resub version

This commit is contained in:
Pierre-Francois Loos 2021-02-02 13:16:55 +01:00
parent 0d58a4c1b0
commit 3d903b9c5d
16 changed files with 25 additions and 16 deletions

View File

@ -560,7 +560,7 @@ the total spin operator $\hat{\mathcal{S}}^2$, leading to ``spin-contamination''
\label{sec:HF_hubbard} \label{sec:HF_hubbard}
%================================================================% %================================================================%
%%% FIG 2 (?) %%% %%% FIG 2 %%%
% HF energies as a function of U/t % HF energies as a function of U/t
%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%
\begin{figure} \begin{figure}
@ -611,7 +611,7 @@ We can therefore consider these as symmetry-pure molecular orbitals.}
However, in the strongly correlated regime $U>2t$, the closed-shell orbital restriction prevents RHF from However, in the strongly correlated regime $U>2t$, the closed-shell orbital restriction prevents RHF from
modelling the correct physics with the two electrons on opposite sites. modelling the correct physics with the two electrons on opposite sites.
%%% FIG 3 (?) %%% %%% FIG 3 %%%
% Analytic Continuation of HF % Analytic Continuation of HF
%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%
\begin{figure*}[t] \begin{figure*}[t]
@ -865,7 +865,7 @@ gradient discontinuities or spurious minima.
\label{sec:spin_cont} \label{sec:spin_cont}
%==========================================% %==========================================%
%%% FIG 2 %%% %%% FIG 4 %%%
\begin{figure*} \begin{figure*}
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{fig4a} \includegraphics[height=0.75\textwidth]{fig4a}
@ -939,6 +939,7 @@ whether the perturbation series will converge or not.}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% RADIUS OF CONVERGENCE PLOTS % RADIUS OF CONVERGENCE PLOTS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% FIG 5 %%%
\begin{figure}[htb] \begin{figure}[htb]
\includegraphics[width=\linewidth]{fig5} \includegraphics[width=\linewidth]{fig5}
\caption{ \caption{
@ -949,7 +950,7 @@ whether the perturbation series will converge or not.}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% FIG 3 %%% %%% FIG 6 %%%
\begin{figure*} \begin{figure*}
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{fig6a} \includegraphics[height=0.75\textwidth]{fig6a}
@ -1240,6 +1241,7 @@ and the continuum, its functional form is more complicated than a conical inters
%------------------------------------------------------------------% %------------------------------------------------------------------%
% Figure on the RMP critical point % Figure on the RMP critical point
%------------------------------------------------------------------% %------------------------------------------------------------------%
%%% FIG 7 %%%
\begin{figure*}[t] \begin{figure*}[t]
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{fig7a} \includegraphics[height=0.75\textwidth]{fig7a}
@ -1327,8 +1329,9 @@ a divergent RMP series due to the MP critical point. \cite{Goodson_2004,Sergeev_
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% RMP critical point density % RMP critical point density
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% FIG 8 %%%
\begin{figure}[b] \begin{figure}[b]
\includegraphics[width=\linewidth]{rmp_crit_density} \includegraphics[width=\linewidth]{fig8}
\caption{ \caption{
\titou{Electron density $\rho_\text{atom}$ on the ``atomic'' site of the asymmetric Hubbard dimer with \titou{Electron density $\rho_\text{atom}$ on the ``atomic'' site of the asymmetric Hubbard dimer with
$\epsilon = 2.5 U$. $\epsilon = 2.5 U$.
@ -1360,19 +1363,20 @@ set representations of the MP critical point.\cite{Sergeev_2006}
%------------------------------------------------------------------% %------------------------------------------------------------------%
% Figure on the UMP critical point % Figure on the UMP critical point
%------------------------------------------------------------------% %------------------------------------------------------------------%
%%% FIG 9 %%%
\begin{figure*}[t] \begin{figure*}[t]
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth,trim={0pt 5pt -10pt 15pt},clip]{fig8a} \includegraphics[height=0.75\textwidth,trim={0pt 5pt -10pt 15pt},clip]{fig9a}
\subcaption{\label{subfig:ump_cp}} \subcaption{\label{subfig:ump_cp}}
\end{subfigure} \end{subfigure}
% %
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{fig8b} \includegraphics[height=0.75\textwidth]{fig9b}
\subcaption{\label{subfig:ump_cp_surf}} \subcaption{\label{subfig:ump_cp_surf}}
\end{subfigure} \end{subfigure}
% %
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.75\textwidth]{fig8c} \includegraphics[height=0.75\textwidth]{fig9c}
\subcaption{\label{subfig:ump_ep_to_cp}} \subcaption{\label{subfig:ump_ep_to_cp}}
\end{subfigure} \end{subfigure}
% \includegraphics[height=0.65\textwidth,trim={0pt 5pt 0pt 15pt}, clip]{ump_critical_point} % \includegraphics[height=0.65\textwidth,trim={0pt 5pt 0pt 15pt}, clip]{ump_critical_point}
@ -1405,8 +1409,9 @@ and a single electron dissociates from the molecule (see Ref.~\onlinecite{Sergee
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% UMP critical point density % UMP critical point density
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% FIG 10 %%%
\begin{figure}[b] \begin{figure}[b]
\includegraphics[width=\linewidth]{ump_crit_density} \includegraphics[width=\linewidth]{fig10}
\caption{ \caption{
\titou{Difference in the electron densities on the left and right sites for the UMP ground state in the symmetric Hubbard dimer \titou{Difference in the electron densities on the left and right sites for the UMP ground state in the symmetric Hubbard dimer
[see Eq.~\eqref{eq:ump_dens}]. [see Eq.~\eqref{eq:ump_dens}].
@ -1465,9 +1470,10 @@ radius of convergence (see Fig.~\ref{fig:RadConv}).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%
%%% FIG 11 %%%
\begin{figure*} \begin{figure*}
\includegraphics[height=0.23\textheight]{fig9a} \includegraphics[height=0.23\textheight]{fig11a}
\includegraphics[height=0.23\textheight]{fig9b} \includegraphics[height=0.23\textheight]{fig11b}
\caption{\label{fig:PadeRMP} \caption{\label{fig:PadeRMP}
RMP ground-state energy as a function of $\lambda$ in the Hubbard dimer obtained using various truncated Taylor series and approximants RMP ground-state energy as a function of $\lambda$ in the Hubbard dimer obtained using various truncated Taylor series and approximants
at $U/t = 3.5$ (left) and $U/t = 4.5$ (right).} at $U/t = 3.5$ (left) and $U/t = 4.5$ (right).}
@ -1566,8 +1572,9 @@ while the Pad\'e approximants still offer relatively accurate energies and recov
a convergent series. a convergent series.
%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%
%%% FIG 12 %%%
\begin{figure}[t] \begin{figure}[t]
\includegraphics[width=\linewidth]{fig10} \includegraphics[width=\linewidth]{fig12}
\caption{\label{fig:QuadUMP} \caption{\label{fig:QuadUMP}
UMP energies in the Hubbard dimer as a function of $\lambda$ obtained using various approximants at $U/t = 3$.} UMP energies in the Hubbard dimer as a function of $\lambda$ obtained using various approximants at $U/t = 3$.}
\end{figure} \end{figure}
@ -1676,19 +1683,20 @@ The remedy for this problem involves applying a suitable transformation of the c
\end{ruledtabular} \end{ruledtabular}
\end{table} \end{table}
%%% FIG 13 %%%
\begin{figure*} \begin{figure*}
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.85\textwidth]{fig11a} \includegraphics[height=0.85\textwidth]{fig13a}
\subcaption{\label{subfig:322quad} [3/2,2] Quadratic} \subcaption{\label{subfig:322quad} [3/2,2] Quadratic}
\end{subfigure} \end{subfigure}
% %
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.85\textwidth]{fig11b} \includegraphics[height=0.85\textwidth]{fig13b}
\subcaption{\label{subfig:exact} Exact} \subcaption{\label{subfig:exact} Exact}
\end{subfigure} \end{subfigure}
% %
\begin{subfigure}{0.32\textwidth} \begin{subfigure}{0.32\textwidth}
\includegraphics[height=0.85\textwidth]{fig11c} \includegraphics[height=0.85\textwidth]{fig13c}
\subcaption{\label{subfig:304quad} [3/0,4] Quadratic} \subcaption{\label{subfig:304quad} [3/0,4] Quadratic}
\end{subfigure} \end{subfigure}
\caption{% \caption{%
@ -1849,8 +1857,9 @@ divergent series into a convergent one by increasing the magnitude of these deno
However, like the UMP series in stretched \ce{H2},\cite{Lepetit_1988} However, like the UMP series in stretched \ce{H2},\cite{Lepetit_1988}
the cost of larger denominators is an overall slower rate of convergence. the cost of larger denominators is an overall slower rate of convergence.
%%% FIG 14 %%%
\begin{figure} \begin{figure}
\includegraphics[width=\linewidth]{fig12} \includegraphics[width=\linewidth]{fig14}
\caption{% \caption{%
Comparison of the scaled RMP10 Taylor expansion with the exact RMP energy as a function Comparison of the scaled RMP10 Taylor expansion with the exact RMP energy as a function
of $\lambda$ for the Hubbard dimer at $U/t = 4.5$. of $\lambda$ for the Hubbard dimer at $U/t = 4.5$.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
Manuscript/fig13a.pdf Normal file

Binary file not shown.

BIN
Manuscript/fig13b.pdf Normal file

Binary file not shown.

BIN
Manuscript/fig14.pdf Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.