Add files via upload
This commit is contained in:
parent
d7f56a3695
commit
5b272c5ce7
@ -1,27 +1,18 @@
|
|||||||
|
|
||||||
@article{gill_why_1988,
|
@article{gill_why_1988,
|
||||||
title = {Why does unrestricted Mo/ller–Plesset perturbation theory converge so slowly for spin‐contaminated wave functions?},
|
title = {Why does unrestricted Møller–Plesset perturbation theory converge so slowly for spin‐contaminated wave functions?},
|
||||||
volume = {89},
|
volume = {89},
|
||||||
issn = {0021-9606},
|
|
||||||
url = {https://aip.scitation.org/doi/abs/10.1063/1.455312},
|
|
||||||
doi = {10.1063/1.455312},
|
|
||||||
pages = {7307--7314},
|
pages = {7307--7314},
|
||||||
number = {12},
|
number = {12},
|
||||||
journaltitle = {The Journal of Chemical Physics},
|
journaltitle = {The Journal of Chemical Physics},
|
||||||
shortjournal = {J. Chem. Phys.},
|
shortjournal = {J. Chem. Phys.},
|
||||||
author = {Gill, Peter M. W. and Pople, John A. and Radom, Leo and Nobes, Ross H.},
|
author = {Gill, Peter M. W. and Pople, John A. and Radom, Leo and Nobes, Ross H.},
|
||||||
urldate = {2020-06-10},
|
date = {1988-12-15}
|
||||||
date = {1988-12-15},
|
|
||||||
note = {Publisher: American Institute of Physics},
|
|
||||||
file = {Snapshot:/home/amarie/Zotero/storage/4SDW37YN/1.html:text/html}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@article{sergeev_nature_2005,
|
@article{sergeev_nature_2005,
|
||||||
title = {On the nature of the Møller-Plesset critical point},
|
title = {On the nature of the Møller-Plesset critical point},
|
||||||
volume = {123},
|
volume = {123},
|
||||||
issn = {0021-9606},
|
|
||||||
url = {https://aip.scitation.org/doi/10.1063/1.1991854},
|
|
||||||
doi = {10.1063/1.1991854},
|
|
||||||
pages = {064105},
|
pages = {064105},
|
||||||
number = {6},
|
number = {6},
|
||||||
journaltitle = {The Journal of Chemical Physics},
|
journaltitle = {The Journal of Chemical Physics},
|
||||||
@ -36,69 +27,59 @@
|
|||||||
@article{sergeev_singularities_2006,
|
@article{sergeev_singularities_2006,
|
||||||
title = {Singularities of Møller-Plesset energy functions},
|
title = {Singularities of Møller-Plesset energy functions},
|
||||||
volume = {124},
|
volume = {124},
|
||||||
issn = {0021-9606},
|
|
||||||
url = {https://aip.scitation.org/doi/10.1063/1.2173989},
|
|
||||||
doi = {10.1063/1.2173989},
|
|
||||||
pages = {094111},
|
pages = {094111},
|
||||||
number = {9},
|
number = {9},
|
||||||
journaltitle = {The Journal of Chemical Physics},
|
journaltitle = {The Journal of Chemical Physics},
|
||||||
shortjournal = {J. Chem. Phys.},
|
shortjournal = {J. Chem. Phys.},
|
||||||
author = {Sergeev, Alexey V. and Goodson, David Z.},
|
author = {Sergeev, Alexey V. and Goodson, David Z.},
|
||||||
urldate = {2020-06-10},
|
date = {2006-03-07}
|
||||||
date = {2006-03-07},
|
|
||||||
note = {Publisher: American Institute of Physics},
|
|
||||||
file = {Snapshot:/home/amarie/Zotero/storage/IP28R6TR/1.html:text/html}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@article{olsen_divergence_2000,
|
@article{olsen_divergence_2000,
|
||||||
title = {Divergence in Møller–Plesset theory: A simple explanation based on a two-state model},
|
title = {Divergence in Møller–Plesset theory: A simple explanation based on a two-state model},
|
||||||
volume = {112},
|
volume = {112},
|
||||||
issn = {0021-9606},
|
|
||||||
url = {https://aip.scitation.org/doi/10.1063/1.481611},
|
|
||||||
doi = {10.1063/1.481611},
|
|
||||||
shorttitle = {Divergence in Møller–Plesset theory},
|
shorttitle = {Divergence in Møller–Plesset theory},
|
||||||
pages = {9736--9748},
|
pages = {9736--9748},
|
||||||
number = {22},
|
number = {22},
|
||||||
journaltitle = {The Journal of Chemical Physics},
|
journaltitle = {The Journal of Chemical Physics},
|
||||||
shortjournal = {J. Chem. Phys.},
|
shortjournal = {J. Chem. Phys.},
|
||||||
author = {Olsen, Jeppe and Jørgensen, Poul and Helgaker, Trygve and Christiansen, Ove},
|
author = {Olsen, Jeppe and Jørgensen, Poul and Helgaker, Trygve and Christiansen, Ove},
|
||||||
urldate = {2020-06-10},
|
date = {2000-05-31}
|
||||||
date = {2000-05-31},
|
|
||||||
note = {Publisher: American Institute of Physics},
|
|
||||||
file = {Snapshot:/home/amarie/Zotero/storage/NNNBDR3R/1.html:text/html}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@article{loos_ground_2009,
|
@article{loos_ground_2009,
|
||||||
title = {Ground state of two electrons on a sphere},
|
title = {Ground state of two electrons on a sphere},
|
||||||
volume = {79},
|
volume = {79},
|
||||||
url = {https://link.aps.org/doi/10.1103/PhysRevA.79.062517},
|
|
||||||
doi = {10.1103/PhysRevA.79.062517},
|
|
||||||
abstract = {We have performed a comprehensive study of the singlet ground state of two electrons on the surface of a sphere of radius R. We have used electronic structure models ranging from restricted and unrestricted Hartree-Fock theories to explicitly correlated treatments, the last of which leads to near-exact wave functions and energies for any value of R. Møller-Plesset energy corrections (up to fifth-order) are also considered, as well as the asymptotic solution in the large-R regime.},
|
abstract = {We have performed a comprehensive study of the singlet ground state of two electrons on the surface of a sphere of radius R. We have used electronic structure models ranging from restricted and unrestricted Hartree-Fock theories to explicitly correlated treatments, the last of which leads to near-exact wave functions and energies for any value of R. Møller-Plesset energy corrections (up to fifth-order) are also considered, as well as the asymptotic solution in the large-R regime.},
|
||||||
pages = {062517},
|
pages = {062517},
|
||||||
number = {6},
|
number = {6},
|
||||||
journaltitle = {Physical Review A},
|
journaltitle = {Physical Review A},
|
||||||
shortjournal = {Phys. Rev. A},
|
shortjournal = {Phys. Rev. A},
|
||||||
author = {Loos, Pierre-François and Gill, Peter M. W.},
|
author = {Loos, Pierre-François and Gill, Peter M. W.},
|
||||||
urldate = {2020-06-11},
|
date = {2009-06-30}
|
||||||
date = {2009-06-30},
|
|
||||||
note = {Publisher: American Physical Society},
|
|
||||||
file = {APS Snapshot:/home/amarie/Zotero/storage/WWCNWCPS/PhysRevA.79.html:text/html;Submitted Version:/home/amarie/Zotero/storage/5DIQ69YK/Loos and Gill - 2009 - Ground state of two electrons on a sphere.pdf:application/pdf}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
@article{gill_deceptive_1986,
|
@article{gill_deceptive_1986,
|
||||||
title = {Deceptive convergence in møller-plesset perturbation energies},
|
title = {Deceptive convergence in Møller-plesset perturbation energies},
|
||||||
volume = {132},
|
volume = {132},
|
||||||
issn = {0009-2614},
|
|
||||||
url = {http://www.sciencedirect.com/science/article/pii/0009261486806868},
|
|
||||||
doi = {10.1016/0009-2614(86)80686-8},
|
|
||||||
abstract = {Meller-Plesset perturbation calculations ({MPn}) up to fiftieth order, within both the restricted ({RHF}) and unrestricted Hartree-Fock ({UHF}) frameworks, have been used to examine the He2+2 ground-state potential curve. The bond lengths of the equilibrium and transition structures have been optimized at all orders of perturbation theory. It is found that {RMP} n describes the homolytic dissociation better than {UMPn} for all n {\textgreater} 2. This unexpected behaviour may be attributed to spin contamination in the {UHF} wavefunction. The {UMPn} barriers deceptively appear convergent for small n and the results may be indicative of dangers inherent generally in using the {UMP} approach with significantly spin-contaminated wavefunctions.},
|
abstract = {Meller-Plesset perturbation calculations ({MPn}) up to fiftieth order, within both the restricted ({RHF}) and unrestricted Hartree-Fock ({UHF}) frameworks, have been used to examine the He2+2 ground-state potential curve. The bond lengths of the equilibrium and transition structures have been optimized at all orders of perturbation theory. It is found that {RMP} n describes the homolytic dissociation better than {UMPn} for all n {\textgreater} 2. This unexpected behaviour may be attributed to spin contamination in the {UHF} wavefunction. The {UMPn} barriers deceptively appear convergent for small n and the results may be indicative of dangers inherent generally in using the {UMP} approach with significantly spin-contaminated wavefunctions.},
|
||||||
pages = {16--22},
|
pages = {16--22},
|
||||||
number = {1},
|
number = {1},
|
||||||
journaltitle = {Chemical Physics Letters},
|
journaltitle = {Chemical Physics Letters},
|
||||||
shortjournal = {Chemical Physics Letters},
|
shortjournal = {Chemical Physics Letters},
|
||||||
author = {Gill, Peter M. W. and Radom, Leo},
|
author = {Gill, Peter M. W. and Radom, Leo},
|
||||||
urldate = {2020-06-28},
|
|
||||||
date = {1986-11-28},
|
date = {1986-11-28},
|
||||||
langid = {english},
|
langid = {english}
|
||||||
file = {ScienceDirect Snapshot:/home/amarie/Zotero/storage/YV2LVWML/0009261486806868.html:text/html;Submitted Version:/home/amarie/Zotero/storage/U8VEPSSU/Gill and Radom - 1986 - Deceptive convergence in møller-plesset perturbati.pdf:application/pdf}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@article{stillinger_mollerplesset_2000,
|
||||||
|
title = {Møller–Plesset convergence issues in computational quantum chemistry},
|
||||||
|
volume = {112},
|
||||||
|
pages = {9711--9715},
|
||||||
|
number = {22},
|
||||||
|
journaltitle = {The Journal of Chemical Physics},
|
||||||
|
shortjournal = {J. Chem. Phys.},
|
||||||
|
author = {Stillinger, Frank H.},
|
||||||
|
date = {2000-05-31}
|
||||||
}
|
}
|
@ -2,8 +2,6 @@
|
|||||||
|
|
||||||
%% General document %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%% General document %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
\usepackage{graphicx}
|
\usepackage{graphicx}
|
||||||
\usepackage{tikz}
|
|
||||||
\usetikzlibrary{decorations.fractals}
|
|
||||||
\usepackage{mathpazo}
|
\usepackage{mathpazo}
|
||||||
\usepackage[english]{babel}
|
\usepackage[english]{babel}
|
||||||
\usepackage[T1]{fontenc}
|
\usepackage[T1]{fontenc}
|
||||||
@ -13,11 +11,12 @@
|
|||||||
\usepackage{graphicx}
|
\usepackage{graphicx}
|
||||||
\usepackage{physics}
|
\usepackage{physics}
|
||||||
\usepackage{multimedia}
|
\usepackage{multimedia}
|
||||||
\usepackage{subfigure}
|
|
||||||
\usepackage[absolute,overlay]{textpos}
|
\usepackage[absolute,overlay]{textpos}
|
||||||
\usepackage{ragged2e}
|
\usepackage{ragged2e}
|
||||||
\usepackage{amssymb}
|
\usepackage{amssymb}
|
||||||
\usepackage[version=4]{mhchem}
|
\usepackage[version=4]{mhchem}
|
||||||
|
\usepackage[style=verbose,backend=bibtex]{biblatex}
|
||||||
|
\bibliography{SlideToulouse}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -150,16 +149,20 @@ In physics perturbation theory is often a good way to improve the obtained resul
|
|||||||
|
|
||||||
\begin{beamerboxesrounded}[scheme=foncé]{}
|
\begin{beamerboxesrounded}[scheme=foncé]{}
|
||||||
\centering
|
\centering
|
||||||
|
|
||||||
Full Configuration Interaction gives access to high-order terms of the perturbation series!
|
Full Configuration Interaction gives access to high-order terms of the perturbation series!
|
||||||
|
|
||||||
\end{beamerboxesrounded}
|
\end{beamerboxesrounded}
|
||||||
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Deceptive or slow convergences}
|
\begin{frame}{Deceptive or slow convergences\footcite{gill_deceptive_1986}}
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.5\textwidth]{gill1986.png}
|
|
||||||
|
\includegraphics[width=0.45\textwidth]{gill1986.png}
|
||||||
|
|
||||||
\caption{\centering Barriers to homolytic fission of \ce{He2^2+} at MPn/STO-3G level ($n = 1$--$20$).}
|
\caption{\centering Barriers to homolytic fission of \ce{He2^2+} at MPn/STO-3G level ($n = 1$--$20$).}
|
||||||
\label{fig:my_label}
|
\label{fig:my_label}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
@ -167,7 +170,7 @@ Full Configuration Interaction gives access to high-order terms of the perturbat
|
|||||||
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Multi-reference and spin contamination}
|
\begin{frame}{Multi-reference and spin contamination\footcite{gill_why_1988}}
|
||||||
\begin{table}
|
\begin{table}
|
||||||
\centering
|
\centering
|
||||||
\begin{tabular}{c c c c c c c}
|
\begin{tabular}{c c c c c c c}
|
||||||
@ -184,7 +187,6 @@ Full Configuration Interaction gives access to high-order terms of the perturbat
|
|||||||
\label{tab:my_label}
|
\label{tab:my_label}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
\footnotetext{\tiny{Gill et al. Why does unrestricted M{\o}ller-Plesset perturbation theory converge so slowly for spin-contaminated wave functions, \textit{Journal of chemical physics}, 1988}}
|
|
||||||
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
@ -193,12 +195,10 @@ Full Configuration Interaction gives access to high-order terms of the perturbat
|
|||||||
\begin{figure}
|
\begin{figure}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.6\textwidth]{The-energy-corrections-for-HF-at-stretched-geometry-in-the-cc-pVDZ-basis.png}
|
\includegraphics[width=0.6\textwidth]{The-energy-corrections-for-HF-at-stretched-geometry-in-the-cc-pVDZ-basis.png}
|
||||||
\caption{The energy corrections for HF at stretched geometry in the cc-pVDZ basis.}
|
\caption{The energy corrections for HF at stretched geometry in the cc-pVDZ basis. \footcite{olsen_divergence_2000}}
|
||||||
\label{fig:my_label}
|
\label{fig:my_label}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
\footnotetext{\tiny{Olsen et al. Divergence in Møller–Plesset theory: A simple explanation based on a two-state model, \textit{Journal of chemical physics}, 2000}}
|
|
||||||
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\section{The complex plane}
|
\section{The complex plane}
|
||||||
@ -316,7 +316,7 @@ The \textcolor{red}{radius of convergence} of the Taylor expansion of a function
|
|||||||
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{A two-state model}
|
\begin{frame}{A two-state model\footcite{olsen_divergence_2000}}
|
||||||
|
|
||||||
\begin{columns}
|
\begin{columns}
|
||||||
|
|
||||||
@ -342,24 +342,20 @@ The \textcolor{red}{radius of convergence} of the Taylor expansion of a function
|
|||||||
\vspace{1cm}
|
\vspace{1cm}
|
||||||
\end{columns}
|
\end{columns}
|
||||||
|
|
||||||
\footnotetext{\tiny{Olsen et al. Divergence in Møller–Plesset theory: A simple explanation based on a two-state model, \textit{Journal of chemical physics}, 2000}}
|
|
||||||
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Two-state model}
|
\begin{frame}{Two-state model\footcite{olsen_divergence_2000}}
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=0.6\textwidth]{figure-fig14.png}
|
\includegraphics[width=0.6\textwidth]{figure-fig14.png}
|
||||||
\caption{\centering The energy corrections for HF at stretched geometry in the aug'-cc-pVDZ basis with the two-state model.\textsuperscript{a}}
|
\caption{\centering The energy corrections for HF at stretched geometry in the aug'-cc-pVDZ basis with the two-state model.}
|
||||||
\label{fig:my_label}
|
\label{fig:my_label}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
\footnotetext{\tiny{Olsen et al. Divergence in Møller–Plesset theory: A simple explanation based on a two-state model, \textit{Journal of chemical physics}, 2000}}
|
|
||||||
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Existence of a critical point}
|
\begin{frame}{Existence of a critical point\footcite{stillinger_mollerplesset_2000}}
|
||||||
|
|
||||||
For $\lambda<0$:
|
For $\lambda<0$:
|
||||||
|
|
||||||
@ -367,8 +363,6 @@ For $\lambda<0$:
|
|||||||
H(\lambda)=\sum\limits_{j=1}^{2n}\left[ \underbrace{-\frac{1}{2}\grad_j^2 - \sum\limits_{k=1}^{N} \frac{Z_k}{|\vb{r}_j-\vb{R}_k|}}_{\text{Independant of }\lambda} + \overbrace{(1-\lambda)V_j^{(scf)}}^{\textcolor{red}{Repulsive}}+\underbrace{\lambda\sum\limits_{j<l}^{2n}\frac{1}{|\vb{r}_j-\vb{r}_l|}}_{\textcolor{blue}{Attractive}} \right]
|
H(\lambda)=\sum\limits_{j=1}^{2n}\left[ \underbrace{-\frac{1}{2}\grad_j^2 - \sum\limits_{k=1}^{N} \frac{Z_k}{|\vb{r}_j-\vb{R}_k|}}_{\text{Independant of }\lambda} + \overbrace{(1-\lambda)V_j^{(scf)}}^{\textcolor{red}{Repulsive}}+\underbrace{\lambda\sum\limits_{j<l}^{2n}\frac{1}{|\vb{r}_j-\vb{r}_l|}}_{\textcolor{blue}{Attractive}} \right]
|
||||||
\end{equation*}
|
\end{equation*}
|
||||||
|
|
||||||
\footnote{stillinger, sergeev, baker}
|
|
||||||
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Critical point in a finite basis set}
|
\begin{frame}{Critical point in a finite basis set}
|
||||||
@ -395,7 +389,7 @@ The singularities occur in complex conjugate pairs with non-zero imaginary parts
|
|||||||
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}{Singularities $\alpha$ and $\beta$}
|
\begin{frame}{Singularities $\alpha$ and $\beta$ \footcite{sergeev_singularities_2006}}
|
||||||
|
|
||||||
\pause[1]
|
\pause[1]
|
||||||
|
|
||||||
@ -423,8 +417,6 @@ We can separate singularities in two parts.
|
|||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{beamerboxesrounded}
|
\end{beamerboxesrounded}
|
||||||
|
|
||||||
\footnote{sergeev}
|
|
||||||
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
@ -451,7 +443,7 @@ Proof of the existence of this group of sharp avoided crossings for Ne, He and H
|
|||||||
|
|
||||||
\section{The spherium model}
|
\section{The spherium model}
|
||||||
|
|
||||||
\begin{frame}{Spherium: a theoretical playground}
|
\begin{frame}{Spherium: a theoretical playground\footcite{loos_ground_2009}}
|
||||||
|
|
||||||
\begin{beamerboxesrounded}[scheme=foncé]{\centering Two electrons on a sphere Hamiltonian}
|
\begin{beamerboxesrounded}[scheme=foncé]{\centering Two electrons on a sphere Hamiltonian}
|
||||||
\begin{equation*}
|
\begin{equation*}
|
||||||
|
Loading…
Reference in New Issue
Block a user