Merge branch 'master' of github.com:pfloos/EPAWTFT
This commit is contained in:
commit
222fbd15d8
@ -6,7 +6,7 @@
|
||||
%Control: page (0) single
|
||||
%Control: year (1) truncated
|
||||
%Control: production of eprint (0) enabled
|
||||
\begin{thebibliography}{94}%
|
||||
\begin{thebibliography}{91}%
|
||||
\makeatletter
|
||||
\providecommand \@ifxundefined [1]{%
|
||||
\@ifx{#1\undefined}
|
||||
@ -529,6 +529,15 @@
|
||||
{Thom}},\ }\href {\doibase 10.1021/ct5007696} {\bibfield {journal} {\bibinfo
|
||||
{journal} {J. Chem. Theory Comput.}\ }\textbf {\bibinfo {volume} {10}},\
|
||||
\bibinfo {pages} {4795} (\bibinfo {year} {2014})}\BibitemShut {NoStop}%
|
||||
\bibitem [{\citenamefont {Burton}\ and\ \citenamefont
|
||||
{Thom}(2016)}]{Burton_2016}%
|
||||
\BibitemOpen
|
||||
\bibfield {author} {\bibinfo {author} {\bibfnamefont {H.~G.~A.}\
|
||||
\bibnamefont {Burton}}\ and\ \bibinfo {author} {\bibfnamefont {A.~J.~W.}\
|
||||
\bibnamefont {Thom}},\ }\href {\doibase 10.1021/acs.jctc.5b01005} {\bibfield
|
||||
{journal} {\bibinfo {journal} {J. Chem. Theory Comput.}\ }\textbf {\bibinfo
|
||||
{volume} {12}},\ \bibinfo {pages} {167} (\bibinfo {year} {2016})}\BibitemShut
|
||||
{NoStop}%
|
||||
\bibitem [{\citenamefont {Burton}\ \emph {et~al.}(2018)\citenamefont {Burton},
|
||||
\citenamefont {Gross},\ and\ \citenamefont {Thom}}]{Burton_2018}%
|
||||
\BibitemOpen
|
||||
@ -539,15 +548,6 @@
|
||||
{\bibinfo {journal} {J. Chem. Theory Comput.}\ }\textbf {\bibinfo {volume}
|
||||
{14}},\ \bibinfo {pages} {607} (\bibinfo {year} {2018})}\BibitemShut
|
||||
{NoStop}%
|
||||
\bibitem [{\citenamefont {Burton}\ and\ \citenamefont
|
||||
{Thom}(2016)}]{Burton_2016}%
|
||||
\BibitemOpen
|
||||
\bibfield {author} {\bibinfo {author} {\bibfnamefont {H.~G.~A.}\
|
||||
\bibnamefont {Burton}}\ and\ \bibinfo {author} {\bibfnamefont {A.~J.~W.}\
|
||||
\bibnamefont {Thom}},\ }\href {\doibase 10.1021/acs.jctc.5b01005} {\bibfield
|
||||
{journal} {\bibinfo {journal} {J. Chem. Theory Comput.}\ }\textbf {\bibinfo
|
||||
{volume} {12}},\ \bibinfo {pages} {167} (\bibinfo {year} {2016})}\BibitemShut
|
||||
{NoStop}%
|
||||
\bibitem [{\citenamefont {Langreth}\ and\ \citenamefont
|
||||
{Perdew}(1979)}]{Langreth_1975}%
|
||||
\BibitemOpen
|
||||
@ -574,46 +574,6 @@
|
||||
}\href {\doibase 10.1103/PhysRevA.69.052510} {\bibfield {journal} {\bibinfo
|
||||
{journal} {Phys. Rev. A}\ }\textbf {\bibinfo {volume} {69}},\ \bibinfo
|
||||
{pages} {052510} (\bibinfo {year} {2004})}\BibitemShut {NoStop}%
|
||||
\bibitem [{\citenamefont {Seidl}\ \emph {et~al.}(2018)\citenamefont {Seidl},
|
||||
\citenamefont {Giarrusso}, \citenamefont {Vuckovic}, \citenamefont
|
||||
{Fabiano},\ and\ \citenamefont {Gori-Giorgi}}]{Seidl_2018}%
|
||||
\BibitemOpen
|
||||
\bibfield {author} {\bibinfo {author} {\bibfnamefont {M.}~\bibnamefont
|
||||
{Seidl}}, \bibinfo {author} {\bibfnamefont {S.}~\bibnamefont {Giarrusso}},
|
||||
\bibinfo {author} {\bibfnamefont {S.}~\bibnamefont {Vuckovic}}, \bibinfo
|
||||
{author} {\bibfnamefont {E.}~\bibnamefont {Fabiano}}, \ and\ \bibinfo
|
||||
{author} {\bibfnamefont {P.}~\bibnamefont {Gori-Giorgi}},\ }\href {\doibase
|
||||
10.1063/1.5078565} {\bibfield {journal} {\bibinfo {journal} {J. Chem.
|
||||
Phys.}\ }\textbf {\bibinfo {volume} {149}},\ \bibinfo {pages} {241101}
|
||||
(\bibinfo {year} {2018})}\BibitemShut {NoStop}%
|
||||
\bibitem [{\citenamefont {Gilbert}\ \emph {et~al.}(2008)\citenamefont
|
||||
{Gilbert}, \citenamefont {Besley},\ and\ \citenamefont
|
||||
{Gill}}]{Gilbert_2008}%
|
||||
\BibitemOpen
|
||||
\bibfield {author} {\bibinfo {author} {\bibfnamefont {A.~T.~B.}\
|
||||
\bibnamefont {Gilbert}}, \bibinfo {author} {\bibfnamefont {N.~A.}\
|
||||
\bibnamefont {Besley}}, \ and\ \bibinfo {author} {\bibfnamefont {P.~M.~W.}\
|
||||
\bibnamefont {Gill}},\ }\href {\doibase 10.1021/jp801738f} {\bibfield
|
||||
{journal} {\bibinfo {journal} {J. Phys. Chem. A}\ }\textbf {\bibinfo
|
||||
{volume} {112}},\ \bibinfo {pages} {13164} (\bibinfo {year}
|
||||
{2008})}\BibitemShut {NoStop}%
|
||||
\bibitem [{\citenamefont {Thom}\ and\ \citenamefont
|
||||
{{Head-Gordon}}(2008)}]{Thom_2008}%
|
||||
\BibitemOpen
|
||||
\bibfield {author} {\bibinfo {author} {\bibfnamefont {A.~J.~W.}\
|
||||
\bibnamefont {Thom}}\ and\ \bibinfo {author} {\bibfnamefont {M.}~\bibnamefont
|
||||
{{Head-Gordon}}},\ }\href {\doibase 10.1103/PhysRevLett.101.193001}
|
||||
{\bibfield {journal} {\bibinfo {journal} {Phys. Rev. Lett.}\ }\textbf
|
||||
{\bibinfo {volume} {101}},\ \bibinfo {pages} {193001} (\bibinfo {year}
|
||||
{2008})}\BibitemShut {NoStop}%
|
||||
\bibitem [{\citenamefont {Shea}\ and\ \citenamefont
|
||||
{Neuscamman}(2018)}]{Shea_2018}%
|
||||
\BibitemOpen
|
||||
\bibfield {author} {\bibinfo {author} {\bibfnamefont {J.~A.~R.}\
|
||||
\bibnamefont {Shea}}\ and\ \bibinfo {author} {\bibfnamefont {E.}~\bibnamefont
|
||||
{Neuscamman}},\ }\href {\doibase 10.1063/1.5045056} {\bibfield {journal}
|
||||
{\bibinfo {journal} {J. Chem. Phys.}\ }\textbf {\bibinfo {volume} {149}},\
|
||||
\bibinfo {pages} {081101} (\bibinfo {year} {2018})}\BibitemShut {NoStop}%
|
||||
\bibitem [{\citenamefont {M{\o}ller}\ and\ \citenamefont
|
||||
{Plesset}(1934)}]{Moller_1934}%
|
||||
\BibitemOpen
|
||||
@ -702,6 +662,18 @@
|
||||
{Epstein}},\ }\href {\doibase 10.1103/PhysRev.28.695} {\bibfield {journal}
|
||||
{\bibinfo {journal} {Phys. Rev.}\ }\textbf {\bibinfo {volume} {28}},\
|
||||
\bibinfo {pages} {695} (\bibinfo {year} {1926})}\BibitemShut {NoStop}%
|
||||
\bibitem [{\citenamefont {Seidl}\ \emph {et~al.}(2018)\citenamefont {Seidl},
|
||||
\citenamefont {Giarrusso}, \citenamefont {Vuckovic}, \citenamefont
|
||||
{Fabiano},\ and\ \citenamefont {Gori-Giorgi}}]{Seidl_2018}%
|
||||
\BibitemOpen
|
||||
\bibfield {author} {\bibinfo {author} {\bibfnamefont {M.}~\bibnamefont
|
||||
{Seidl}}, \bibinfo {author} {\bibfnamefont {S.}~\bibnamefont {Giarrusso}},
|
||||
\bibinfo {author} {\bibfnamefont {S.}~\bibnamefont {Vuckovic}}, \bibinfo
|
||||
{author} {\bibfnamefont {E.}~\bibnamefont {Fabiano}}, \ and\ \bibinfo
|
||||
{author} {\bibfnamefont {P.}~\bibnamefont {Gori-Giorgi}},\ }\href {\doibase
|
||||
10.1063/1.5078565} {\bibfield {journal} {\bibinfo {journal} {J. Chem.
|
||||
Phys.}\ }\textbf {\bibinfo {volume} {149}},\ \bibinfo {pages} {241101}
|
||||
(\bibinfo {year} {2018})}\BibitemShut {NoStop}%
|
||||
\bibitem [{\citenamefont {Cremer}\ and\ \citenamefont
|
||||
{He}(1996)}]{Cremer_1996}%
|
||||
\BibitemOpen
|
||||
|
@ -468,8 +468,8 @@ the total spin $\hat{\mathcal{S}}^2$ operator, leading to ``spin-contamination''
|
||||
\begin{figure}
|
||||
\includegraphics[width=\linewidth]{HF_real.pdf}
|
||||
\caption{\label{fig:HF_real}
|
||||
\hugh{RHF and UHF energies as a function of the correlation strength $U/t$.
|
||||
The symmetry-broken UHF solution emerges at the coalescence point $U=2t$ (black dot).}}
|
||||
RHF and UHF energies as a function of the correlation strength $U/t$.
|
||||
The symmetry-broken UHF solution emerges at the coalescence point $U=2t$ (black dot) known as the Coulson-Fischer point.}
|
||||
\end{figure}
|
||||
%%%%%%%%%%%%%%%%%
|
||||
|
||||
@ -515,12 +515,12 @@ correctly modelling the physics of the system with the two electrons on opposing
|
||||
\subcaption{\label{subfig:UHF_cplx_energy}}
|
||||
\end{subfigure}
|
||||
\caption{%
|
||||
\hugh{(\subref{subfig:UHF_cplx_angle}) Real component of the UHF angle $\ta^{\text{UHF}}$ for $\lambda \in \bbC$.
|
||||
(\subref{subfig:UHF_cplx_angle}) Real component of the UHF angle $\ta^{\text{UHF}}$ for $\lambda \in \bbC$.
|
||||
Symmetry-broken solutions correspond to individual sheets and become equivalent at
|
||||
the \textit{quasi}-EP $\lambda_{\text{c}}$ (black dot).
|
||||
The RHF solution is independent of $\lambda$, giving constant plane at $\pi/2$.
|
||||
(\subref{subfig:UHF_cplx_energy}) The corresponding HF energy surfaces show a non-analytic
|
||||
point at the \textit{quasi}-EP.}
|
||||
point at the \textit{quasi}-EP.
|
||||
\label{fig:HF_cplx}}
|
||||
\end{figure*}
|
||||
%%%%%%%%%%%%%%%%%
|
||||
@ -550,7 +550,7 @@ of the HF energy rather than a minimum.
|
||||
%============================================================%
|
||||
|
||||
% INTRODUCE PARAMETRISED FOCK HAMILTONIAN
|
||||
\hugh{The inherent non-linearity in the Fock eigenvalue problem arises from self-consistency
|
||||
The inherent non-linearity in the Fock eigenvalue problem arises from self-consistency
|
||||
in the HF approximation, and is usually solved through an iterative approach.\cite{SzaboBook}
|
||||
Alternatively, the non-linear terms arising from the Coulomb and exchange operators can
|
||||
be considered as a perturbation from the core Hamiltonian by introducing the
|
||||
@ -559,10 +559,10 @@ transformation $U \rightarrow \lambda\, U$, giving the parametrised Fock operato
|
||||
\Hat{f}_{\lambda}(\vb{x}) = \Hat{h}(\vb{x}) + \lambda\, \Hat{v}_\text{HF}(\vb{x}).
|
||||
\end{equation}
|
||||
The orbitals in the reference problem $\lambda=0$ correspond to the symmetry-pure eigenfunctions of the one-electron core
|
||||
Hamiltonian, while self-consistent solutions at $\lambda = 1$ represent the orbitals of the true HF solution.}
|
||||
Hamiltonian, while self-consistent solutions at $\lambda = 1$ represent the orbitals of the true HF solution.
|
||||
|
||||
% INTRODUCE COMPLEX ANALYTIC-CONTINUATION
|
||||
\hugh{For real $\lambda$, the self-consistent HF energies at given (real) $U$ and $t$ values
|
||||
For real $\lambda$, the self-consistent HF energies at given (real) $U$ and $t$ values
|
||||
in the Hubbard dimer directly mirror the energies shown in Fig.~\ref{fig:HF_real},
|
||||
with coalesence points at
|
||||
\begin{equation}
|
||||
@ -583,10 +583,9 @@ For example, in the Hubbard dimer with $U > 2t$, one finds $\lambda_{\text{c}} <
|
||||
do not provide a good representation of the HF ground state.
|
||||
In contrast, $U < 2t$ yields $\lambda_{\text{c}} > 1$ and corresponds to
|
||||
the regime where the HF ground state is correctly represented by symmetry-pure orbitals.
|
||||
}
|
||||
|
||||
% COMPLEX ADIABATIC CONNECTION
|
||||
\hugh{We have recently shown that the complex scaled Fock operator Eq.~\eqref{eq:scaled_fock}
|
||||
We have recently shown that the complex scaled Fock operator Eq.~\eqref{eq:scaled_fock}
|
||||
also allows states of different symmetries to be interconverted by following a well-defined
|
||||
contour in the complex $\lambda$-plane.\cite{Burton_2019}
|
||||
In particular, by slowly varying $\lambda$ in a similar (yet different) manner
|
||||
@ -594,12 +593,12 @@ to an adiabatic connection in density-functional theory,\cite{Langreth_1975,Gunn
|
||||
a ground-state wave function can be ``morphed'' into an excited-state wave function
|
||||
via a stationary path of HF solutions.
|
||||
This novel approach to identifying excited-state wave functions demonstrates the fundamental
|
||||
role of \textit{quasi}-EPs in determining the behaviour of the HF approximation.}
|
||||
role of \textit{quasi}-EPs in determining the behaviour of the HF approximation.
|
||||
|
||||
%\titou{In a recent paper, \cite{Burton_2019} using holomorphic Hartree-Fock (h-HF) \cite{Hiscock_2014,Burton_2018,Burton_2016} as an analytic continuation of conventional HF theory, we have demonstrated, on a simple model, that one can interconvert states of different symmetries and natures by following well-defined contours in the complex $\lambda$-plane, where $\lambda$ is the strength of the electron-electron interaction (see Fig.~\ref{fig:iAC}).
|
||||
%In particular, by slowly varying $\lambda$ in a similar (yet different) manner to an adiabatic connection in density-functional theory, \cite{Langreth_1975,Gunnarsson_1976,Zhang_2004} one can ``morph'' a ground-state wave function into an excited-state wave function via a stationary path of HF solutions. \cite{Seidl_2018}
|
||||
%In such a way, we could obtain a doubly-excited state wave function starting from the ground state wave function, a process which is not as easy as one might think. \cite{Gilbert_2008,Thom_2008,Shea_2018}
|
||||
%One of the fundamental discovery we made was that Coulson-Fisher points (where multiple symmetry-broken solutions coalesce) play a central role and can be classified as \textit{quasi}-exceptional points, as the wave functions do not become self-orthogonal.
|
||||
%One of the fundamental discovery we made was that Coulson-Fischer points (where multiple symmetry-broken solutions coalesce) play a central role and can be classified as \textit{quasi}-exceptional points, as the wave functions do not become self-orthogonal.
|
||||
%The findings reported in Ref.~\onlinecite{Burton_2019} represent the very first study of non-Hermitian quantum mechanics for the exploration of multiple solutions at the HF level.
|
||||
%It perfectly illustrates the deeper topology of electronic states revealed using a complex-scaled electron-electron interaction.
|
||||
%Through the introduction of non-Hermiticity, we have provided a more general framework in which the complex and diverse characteristics of multiple solutions can be explored and understood.}
|
||||
@ -659,6 +658,7 @@ iii) the strong coupling partitioning where the two operators are inverted compa
|
||||
|
||||
Let us illustrate the behaviour of the RMP and UMP series on the Hubbard dimer (see Fig.~\ref{fig:RMP}).
|
||||
Within the RMP partition technique, we have
|
||||
\begin{widetext}
|
||||
\begin{equation}
|
||||
\label{eq:H_RMP}
|
||||
\bH_\text{RMP} =
|
||||
@ -669,12 +669,13 @@ Within the RMP partition technique, we have
|
||||
\lambda U/2 & 0 & 0 & 2t + U - \lambda U/2 \\
|
||||
\end{pmatrix},
|
||||
\end{equation}
|
||||
\end{widetext}
|
||||
which yields the ground-state energy
|
||||
\begin{equation}
|
||||
\label{eq:E0MP}
|
||||
E_{-}(\lambda) = U - \frac{\lambda U}{2} - \frac{1}{2} \sqrt{(4t)^2 + \lambda ^2 U^2}.
|
||||
\end{equation}
|
||||
From this expression, it is easy to identify that the radius of convergence is defined by the EPs at $\lambda = \pm i 4t / U$ (which are actually located at the same position than the exact EPs discussed in Sec.~\ref{sec:example}).
|
||||
From this expression, it is easy to identify that the radius of convergence is defined by the EPs at $\lambda_c = \pm i 4t / U$ (which are actually located at the same position than the exact EPs discussed in Sec.~\ref{sec:example}).
|
||||
Equation \eqref{eq:E0MP} can be Taylor expanded in terms of $\lambda$ to obtain the $n$th-order MP correction
|
||||
\begin{equation}
|
||||
E_\text{MP}^{(k)} = U \delta_{0,k} - \frac{1}{2} \frac{U^k}{(4t)^{k-1}} \mqty( 1/2 \\ k/2),
|
||||
|
Loading…
Reference in New Issue
Block a user