resub version
This commit is contained in:
parent
0d58a4c1b0
commit
3d903b9c5d
@ -560,7 +560,7 @@ the total spin operator $\hat{\mathcal{S}}^2$, leading to ``spin-contamination''
|
||||
\label{sec:HF_hubbard}
|
||||
%================================================================%
|
||||
|
||||
%%% FIG 2 (?) %%%
|
||||
%%% FIG 2 %%%
|
||||
% HF energies as a function of U/t
|
||||
%%%%%%%%%%%%%%%%%
|
||||
\begin{figure}
|
||||
@ -611,7 +611,7 @@ We can therefore consider these as symmetry-pure molecular orbitals.}
|
||||
However, in the strongly correlated regime $U>2t$, the closed-shell orbital restriction prevents RHF from
|
||||
modelling the correct physics with the two electrons on opposite sites.
|
||||
|
||||
%%% FIG 3 (?) %%%
|
||||
%%% FIG 3 %%%
|
||||
% Analytic Continuation of HF
|
||||
%%%%%%%%%%%%%%%%%
|
||||
\begin{figure*}[t]
|
||||
@ -865,7 +865,7 @@ gradient discontinuities or spurious minima.
|
||||
\label{sec:spin_cont}
|
||||
%==========================================%
|
||||
|
||||
%%% FIG 2 %%%
|
||||
%%% FIG 4 %%%
|
||||
\begin{figure*}
|
||||
\begin{subfigure}{0.32\textwidth}
|
||||
\includegraphics[height=0.75\textwidth]{fig4a}
|
||||
@ -939,6 +939,7 @@ whether the perturbation series will converge or not.}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% RADIUS OF CONVERGENCE PLOTS
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%%% FIG 5 %%%
|
||||
\begin{figure}[htb]
|
||||
\includegraphics[width=\linewidth]{fig5}
|
||||
\caption{
|
||||
@ -949,7 +950,7 @@ whether the perturbation series will converge or not.}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
|
||||
%%% FIG 3 %%%
|
||||
%%% FIG 6 %%%
|
||||
\begin{figure*}
|
||||
\begin{subfigure}{0.32\textwidth}
|
||||
\includegraphics[height=0.75\textwidth]{fig6a}
|
||||
@ -1240,6 +1241,7 @@ and the continuum, its functional form is more complicated than a conical inters
|
||||
%------------------------------------------------------------------%
|
||||
% Figure on the RMP critical point
|
||||
%------------------------------------------------------------------%
|
||||
%%% FIG 7 %%%
|
||||
\begin{figure*}[t]
|
||||
\begin{subfigure}{0.32\textwidth}
|
||||
\includegraphics[height=0.75\textwidth]{fig7a}
|
||||
@ -1327,8 +1329,9 @@ a divergent RMP series due to the MP critical point. \cite{Goodson_2004,Sergeev_
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% RMP critical point density
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%%% FIG 8 %%%
|
||||
\begin{figure}[b]
|
||||
\includegraphics[width=\linewidth]{rmp_crit_density}
|
||||
\includegraphics[width=\linewidth]{fig8}
|
||||
\caption{
|
||||
\titou{Electron density $\rho_\text{atom}$ on the ``atomic'' site of the asymmetric Hubbard dimer with
|
||||
$\epsilon = 2.5 U$.
|
||||
@ -1360,19 +1363,20 @@ set representations of the MP critical point.\cite{Sergeev_2006}
|
||||
%------------------------------------------------------------------%
|
||||
% Figure on the UMP critical point
|
||||
%------------------------------------------------------------------%
|
||||
%%% FIG 9 %%%
|
||||
\begin{figure*}[t]
|
||||
\begin{subfigure}{0.32\textwidth}
|
||||
\includegraphics[height=0.75\textwidth,trim={0pt 5pt -10pt 15pt},clip]{fig8a}
|
||||
\includegraphics[height=0.75\textwidth,trim={0pt 5pt -10pt 15pt},clip]{fig9a}
|
||||
\subcaption{\label{subfig:ump_cp}}
|
||||
\end{subfigure}
|
||||
%
|
||||
\begin{subfigure}{0.32\textwidth}
|
||||
\includegraphics[height=0.75\textwidth]{fig8b}
|
||||
\includegraphics[height=0.75\textwidth]{fig9b}
|
||||
\subcaption{\label{subfig:ump_cp_surf}}
|
||||
\end{subfigure}
|
||||
%
|
||||
\begin{subfigure}{0.32\textwidth}
|
||||
\includegraphics[height=0.75\textwidth]{fig8c}
|
||||
\includegraphics[height=0.75\textwidth]{fig9c}
|
||||
\subcaption{\label{subfig:ump_ep_to_cp}}
|
||||
\end{subfigure}
|
||||
% \includegraphics[height=0.65\textwidth,trim={0pt 5pt 0pt 15pt}, clip]{ump_critical_point}
|
||||
@ -1405,8 +1409,9 @@ and a single electron dissociates from the molecule (see Ref.~\onlinecite{Sergee
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% UMP critical point density
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
%%% FIG 10 %%%
|
||||
\begin{figure}[b]
|
||||
\includegraphics[width=\linewidth]{ump_crit_density}
|
||||
\includegraphics[width=\linewidth]{fig10}
|
||||
\caption{
|
||||
\titou{Difference in the electron densities on the left and right sites for the UMP ground state in the symmetric Hubbard dimer
|
||||
[see Eq.~\eqref{eq:ump_dens}].
|
||||
@ -1465,9 +1470,10 @@ radius of convergence (see Fig.~\ref{fig:RadConv}).
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
%%%%%%%%%%%%%%%%%
|
||||
%%% FIG 11 %%%
|
||||
\begin{figure*}
|
||||
\includegraphics[height=0.23\textheight]{fig9a}
|
||||
\includegraphics[height=0.23\textheight]{fig9b}
|
||||
\includegraphics[height=0.23\textheight]{fig11a}
|
||||
\includegraphics[height=0.23\textheight]{fig11b}
|
||||
\caption{\label{fig:PadeRMP}
|
||||
RMP ground-state energy as a function of $\lambda$ in the Hubbard dimer obtained using various truncated Taylor series and approximants
|
||||
at $U/t = 3.5$ (left) and $U/t = 4.5$ (right).}
|
||||
@ -1566,8 +1572,9 @@ while the Pad\'e approximants still offer relatively accurate energies and recov
|
||||
a convergent series.
|
||||
|
||||
%%%%%%%%%%%%%%%%%
|
||||
%%% FIG 12 %%%
|
||||
\begin{figure}[t]
|
||||
\includegraphics[width=\linewidth]{fig10}
|
||||
\includegraphics[width=\linewidth]{fig12}
|
||||
\caption{\label{fig:QuadUMP}
|
||||
UMP energies in the Hubbard dimer as a function of $\lambda$ obtained using various approximants at $U/t = 3$.}
|
||||
\end{figure}
|
||||
@ -1676,19 +1683,20 @@ The remedy for this problem involves applying a suitable transformation of the c
|
||||
\end{ruledtabular}
|
||||
\end{table}
|
||||
|
||||
%%% FIG 13 %%%
|
||||
\begin{figure*}
|
||||
\begin{subfigure}{0.32\textwidth}
|
||||
\includegraphics[height=0.85\textwidth]{fig11a}
|
||||
\includegraphics[height=0.85\textwidth]{fig13a}
|
||||
\subcaption{\label{subfig:322quad} [3/2,2] Quadratic}
|
||||
\end{subfigure}
|
||||
%
|
||||
\begin{subfigure}{0.32\textwidth}
|
||||
\includegraphics[height=0.85\textwidth]{fig11b}
|
||||
\includegraphics[height=0.85\textwidth]{fig13b}
|
||||
\subcaption{\label{subfig:exact} Exact}
|
||||
\end{subfigure}
|
||||
%
|
||||
\begin{subfigure}{0.32\textwidth}
|
||||
\includegraphics[height=0.85\textwidth]{fig11c}
|
||||
\includegraphics[height=0.85\textwidth]{fig13c}
|
||||
\subcaption{\label{subfig:304quad} [3/0,4] Quadratic}
|
||||
\end{subfigure}
|
||||
\caption{%
|
||||
@ -1849,8 +1857,9 @@ divergent series into a convergent one by increasing the magnitude of these deno
|
||||
However, like the UMP series in stretched \ce{H2},\cite{Lepetit_1988}
|
||||
the cost of larger denominators is an overall slower rate of convergence.
|
||||
|
||||
%%% FIG 14 %%%
|
||||
\begin{figure}
|
||||
\includegraphics[width=\linewidth]{fig12}
|
||||
\includegraphics[width=\linewidth]{fig14}
|
||||
\caption{%
|
||||
Comparison of the scaled RMP10 Taylor expansion with the exact RMP energy as a function
|
||||
of $\lambda$ for the Hubbard dimer at $U/t = 4.5$.
|
||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
Manuscript/fig13a.pdf
Normal file
BIN
Manuscript/fig13a.pdf
Normal file
Binary file not shown.
BIN
Manuscript/fig13b.pdf
Normal file
BIN
Manuscript/fig13b.pdf
Normal file
Binary file not shown.
BIN
Manuscript/fig14.pdf
Normal file
BIN
Manuscript/fig14.pdf
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue
Block a user