !
\end{beamerboxesrounded}
\end{frame}
\begin{frame}{Deceptive or slow convergences}
\begin{figure}
\centering
\includegraphics[width=0.4\textwidth]{gill1986.png}
\caption{\centering Barriers to homolytic fission of \ce{He2^2+} using minimal basis set MPn theory (n~=~1-20).\footnote{\cite{gill_deceptive_1986}}}
\label{fig:my_label}
\end{figure}
\end{frame}
\begin{frame}{Multi-reference and spin contamination}
\begin{table}
\centering
\begin{tabular}{c c c c c c c}
\hline
$r$ & UHF & UMP2 & UMP3 & UMP4 & $\expval{S^2}$ \\
\hline
0.75 & 0.0\% & 63.8\% & 87.4\% & 95.9\% & 0.00\\
1.35 & 0.0\% & 15.2\% & 26.1\% & 34.9\% & 0.49\\
2.00 & 0.0\% & 01.0\% & 01.8\% & 02.6\% & 0.95\\
2.50 & 0.0\% & 00.1\% & 00.3\% & 00.4\% & 0.99\\
\hline
\end{tabular}
\caption{\centering Percentage of electron correlation energy recovered and $\expval{S^2}$ for the \ce{H2} molecule as a function of bond length (r,\si{\angstrom}) in the minimal basis.}
\label{tab:my_label}
\end{table}
\footnotetext{\tiny{Gill et al. Why does unrestricted MøllerPlesset perturbation theory converge so slowly for spin-contaminated wave functions, \textit{Journal of chemical physics}, 1988}}
\end{frame}
\begin{frame}{Divergent cases}
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{The-energy-corrections-for-HF-at-stretched-geometry-in-the-cc-pVDZ-basis.png}
\caption{The energy corrections for HF at stretched geometry in the cc-pVDZ basis.}
\label{fig:my_label}
\end{figure}
\footnotetext{\tiny{Olsen et al. Divergence in MøllerPlesset theory: A simple explanation based on a two-state model, \textit{Journal of chemical physics}, 2000}}
\end{frame}
\section{The complex plane}
\begin{frame}{A simple example}
\begin{columns}
\column{0.48\textwidth}
\begin{beamerboxesrounded}[scheme=foncé]{An example function}
\begin{equation*}
\frac{1}{1 + x^4}
\end{equation*}
\end{beamerboxesrounded}
\vspace{1cm}
\begin{itemize}
\item Smooth for $x \in \mathbb{R}$
\item Infinitely differentiable on $\mathbb{R}$
\end{itemize}
\column{0.48\textwidth}
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{exemplesingu.pdf}
\caption{Plot of $1/(1+x^4)$}
\label{fig:my_label}
\end{figure}
\end{columns}
But the Taylor expansion of this function does not converge for $x\geq1$...
\vspace{0.3cm}
\centering Why ?
\end{frame}
\begin{frame}{And if we look in the complex plane ?}
\begin{columns}
\column{0.48\textwidth}
\centering The function has 4 singularities in the complex plane !
\vspace{1cm}
$x = e^{i\pi/4}, e^{-i\pi/4}, e^{i3\pi/4}, e^{-i3\pi/4}$
\column{0.48\textwidth}
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{possingu.pdf}
\caption{\centering Singularities of the function $1/(1+x^4)$}
\label{fig:my_label}
\end{figure}
\end{columns}
The \textcolor{red}{radius of convergence} of the Taylor expansion of a function is equal to the distance of the \textcolor{red}{closest singularity} to the origin in the \textcolor{red}{complex plane}.
\end{frame}
\begin{frame}{Extending chemistry in the complex plane}
\begin{beamerboxesrounded}[scheme=foncé]{\centering $\lambda$ a complex variable}
\begin{equation*}
H(\lambda) = H_0 + \lambda V
\end{equation*}
\end{beamerboxesrounded}
\begin{columns}
\column{0.48\textwidth}
\begin{itemize}
\item $n$ Riemann sheets
\vspace{0.3cm}
\item Exceptional points interconnecting the sheets
\vspace{0.3cm}
\item No ordering property in the complex plane
\end{itemize}
\column{0.48\textwidth}
\begin{figure}
\centering
\includegraphics[width=0.7\textwidth]{riemannsheet.png}
\label{fig:my_label}
\end{figure}
\end{columns}
\end{frame}
\section{Classifying the singularity}
\begin{frame}{Which features of the system localize the singularities ?}
\begin{itemize}
\item Partitioning of the Hamiltonian: Möller-Plesset, Epstein-Nesbet,...
\item Zeroth order reference: weak correlation or strongly correlated electrons.
\item Finite or complete basis set.
\item Localized or delocalized basis functions.
\end{itemize}
\end{frame}
\begin{frame}{A two-state model}
\begin{columns}
\column{0.48\textwidth}
\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{avoidedcrossing.pdf}
\caption{Example of an avoided crossing.}
\label{fig:my_label}
\end{figure}
\column{0.48\textwidth}
\begin{beamerboxesrounded}[scheme=foncé]{A 2x2 matrix}
\centering \small{$\mqty(\alpha & \delta \\ \delta & \beta) =$}
\vspace{0.15cm}
\small{$\mqty(\alpha + \alpha_s & 0 \\ 0 & \beta + \beta_s ) + \mqty(- \alpha_s & \delta \\ \delta & - \beta_s)$}
\end{beamerboxesrounded}
\vspace{1cm}
\end{columns}
\footnotetext{\tiny{Olsen et al. Divergence in MøllerPlesset theory: A simple explanation based on a two-state model, \textit{Journal of chemical physics}, 2000}}
\end{frame}
\begin{frame}{Two-state model}
\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{figure-fig14.png}
\caption{\centering The energy corrections for HF at stretched geometry in the aug'-cc-pVDZ basis with the two-state model.\textsuperscript{a}}
\label{fig:my_label}
\end{figure}
\footnotetext{\tiny{Olsen et al. Divergence in MøllerPlesset theory: A simple explanation based on a two-state model, \textit{Journal of chemical physics}, 2000}}
\end{frame}
\begin{frame}{Existence of a critical point}
For $\lambda<0$:
\begin{equation*}
H(\lambda)=\sum\limits_{j=1}^{2n}\left[ \underbrace{-\frac{1}{2}\grad_j^2 - \sum\limits_{k=1}^{N} \frac{Z_k}{|\vb{r}_j-\vb{R}_k|}}_{\text{Independant of }\lambda} + \overbrace{(1-\lambda)V_j^{(scf)}}^{\textcolor{red}{Repulsive}}+\underbrace{\lambda\sum\limits_{j<l}^{2n}\frac{1}{|\vb{r}_j-\vb{r}_l|}}_{\textcolor{blue}{Attractive}} \right]
\end{equation*}
\footnote{stillinger, sergeev, baker}
\end{frame}
\begin{frame}{Critical point in a finite basis set}
\pause[1]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Exact energy $E(z)$}
$E(z)$ has a critical point on the negative real axis and $E(z)$ is continue for real values below $z_{crit}$.
\end{beamerboxesrounded}
\vspace{0.5cm}
\pause[2]
\begin{beamerboxesrounded}[scheme=foncé]{\centering In a finite basis set}
The singularities occur in complex conjugate pairs with non-zero imaginary parts and the energies are discrete.
\end{beamerboxesrounded}
\vspace{0.5cm}
\pause[3]
\centering \Large{How is this connected???}
\end{frame}
\begin{frame}{Singularities $\alpha$ and $\beta$}
\pause[1]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Observation}
We can separate singularities in two parts.
\end{beamerboxesrounded}
\pause[2]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Singularity $\alpha$}
\begin{itemize}
\item Large avoided crossing
\item Non-zero imaginary part
\item Interaction with a low lying doubly excited states
\end{itemize}
\end{beamerboxesrounded}
\pause[3]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Singularity $\alpha$}
\begin{itemize}
\item Sharp avoided crossing
\item Very small imaginary part
\item Interaction with a diffuse function
\end{itemize}
\end{beamerboxesrounded}
\footnote{sergeev}
\end{frame}
\begin{frame}{Modeling the critical point}
\pause[1]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Stillinger}
\begin{quote}
\textit{"One might expect that $E_{FCI}(z) $ would try to model a continuum at $z_c$ with a grouping of discrete but closely spaced eigenstates that undergo sharp avoided crossing with the ground states."}
\end{quote}
\end{beamerboxesrounded}
\vspace{0.5cm}
\pause[2]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Sergeev et al.}
Proof of the existence of this group of sharp avoided crossings for Ne, He and HF when the basis set contains diffuse functions.
\end{beamerboxesrounded}
\end{frame}
\section{The spherium model}
\begin{frame}{Spherium: a theoretical playground}
\begin{beamerboxesrounded}[scheme=foncé]{\centering Two electrons on a sphere Hamiltonian}
\begin{equation*}
H=-\frac{1}{2}(\grad_1^2 + \grad_2^2) + \frac{1}{r_{12}}
\end{equation*}
\end{beamerboxesrounded}
\vspace{0.5cm}
\begin{columns}
\column{0.48\textwidth}
\centering{Small $R$}
\vspace{0.5cm}
\begin{itemize}
\item $E_{kin} >> E_p$
\item Uniform density of electrons
\item \textcolor{red}{Weak correlation}
\end{itemize}
\vspace{0.5cm}
\column{0.48\textwidth}
\centering{Large $R$}
\vspace{0.5cm}
\begin{itemize}
\item $E_{kin} << E_p$
\item Electrons on the opposite sides of the sphere
\item \textcolor{red}{Strong correlation}
\end{itemize}
\end{columns}
\end{frame}
\begin{frame}{Apparition of a class $\beta$ singularity}
\pause[1]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Expectation}
The electrons are restricted to the surface of the sphere so we should not observe singularities characteristic of ionization processes.
\end{beamerboxesrounded}
\vspace{0.5cm}
\pause[2]
\large But for some values of R... we actually observe some $\beta$ singularities!
\centering Why?
\vspace{0.5cm}
\pause[3]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Symmetry breaking}
The $\beta$ singularities observed are connected to the symmetry breaking of the wave function.
\end{beamerboxesrounded}
\end{frame}
\begin{frame}{Conclusion}
\pause[1]
\begin{beamerboxesrounded}[scheme=foncé]{\centering Møller-Plesset perturbation theory}
By understanding how the singularities are localized in the complex plane we hope that it will gives us a deep understanding of the strengths and weaknesses of the Møller-Plesset method to get the correlation energy.
\end{beamerboxesrounded}
\pause[2]
\vspace{0.5cm}
But there is an other secret application of exceptional points...
\pause[3]
\vspace{0.5cm}
\begin{beamerboxesrounded}[scheme=foncé]{\centering A new way to excited states energies}
The exceptionnal points connect ground and excited states in the complex plane. Using those properties one can smoothly morph a ground state in an excited state.
\end{beamerboxesrounded}
\end{frame}
\end{document}

BIN
SlideToulouse/possingu.pdf Normal file

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 83 KiB