From 2474175f57b96c172444be2ac9fca367c17cd608 Mon Sep 17 00:00:00 2001 From: AntoineMarie2 <65608573+AntoineMarie2@users.noreply.github.com> Date: Sun, 28 Jun 2020 17:52:03 +0200 Subject: [PATCH] Add files via upload --- SlideToulouse/main.tex | 197 +++++++++++------------------------------ 1 file changed, 51 insertions(+), 146 deletions(-) diff --git a/SlideToulouse/main.tex b/SlideToulouse/main.tex index e8aa2d5..8d2d62e 100644 --- a/SlideToulouse/main.tex +++ b/SlideToulouse/main.tex @@ -8,19 +8,19 @@ \usepackage[english]{babel} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} -\usepackage{xcolor} \usepackage{siunitx} \usepackage{graphicx} \usepackage{physics} \usepackage{multimedia} \usepackage{subfigure} +\usepackage{xcolor} \usepackage[absolute,overlay]{textpos} \usepackage{ragged2e} \usepackage{amssymb} \usepackage[version=4]{mhchem} - +\renewcommand{\thefootnote}{\alph{footnote}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -61,8 +61,9 @@ \beamerboxesdeclarecolorscheme{clair}{Coral4}{Ivory2} \beamerboxesdeclarecolorscheme{foncé}{DarkSeaGreen4}{Ivory2} -\title[Title]{Perturbation theories in the complex plane} +\title[Title]{Perturbative theories in the complex plane} \author[]{Antoine \textsc{Marie}} +\date{30 Juin 2020} \setbeamersize{text margin left=5mm} \setbeamersize{text margin right=5mm} \institute{Supervised by Pierre-François \textsc{LOOS}} @@ -70,50 +71,21 @@ \begin{document} - - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame}[plain] -\date{30th June 2020} +\date{24 Avril 2020} \titlepage \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -\begin{frame}{Why do we use perturbation theories in computational chemistry?} - -\pause[1] - -The Hartree-Fock theory is \textcolor{Green4}{computationally cheap} and can be applied even to \textcolor{Green4}{large systems}. - -But this method is missing the \textcolor{red}{correlation energy}... - -\vspace{0.5cm} - -\pause[2] - -$\rightarrow$ We need methods to get this correlation energy! - -\vspace{0.5cm} - -\pause[3] - -\begin{beamerboxesrounded}[scheme=foncé]{\centering A general method} -In physics perturbation theory is often a good way to improve the obtained results with an approximated Hamiltonian. -\end{beamerboxesrounded} - - -\end{frame} - \section{\textsc{Strange behaviors of the MP series}} -\begin{frame}{The Møller-Plesset perturbation theory} - -\pause[1] +\begin{frame}{The Möller-Plesset theory} \begin{beamerboxesrounded}[scheme=foncé]{\centering Partitioning of the Hamiltonian} @@ -125,33 +97,23 @@ In physics perturbation theory is often a good way to improve the obtained resul \begin{itemize} \centering - \item $H_0$: Unperturbed Hamiltonian - \item $V$: Perturbation operator + \item $H_0$ : Unperturbed Hamiltonian + \item $V$ : Perturbation operator \end{itemize} -\pause[2] - \begin{beamerboxesrounded}[scheme=foncé]{\centering The Fock operator} \begin{equation} F = T + J + K \end{equation} - \end{beamerboxesrounded} \begin{itemize} \centering - \item $T$: Kinetic energy operator - \item $J$: Coulomb operator - \item $K$: Exchange operator + \item $T$ : Kinetic energy operator + \item $J$ : Coulomb operator + \item $K$ : Exchange operator \end{itemize} - -\pause[3] - -\begin{beamerboxesrounded}[scheme=foncé]{} -\centering -Full Configuration Interaction gives us access to high order terms of the perturbation series ! -\end{beamerboxesrounded} \end{frame} @@ -159,11 +121,12 @@ Full Configuration Interaction gives us access to high order terms of the pertur \begin{figure} \centering - \includegraphics[width=0.4\textwidth]{gill1986.png} - \caption{\centering Barriers to homolytic fission of \ce{He2^2+} using minimal basis set MPn theory (n~=~1-20).\footnote{\cite{gill_deceptive_1986}}} + \includegraphics[width=0.5\textwidth]{gill1986.png} + \caption{\centering Barriers to homolytic fission of \ce{He2^2+} using minimal basis set MPn theory (n~=~1-20).} \label{fig:my_label} \end{figure} +\footnotetext{\tiny{Gill et al.~Deceptive convergence in Møller-Plesset perturbation energies, \textit{Chemical Physics Letter}, 1986}} \end{frame} @@ -172,7 +135,7 @@ Full Configuration Interaction gives us access to high order terms of the pertur \centering \begin{tabular}{c c c c c c c} \hline - $r$ & UHF & UMP2 & UMP3 & UMP4 & $\expval{S^2}$ \\ + $r$ & UHF & UMP2 & UMP3 & UMP4 & $$ \\ \hline 0.75 & 0.0\% & 63.8\% & 87.4\% & 95.9\% & 0.00\\ 1.35 & 0.0\% & 15.2\% & 26.1\% & 34.9\% & 0.49\\ @@ -180,7 +143,7 @@ Full Configuration Interaction gives us access to high order terms of the pertur 2.50 & 0.0\% & 00.1\% & 00.3\% & 00.4\% & 0.99\\ \hline \end{tabular} - \caption{\centering Percentage of electron correlation energy recovered and $\expval{S^2}$ for the \ce{H2} molecule as a function of bond length (r,\si{\angstrom}) in the minimal basis.} + \caption{\centering Percentage of electron correlation energy recovered and $$ for the \ce{H2} molecule as a function of bond length (r,A) in the minimal basis.} \label{tab:my_label} \end{table} @@ -236,7 +199,7 @@ Full Configuration Interaction gives us access to high order terms of the pertur \end{columns} -But the Taylor expansion of this function does not converge for $x\geq1$... +But the Taylor expansion of this function does not converge for $x\geq1$ ... \vspace{0.3cm} \centering Why ? @@ -254,6 +217,8 @@ But the Taylor expansion of this function does not converge for $x\geq1$... $x = e^{i\pi/4}, e^{-i\pi/4}, e^{i3\pi/4}, e^{-i3\pi/4}$ + + \column{0.48\textwidth} \begin{figure} @@ -274,7 +239,7 @@ The \textcolor{red}{radius of convergence} of the Taylor expansion of a function \begin{beamerboxesrounded}[scheme=foncé]{\centering $\lambda$ a complex variable} \begin{equation*} - H(\lambda) = H_0 + \lambda V + H = H_0 + \lambda V \end{equation*} \end{beamerboxesrounded} @@ -308,7 +273,7 @@ The \textcolor{red}{radius of convergence} of the Taylor expansion of a function \begin{frame}{Which features of the system localize the singularities ?} \begin{itemize} - \item Partitioning of the Hamiltonian: Möller-Plesset, Epstein-Nesbet,... + \item Partitioning of the Hamiltonian: Möller-Plesset, Epstein-Nesbet, ... \item Zeroth order reference: weak correlation or strongly correlated electrons. \item Finite or complete basis set. \item Localized or delocalized basis functions. @@ -331,12 +296,27 @@ The \textcolor{red}{radius of convergence} of the Taylor expansion of a function \column{0.48\textwidth} -\begin{beamerboxesrounded}[scheme=foncé]{A 2x2 matrix} -\centering \small{$\mqty(\alpha & \delta \\ \delta & \beta) =$} +\begin{beamerboxesrounded}[scheme=foncé]{A 2x2 matrix\textsuperscript{a}} -\vspace{0.15cm} +$ -\small{$\mqty(\alpha + \alpha_s & 0 \\ 0 & \beta + \beta_s ) + \mqty(- \alpha_s & \delta \\ \delta & - \beta_s)$} +\small{\centering \begin{pmatrix} + \alpha & \delta \\ + \delta & \beta +\end{pmatrix} = + +\vspace{0.3cm} + +\begin{pmatrix} + + \alpha + \alpha_s & 0 \\ + 0 & \beta + \beta_s +\end{pmatrix} + +\begin{pmatrix} + - \alpha_s & \delta \\ + \delta & - \beta_s +\end{pmatrix}} +$ \end{beamerboxesrounded} \vspace{1cm} @@ -346,7 +326,7 @@ The \textcolor{red}{radius of convergence} of the Taylor expansion of a function \end{frame} -\begin{frame}{Two-state model} +\begin{frame}{Two state model} \begin{figure} \centering @@ -361,91 +341,57 @@ The \textcolor{red}{radius of convergence} of the Taylor expansion of a function \begin{frame}{Existence of a critical point} -For $\lambda<0$: +For $\lambda<0$ : \begin{equation*} - H(\lambda)=\sum\limits_{j=1}^{2n}\left[ \underbrace{-\frac{1}{2}\grad_j^2 - \sum\limits_{k=1}^{N} \frac{Z_k}{|\vb{r}_j-\vb{R}_k|}}_{\text{Independant of }\lambda} + \overbrace{(1-\lambda)V_j^{(scf)}}^{\textcolor{red}{Repulsive}}+\underbrace{\lambda\sum\limits_{j