Added more discussion about quadratics...
This commit is contained in:
parent
e240faf71f
commit
4a711e256f
@ -1327,6 +1327,17 @@ radius of convergence (see Fig.~\ref{fig:RadConv}).
|
|||||||
\label{sec:Resummation}
|
\label{sec:Resummation}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%
|
||||||
|
\begin{figure*}
|
||||||
|
\includegraphics[height=0.23\textheight]{PadeRMP35}
|
||||||
|
\includegraphics[height=0.23\textheight]{PadeRMP45}
|
||||||
|
\caption{\label{fig:PadeRMP}
|
||||||
|
RMP ground-state energy as a function of $\lambda$ obtained using various resummation
|
||||||
|
techniques at $U/t = 3.5$ (left) and $U/t = 4.5$ (right).}
|
||||||
|
\end{figure*}
|
||||||
|
%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
|
||||||
%As frequently claimed by Carl Bender,
|
%As frequently claimed by Carl Bender,
|
||||||
\hugh{It is frequently stated that}
|
\hugh{It is frequently stated that}
|
||||||
\textit{``the most stupid thing that one can do with a series is to sum it.''}
|
\textit{``the most stupid thing that one can do with a series is to sum it.''}
|
||||||
@ -1345,10 +1356,12 @@ We refer the interested reader to more specialised reviews for additional inform
|
|||||||
%==========================================%
|
%==========================================%
|
||||||
\subsection{Pad\'e Approximant}
|
\subsection{Pad\'e Approximant}
|
||||||
%==========================================%
|
%==========================================%
|
||||||
|
|
||||||
\hugh{The failure of a Taylor series for correctly modelling the MP energy function $E(\lambda)$
|
\hugh{The failure of a Taylor series for correctly modelling the MP energy function $E(\lambda)$
|
||||||
arises because one is trying to model a complicated function containing branch points and
|
arises because one is trying to model a complicated function containing multiple branches, branch points and
|
||||||
singularities} using a simple polynomial of finite order.
|
singularities} using a simple polynomial of finite order.
|
||||||
A truncated Taylor series just does not have enough flexibility to do the job properly.
|
A truncated Taylor series \hugh{can only predict a single sheet and} does not have enough
|
||||||
|
flexibility to adequately describe the MP energy.
|
||||||
Alternatively, the description of complex energy functions can be significantly improved
|
Alternatively, the description of complex energy functions can be significantly improved
|
||||||
by introducing Pad\'e approximants, \cite{Pade_1892} and related techniques. \cite{BakerBook,BenderBook}
|
by introducing Pad\'e approximants, \cite{Pade_1892} and related techniques. \cite{BakerBook,BenderBook}
|
||||||
|
|
||||||
@ -1371,6 +1384,34 @@ where the nature of the solution undergoes a sudden transition).
|
|||||||
\hugh{Despite this limitation, the successive diagonal Pad\'e approximants (\ie, $d_A = d_B $)
|
\hugh{Despite this limitation, the successive diagonal Pad\'e approximants (\ie, $d_A = d_B $)
|
||||||
often define a convergent perturbation series in cases where the Taylor series expansion diverges.}
|
often define a convergent perturbation series in cases where the Taylor series expansion diverges.}
|
||||||
|
|
||||||
|
\begin{table}[b]
|
||||||
|
\caption{RMP ground-state energy estimate at $\lambda = 1$ provided by various truncated Taylor
|
||||||
|
series and Pad\'e approximants at $U/t = 3.5$ and $4.5$.
|
||||||
|
We also report the \hugh{closest pole to the origin $\lc$} provided by the diagonal Pad\'e approximants.
|
||||||
|
\label{tab:PadeRMP}}
|
||||||
|
\begin{ruledtabular}
|
||||||
|
\begin{tabular}{lccccc}
|
||||||
|
& & \mc{2}{c}{$\abs{\lc}$} & \mc{2}{c}{$E_{-}(\lambda = 1)$} \\
|
||||||
|
\cline{3-4} \cline{5-6}
|
||||||
|
Method & degree & $U/t = 3.5$ & $U/t = 4.5$ & $U/t = 3.5$ & $U/t = 4.5$ \\
|
||||||
|
\hline
|
||||||
|
Taylor & 2 & & & $-1.01563$ & $-1.01563$ \\
|
||||||
|
& 3 & & & $-1.01563$ & $-1.01563$ \\
|
||||||
|
& 4 & & & $-0.86908$ & $-0.61517$ \\
|
||||||
|
& 5 & & & $-0.86908$ & $-0.61517$ \\
|
||||||
|
& 6 & & & $-0.92518$ & $-0.86858$ \\
|
||||||
|
\hline
|
||||||
|
Pad\'e & [1/1] & $2.29$ & $1.78$ & $-1.61111$ & $-2.64286$ \\
|
||||||
|
& [2/2] & $2.29$ & $1.78$ & $-0.82124$ & $-0.48446$ \\
|
||||||
|
& [3/3] & $1.73$ & $1.34$ & $-0.91995$ & $-0.81929$ \\
|
||||||
|
& [4/4] & $1.47$ & $1.14$ & $-0.90579$ & $-0.74866$ \\
|
||||||
|
& [5/5] & $1.35$ & $1.05$ & $-0.90778$ & $-0.76277$ \\
|
||||||
|
\hline
|
||||||
|
Exact & & $1.14$ & $0.89$ & $-0.90754$ & $-0.76040$ \\
|
||||||
|
\end{tabular}
|
||||||
|
\end{ruledtabular}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
Fig.~\ref{fig:PadeRMP} illustrates the improvement provided by diagonal Pad\'e
|
Fig.~\ref{fig:PadeRMP} illustrates the improvement provided by diagonal Pad\'e
|
||||||
approximants compared to the usual Taylor expansion in cases where the RMP series of
|
approximants compared to the usual Taylor expansion in cases where the RMP series of
|
||||||
the Hubbard dimer converges ($U/t = 3.5$) and diverges ($U/t = 4.5$).
|
the Hubbard dimer converges ($U/t = 3.5$) and diverges ($U/t = 4.5$).
|
||||||
@ -1379,15 +1420,24 @@ energy at $\lambda = 1$ provided by various truncated Taylor series and Pad\'e
|
|||||||
approximants for these two values of the ratio $U/t$.
|
approximants for these two values of the ratio $U/t$.
|
||||||
While the truncated Taylor series converges laboriously to the exact energy as the truncation
|
While the truncated Taylor series converges laboriously to the exact energy as the truncation
|
||||||
degree increases at $U/t = 3.5$, the Pad\'e approximants yield much more accurate results.
|
degree increases at $U/t = 3.5$, the Pad\'e approximants yield much more accurate results.
|
||||||
\hugh{Furthermore, the position of the closest pole to origin $\lc$ in the Pad\'e approximants
|
\hugh{Furthermore, the distance of the closest pole to origin $\abs{\lc}$ in the Pad\'e approximants
|
||||||
indicate that they a relatively good approximation to the true branch point singularity in the RMP energy.
|
indicate that they a relatively good approximation to the position of the
|
||||||
|
true branch point singularity in the RMP energy.
|
||||||
For $U/t = 4.5$, the Taylor series expansion performs worse and eventually diverges,
|
For $U/t = 4.5$, the Taylor series expansion performs worse and eventually diverges,
|
||||||
while the Pad\'e approximants still offer relaitively accurate energies and recovers
|
while the Pad\'e approximants still offer relaitively accurate energies and recovers
|
||||||
a convergent series.}
|
a convergent series.}
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%
|
||||||
|
\begin{figure}[t]
|
||||||
|
\includegraphics[width=\linewidth]{QuadUMP}
|
||||||
|
\caption{\label{fig:QuadUMP}
|
||||||
|
UMP energies as a function of $\lambda$ obtained using various resummation techniques at $U/t = 3$.}
|
||||||
|
\end{figure}
|
||||||
|
%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
\hugh{%
|
\hugh{%
|
||||||
We can expect that the singularity structure of the UMP energy will be much more challenging
|
We can expect the UMP energy function to be much more challenging
|
||||||
to model properly as the UMP energy function contains three connected branches
|
to model properly as it contains three connected branches
|
||||||
(see Figs.~\ref{subfig:UMP_3} and \ref{subfig:UMP_7}).
|
(see Figs.~\ref{subfig:UMP_3} and \ref{subfig:UMP_7}).
|
||||||
Fig.~\ref{fig:QuadUMP} and Table~\ref{tab:QuadUMP} indicate that this is indeed the case.
|
Fig.~\ref{fig:QuadUMP} and Table~\ref{tab:QuadUMP} indicate that this is indeed the case.
|
||||||
In particular, Fig.~\ref{fig:QuadUMP} illustrates that the Pad\'e approximants are trying to model
|
In particular, Fig.~\ref{fig:QuadUMP} illustrates that the Pad\'e approximants are trying to model
|
||||||
@ -1402,43 +1452,6 @@ even in cases where the convergence of the UMP series is incredibly slow
|
|||||||
(see Fig.~\ref{subfig:UMP_cvg}).
|
(see Fig.~\ref{subfig:UMP_cvg}).
|
||||||
}
|
}
|
||||||
|
|
||||||
\begin{table}
|
|
||||||
\caption{RMP ground-state energy estimate at $\lambda = 1$ provided by various truncated Taylor
|
|
||||||
series and Pad\'e approximants at $U/t = 3.5$ and $4.5$.
|
|
||||||
We also report the \hugh{closest pole to the origin $\lc$} provided by the diagonal Pad\'e approximants.
|
|
||||||
\label{tab:PadeRMP}}
|
|
||||||
\begin{ruledtabular}
|
|
||||||
\begin{tabular}{lccccc}
|
|
||||||
& & \mc{2}{c}{$\lc$} & \mc{2}{c}{$E_{-}(\lambda = 1)$} \\
|
|
||||||
\cline{3-4} \cline{5-6}
|
|
||||||
Method & degree & $U/t = 3.5$ & $U/t = 4.5$ & $U/t = 3.5$ & $U/t = 4.5$ \\
|
|
||||||
\hline
|
|
||||||
Taylor & 2 & & & $-1.01563$ & $-1.01563$ \\
|
|
||||||
& 3 & & & $-1.01563$ & $-1.01563$ \\
|
|
||||||
& 4 & & & $-0.86908$ & $-0.61517$ \\
|
|
||||||
& 5 & & & $-0.86908$ & $-0.61517$ \\
|
|
||||||
& 6 & & & $-0.92518$ & $-0.86858$ \\
|
|
||||||
Pad\'e & [1/1] & $2.29$ & $1.78$ & $-1.61111$ & $-2.64286$ \\
|
|
||||||
& [2/2] & $2.29$ & $1.78$ & $-0.82124$ & $-0.48446$ \\
|
|
||||||
& [3/3] & $1.73$ & $1.34$ & $-0.91995$ & $-0.81929$ \\
|
|
||||||
& [4/4] & $1.47$ & $1.14$ & $-0.90579$ & $-0.74866$ \\
|
|
||||||
& [5/5] & $1.35$ & $1.05$ & $-0.90778$ & $-0.76277$ \\
|
|
||||||
\hline
|
|
||||||
Exact & & $1.14$ & $0.89$ & $-0.90754$ & $-0.76040$ \\
|
|
||||||
\end{tabular}
|
|
||||||
\end{ruledtabular}
|
|
||||||
\end{table}
|
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%
|
|
||||||
\begin{figure*}
|
|
||||||
\includegraphics[height=0.23\textheight]{PadeRMP35}
|
|
||||||
\includegraphics[height=0.23\textheight]{PadeRMP45}
|
|
||||||
\caption{\label{fig:PadeRMP}
|
|
||||||
RMP ground-state energy as a function of $\lambda$ obtained using various resummation
|
|
||||||
techniques at $U/t = 3.5$ (left) and $U/t = 4.5$ (right).}
|
|
||||||
\end{figure*}
|
|
||||||
%%%%%%%%%%%%%%%%%
|
|
||||||
|
|
||||||
%==========================================%
|
%==========================================%
|
||||||
\subsection{Quadratic Approximant}
|
\subsection{Quadratic Approximant}
|
||||||
%==========================================%
|
%==========================================%
|
||||||
@ -1468,6 +1481,7 @@ their respective expressions \eqref{eq:PQR} yields $n+1$ linear equations for th
|
|||||||
$p_k$, $q_k$, and $r_k$ (where we are free to assume that $q_0 = 1$).
|
$p_k$, $q_k$, and $r_k$ (where we are free to assume that $q_0 = 1$).
|
||||||
A quadratic approximant, characterised by the label $[d_P/d_Q,d_R]$, generates, by construction,
|
A quadratic approximant, characterised by the label $[d_P/d_Q,d_R]$, generates, by construction,
|
||||||
$n_\text{bp} = \max(2d_p,d_q+d_r)$ branch points at the roots of the polynomial $P^2(\lambda) - 4 Q(\lambda) R(\lambda)$ \hugh{and $d_q$ poles at the roots of $Q(\lambda)$}.
|
$n_\text{bp} = \max(2d_p,d_q+d_r)$ branch points at the roots of the polynomial $P^2(\lambda) - 4 Q(\lambda) R(\lambda)$ \hugh{and $d_q$ poles at the roots of $Q(\lambda)$}.
|
||||||
|
|
||||||
Generally, the diagonal sequence of quadratic approximant,
|
Generally, the diagonal sequence of quadratic approximant,
|
||||||
\ie, $[0/0,0]$, $[1/0,0]$, $[1/0,1]$, $[1/1,1]$, $[2/1,1]$,
|
\ie, $[0/0,0]$, $[1/0,0]$, $[1/0,1]$, $[1/1,1]$, $[2/1,1]$,
|
||||||
is of particular interest \hugh{as the order of the corresponding Taylor series increases on each step.
|
is of particular interest \hugh{as the order of the corresponding Taylor series increases on each step.
|
||||||
@ -1480,60 +1494,140 @@ provide convergent results in the most divergent cases considered by Olsen and
|
|||||||
collaborators\cite{Christiansen_1996,Olsen_1996}
|
collaborators\cite{Christiansen_1996,Olsen_1996}
|
||||||
and Leininger \etal \cite{Leininger_2000}
|
and Leininger \etal \cite{Leininger_2000}
|
||||||
|
|
||||||
For the RMP series of the Hubbard dimer, the $[0/0,0]$ and $[1/0,0]$ quadratic approximant
|
As a note of caution, Ref.~\onlinecite{Goodson_2019} suggests that low-order
|
||||||
are quite poor approximations, but the $[1/0,1]$ version perfectly models the RMP energy
|
quadratic approximants can struggle to correctly model the singularity structure when
|
||||||
function by predicting a single pair of EPs at $\lambda_\text{EP} = \pm i 4t/U$.
|
the energy function has poles in both the positive and negative half-planes.
|
||||||
This is expected from the form of the RMP energy [see Eq.~\eqref{eq:E0MP}], which matches
|
In such a scenario, the quadratic approximant will tend to place its branch points in-between, potentially introducing singularities quite close to the origin.
|
||||||
the ideal target for quadratic approximants.
|
The remedy for this problem involves applying a suitable transformation of the complex plane (such as a bilinear conformal mapping) which leaves the points at $\lambda = 0$ and $\lambda = 1$ unchanged. \cite{Feenberg_1956}
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%
|
\begin{table}[b]
|
||||||
\begin{figure}
|
\caption{Estimate \hugh{for the distance of the closest singularity (pole or branch point) to the origin $\abs{\lc}$}
|
||||||
\includegraphics[width=\linewidth]{QuadUMP}
|
in the UMP energy function provided
|
||||||
\caption{\label{fig:QuadUMP}
|
|
||||||
UMP energies as a function of $\lambda$ obtained using various resummation techniques at $U/t = 3$.}
|
|
||||||
\end{figure}
|
|
||||||
%%%%%%%%%%%%%%%%%
|
|
||||||
|
|
||||||
\begin{table}
|
|
||||||
\caption{Estimate of the radius of convergence $r_c$ of the UMP energy function provided
|
|
||||||
by various resummation techniques at $U/t = 3$ and $7$.
|
by various resummation techniques at $U/t = 3$ and $7$.
|
||||||
The truncation degree of the Taylor expansion $n$ of $E(\lambda)$ and the number of branch
|
The truncation degree of the Taylor expansion $n$ of $E(\lambda)$ and the number of branch
|
||||||
points $n_\text{bp} = \max(2d_p,d_q+d_r)$ generated by the quadratic approximants are also reported.
|
points $n_\text{bp} = \max(2d_p,d_q+d_r)$ generated by the quadratic approximants are also reported.
|
||||||
\label{tab:QuadUMP}}
|
\label{tab:QuadUMP}}
|
||||||
\begin{ruledtabular}
|
\begin{ruledtabular}
|
||||||
\begin{tabular}{lccccccc}
|
\begin{tabular}{lccccccc}
|
||||||
& & & & \mc{2}{c}{$\lp$} & \mc{2}{c}{$E_{-}(\lambda)$} \\
|
& & & & \mc{2}{c}{$\abs{\lc}$} & \mc{2}{c}{$E_{-}(\lambda)$} \\
|
||||||
\cline{5-6}\cline{7-8}
|
\cline{5-6}\cline{7-8}
|
||||||
\mc{2}{c}{Method} & $n$ & $n_\text{bp}$ & $U/t = 3$ & $U/t = 7$ & $U/t = 3$ & $U/t = 7$ \\
|
\mc{2}{c}{Method} & $n$ & $n_\text{bp}$ & $U/t = 3$ & $U/t = 7$ & $U/t = 3$ & $U/t = 7$ \\
|
||||||
\hline
|
\hline
|
||||||
|
Taylor & & 2 & & & & $-0.74074$ & $-0.29155$ \\
|
||||||
|
& & 3 & & & & $-0.78189$ & $-0.29690$ \\
|
||||||
|
& & 4 & & & & $-0.82213$ & $-0.30225$ \\
|
||||||
|
& & 5 & & & & $-0.85769$ & $-0.30758$ \\
|
||||||
|
& & 6 & & & & $-0.88882$ & $-0.31289$ \\
|
||||||
|
\hline
|
||||||
Pad\'e & [1/1] & 2 & & $9.000$ & $49.00$ & $-0.75000$ & $-0.29167$ \\
|
Pad\'e & [1/1] & 2 & & $9.000$ & $49.00$ & $-0.75000$ & $-0.29167$ \\
|
||||||
& [2/2] & 4 & & $0.974$ & $1.003$ & $\hphantom{-}0.75000$ & $-17.9375$ \\
|
& [2/2] & 4 & & $0.974$ & $1.003$ & $\hphantom{-}0.75000$ & $-17.9375$ \\
|
||||||
& [3/3] & 6 & & $1.141$ & $1.004$ & $-1.10896$ & $-1.49856$ \\
|
& [3/3] & 6 & & $1.141$ & $1.004$ & $-1.10896$ & $-1.49856$ \\
|
||||||
& [4/4] & 8 & & $1.068$ & $1.003$ & $-0.85396$ & $-0.33596$ \\
|
& [4/4] & 8 & & $1.068$ & $1.003$ & $-0.85396$ & $-0.33596$ \\
|
||||||
& [5/5] & 10 & & $1.122$ & $1.004$ & $-0.97254$ & $-0.35513$ \\
|
& [5/5] & 10 & & $1.122$ & $1.004$ & $-0.97254$ & $-0.35513$ \\
|
||||||
|
\hline
|
||||||
Quadratic & [2/1,2] & 6 & 4 & $1.086$ & $1.003$ & $-1.01009$ & $-0.53472$ \\
|
Quadratic & [2/1,2] & 6 & 4 & $1.086$ & $1.003$ & $-1.01009$ & $-0.53472$ \\
|
||||||
& [2/2,2] & 7 & 4 & $1.082$ & $1.003$ & $-1.00553$ & $-0.53463$ \\
|
& [2/2,2] & 7 & 4 & $1.082$ & $1.003$ & $-1.00553$ & $-0.53463$ \\
|
||||||
& [3/2,2] & 8 & 6 & $1.082$ & $1.001$ & $-1.00568$ & $-0.52473$ \\
|
& [3/2,2] & 8 & 6 & $1.082$ & $1.001$ & $-1.00568$ & $-0.52473$ \\
|
||||||
& [3/2,3] & 9 & 6 & $1.071$ & $1.002$ & $-0.99973$ & $-0.53102$ \\
|
& [3/2,3] & 9 & 6 & $1.071$ & $1.002$ & $-0.99973$ & $-0.53102$ \\
|
||||||
& [3/3,3] & 10 & 6 & $1.071$ & $1.002$ & $-0.99966$ & $-0.53103$ \\
|
& [3/3,3] & 10 & 6 & $1.071$ & $1.002$ & $-0.99966$ & $-0.53103$ \\[0.5ex]
|
||||||
|
(pole-free) & [3/0,2] & 6 & 6 & $1.059$ & $1.003$ & $-1.13712$ & $-0.57199$ \\
|
||||||
|
& [3/0,3] & 7 & 6 & $1.073$ & $1.002$ & $-1.00335$ & $-0.53113$ \\
|
||||||
|
& [3/0,4] & 8 & 6 & $1.071$ & $1.002$ & $-1.00074$ & $-0.53116$ \\
|
||||||
|
& [3/0,5] & 9 & 6 & $1.070$ & $1.002$ & $-1.00042$ & $-0.53114$ \\
|
||||||
|
& [3/0,6] & 10 & 6 & $1.070$ & $1.002$ & $-1.00039$ & $-0.53113$ \\
|
||||||
\hline
|
\hline
|
||||||
Exact & & & & $1.069$ & $1.002$ & $-1.00000$ & $-0.53113$ \\
|
Exact & & & & $1.069$ & $1.002$ & $-1.00000$ & $-0.53113$ \\
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
\end{ruledtabular}
|
\end{ruledtabular}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
\hugh{On the other hand, the greater flexibility of the diagonal quadratic approximants provides a significantly
|
\begin{figure*}
|
||||||
improved model of the UMP energy in comparison to the Pad\'e approximants or Taylor series.
|
\begin{subfigure}{0.32\textwidth}
|
||||||
In particular, these quadratic approximants provide an effect model for the avoided crossings
|
\includegraphics[height=0.85\textwidth]{ump_qa322}
|
||||||
(Fig.~\ref{fig:QuadUMP}) and a far better estimate for the location of the branch point singularities.
|
\subcaption{\label{subfig:ump_ep_to_cp} [3/2,2] Quadratic}
|
||||||
Furthermore, they provide remarkably accurate estimates of the ground-state energy at $\lambda = 1$,
|
\end{subfigure}
|
||||||
as shown in Table~\ref{tab:QuadUMP}}
|
%
|
||||||
|
\begin{subfigure}{0.32\textwidth}
|
||||||
|
\includegraphics[height=0.85\textwidth]{ump_exact}
|
||||||
|
\subcaption{\label{subfig:ump_cp_surf} Exact}
|
||||||
|
\end{subfigure}
|
||||||
|
%
|
||||||
|
\begin{subfigure}{0.32\textwidth}
|
||||||
|
\includegraphics[height=0.85\textwidth]{ump_qa304}
|
||||||
|
\subcaption{\label{subfig:ump_cp} [3/0,4] Quadratic}
|
||||||
|
\end{subfigure}
|
||||||
|
\caption{%
|
||||||
|
\hugh{%
|
||||||
|
Comparison of the [3/2,2] and [3/0,4] quadratic approximants with the exact UMP energy surface in the complex $\lambda$
|
||||||
|
plane with $U/t = 3$.
|
||||||
|
Both quadratic approximants correspond to the same truncation degree of the Taylor series and model the branch points
|
||||||
|
using a radicand polynomial of the same order.
|
||||||
|
However, the [3/2,2] approximant introduces poles into the surface that limits it accuracy, while the [3/0,4] approximant
|
||||||
|
is free of poles.}
|
||||||
|
\label{fig:nopole_quad}}
|
||||||
|
\end{figure*}
|
||||||
|
|
||||||
However, as a note of caution, Ref.~\onlinecite{Goodson_2019} suggests that low-order
|
For the RMP series of the Hubbard dimer, the $[0/0,0]$ and $[1/0,0]$ quadratic approximant
|
||||||
quadratic approximants can struggle to correctly model the singularity structure when
|
are quite poor approximations, but the $[1/0,1]$ version perfectly models the RMP energy
|
||||||
the energy function has poles in both the positive and negative half-planes.
|
function by predicting a single pair of EPs at $\lambda_\text{EP} = \pm \i 4t/U$.
|
||||||
In such a scenario, the quadratic approximant will tend to place its branch points in-between, potentially introducing singularities quite close to the origin.
|
This is expected from the form of the RMP energy [see Eq.~\eqref{eq:E0MP}], which matches
|
||||||
The remedy for this problem involves applying a suitable transformation of the complex plane (such as a bilinear conformal mapping) which leaves the points at $\lambda = 0$ and $\lambda = 1$ unchanged. \cite{Feenberg_1956}
|
the ideal target for quadratic approximants.
|
||||||
|
\hugh{%
|
||||||
|
Furthermore, the greater flexibility of the diagonal quadratic approximants provides a significantly
|
||||||
|
improved model of the UMP energy in comparison to the Pad\'e approximants or Taylor series.
|
||||||
|
In particular, these quadratic approximants provide an effective model for the avoided crossings
|
||||||
|
(Fig.~\ref{fig:QuadUMP}) and an improved estimate for the distance of the
|
||||||
|
closest branch point to the origin.
|
||||||
|
Table~\ref{tab:QuadUMP} shows that they provide remarkably accurate
|
||||||
|
estimates of the ground-state energy at $\lambda = 1$.}
|
||||||
|
|
||||||
|
\hugh{%
|
||||||
|
While the diagonal quadratic approximants provide significanty improved estimates of the
|
||||||
|
ground-state energy, we can use our knowledge of the UMP singularity structure to develop
|
||||||
|
even more accurate results.
|
||||||
|
We have seen in previous sections that the UMP energy surface
|
||||||
|
contains only square-root branch cuts that approach the real axis in the limit $U/t \rightarrow \infty$.
|
||||||
|
Since there are no true poles on this surface, we can obtain more accurate quadratic approximants by
|
||||||
|
taking $d_q = 0$ and increasing $d_r$ to retain equivalent accuracy in the square-root term.
|
||||||
|
Fig.~\ref{fig:nopole_quad} illustrates this improvement for the pole-free [3/0,4] quadratic
|
||||||
|
approximant compared to the [3/2,2] approximant with the same truncation degree in the Taylor
|
||||||
|
expansion.
|
||||||
|
Clearly modelling the square-root branch point using $d_q = 2$ has the negative effect of
|
||||||
|
introducing spurious poles in the energy, while focussing purely on the branch point with $d_q = 0$
|
||||||
|
leads to a significantly improved model.
|
||||||
|
Table~\ref{tab:QuadUMP} shows that these pole-free quadratic approximants
|
||||||
|
provide a rapidly convergent series with essentially exact energies at low order.
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
\hugh{Finally, to emphasise the improvement that can be gained by using either Pad\'e, diagonal quadratic,
|
||||||
|
or pole-free approximants, we consider the energy and error obtained using only the first 10 terms in the UMP
|
||||||
|
in Table~\ref{tab:UMP_order10}.
|
||||||
|
The accuracy of these approximants reinforces how our understanding of the MP
|
||||||
|
energy surface in the complex plane can be leveraged to significantly improve estimates of the exact
|
||||||
|
energy using low-order perturbation expansions.
|
||||||
|
}
|
||||||
|
|
||||||
|
\begin{table}[h]
|
||||||
|
\caption{
|
||||||
|
\hugh{%
|
||||||
|
Estimate and associated error of the exact UMP energy at $U/t = 7$ for
|
||||||
|
various approximants using up to ten terms in the Taylor expansion.
|
||||||
|
}
|
||||||
|
\label{tab:UMP_order10}}
|
||||||
|
\begin{ruledtabular}
|
||||||
|
\begin{tabular}{lccc}
|
||||||
|
\mc{2}{c}{Method} & $E_{-}(\lambda)$ & Abs.\ Error \\
|
||||||
|
\hline
|
||||||
|
Taylor & 10 & $-0.33338$ & $0.197290$ \\
|
||||||
|
Pad\'e & [5/5] & $-0.35513$ & $0.176000$ \\
|
||||||
|
Quadratic (diagonal) & [3/3,3] & $-0.53104$ & $0.000103$ \\
|
||||||
|
Quadratic (pole-free)& [3/0,6] & $-0.53113$ & $0.000003$ \\
|
||||||
|
\hline
|
||||||
|
Exact & & $-0.53113$ & \\
|
||||||
|
\end{tabular}
|
||||||
|
\end{ruledtabular}
|
||||||
|
\end{table}
|
||||||
|
|
||||||
|
|
||||||
%==========================================%
|
%==========================================%
|
||||||
|
BIN
Manuscript/ump_exact.pdf
Normal file
BIN
Manuscript/ump_exact.pdf
Normal file
Binary file not shown.
BIN
Manuscript/ump_qa304.pdf
Normal file
BIN
Manuscript/ump_qa304.pdf
Normal file
Binary file not shown.
BIN
Manuscript/ump_qa322.pdf
Normal file
BIN
Manuscript/ump_qa322.pdf
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user