diff --git a/RapportStage/2x2.pdf b/RapportStage/2x2.pdf new file mode 100644 index 0000000..2138559 Binary files /dev/null and b/RapportStage/2x2.pdf differ diff --git a/RapportStage/Rapport.bib b/RapportStage/Rapport.bib index 69c0493..0fc2360 100644 --- a/RapportStage/Rapport.bib +++ b/RapportStage/Rapport.bib @@ -559,6 +559,12 @@ Year = {1989}, } +@book{JensenBook, + Author = {F. Jensen}, + Publisher = {Wiley}, + Title = {Introduction to computational chemistry}, + Year = {2017}, +} @article{Lepetit_1988, title = {Origins of the poor convergence of many‐body perturbation theory expansions from unrestricted Hartree-Fock zeroth‐order descriptions}, diff --git a/RapportStage/Rapport.tex b/RapportStage/Rapport.tex index b1c0d55..a6d6608 100644 --- a/RapportStage/Rapport.tex +++ b/RapportStage/Rapport.tex @@ -181,6 +181,64 @@ More importantly here, although EPs usually lie off the real axis, these singula \end{figure} \subsection{An illustrative example} +In order to highlight the general properties of EPs mentioned above, we propose to consider the following $2 \times 2$ Hamiltonian commonly used in quantum chemistry + +\begin{equation} +\label{eq:H_2x2} + \bH = + \begin{pmatrix} + \epsilon_1 & \lambda \\ + \lambda & \epsilon_2 + \end{pmatrix}, +\end{equation} +which represents two states of energies $\epsilon_1$ and $\epsilon_2$ coupled with a strength of magnitude $\lambda$. +This Hamiltonian could represent, for example, a minimal-basis configuration interaction with doubles (CID) for the hydrogen molecule \cite{SzaboBook}. + +\begin{figure}[h!] + \centering + \includegraphics[width=8cm]{2x2.pdf} + \includegraphics[width=8cm]{i2x2.pdf} + \caption{\centering Energies, as given by Eq.~\eqref{eq:E_2x2}, of the Hamiltonian \eqref{eq:H_2x2} as a function of $\lambda$ with $\epsilon_1 = -1/2$ and $\epsilon_2 = +1/2$.} + \label{fig:2x2} +\end{figure} + +For real $\lambda$, the Hamiltonian \eqref{eq:H_2x2} is clearly Hermitian, and it becomes non-Hermitian for any complex $\lambda$ value. +Its eigenvalues are +\begin{equation} +\label{eq:E_2x2} + E_{\pm} = \frac{\epsilon_1 + \epsilon_2}{2} \pm \frac{1}{2} \sqrt{(\epsilon_1 - \epsilon_2)^2 + 4\lambda^2}, +\end{equation} +and they are represented as a function of $\lambda$ in Fig.~\ref{fig:2x2}. +One notices that the two states become degenerate only for a pair of complex conjugate values of $\lambda$ +\begin{equation} +\label{eq:lambda_EP} + \lambda_\text{EP} = \pm i\,\frac{\epsilon_1 - \epsilon_2}{2}, + \quad + \text{with energy} + \quad + E_\text{EP} = \frac{\epsilon_1 + \epsilon_2}{2}, +\end{equation} +which correspond to square-root singularities in the complex-$\lambda$ plane (see Fig.~\ref{fig:2x2}). +These two $\lambda$ values, given by Eq.~\eqref{eq:lambda_EP}, are the so-called EPs and one can clearly see that they connect the ground and excited states. +Starting from $\lambda_\text{EP}$, two square-root branch cuts run on the imaginary axis towards $\pm i \infty$. +In the real $\lambda$ axis, the point for which the states are the closest ($\lambda = 0$) is called an avoided crossing and this occurs at $\lambda = \Re(\lambda_\text{EP})$. +The ``shape'' of the avoided crossing in linked to the magnitude of $\Im(\lambda_\text{EP})$: the smaller $\Im(\lambda_\text{EP})$, the sharper the avoided crossing is. + +Around $\lambda = \lambda_\text{EP}$, Eq.~\eqref{eq:E_2x2} behaves as \cite{MoiseyevBook} +\begin{equation} + E_{\pm} = E_\text{EP} \pm \sqrt{2\lambda_\text{EP}} \sqrt{\lambda - \lambda_\text{EP}}, +\end{equation} +and following a complex contour around the EP, i.e.~$\lambda = \lambda_\text{EP} + R \exp(i\theta)$, yields +\begin{equation} + E_{\pm}(\theta) = E_\text{EP} \pm \sqrt{2\lambda_\text{EP} R} \exp(i\theta/2), +\end{equation} +and we have +\begin{align} + E_{\pm}(2\pi) & = E_{\mp}(0), + & + E_{\pm}(4\pi) & = E_{\pm}(0). +\end{align} +This evidences that encircling non-Hermitian degeneracies at EPs leads to an interconversion of states, and two loops around the EP are necessary to recover the initial energy. %============================================================% \section{Perturbation theory} @@ -254,13 +312,13 @@ The Hartree-Fock Hamiltonian \eqref{eq:HFHamiltonian} can be used as the zeroth- H(\lambda)=\sum\limits_{i=1}^{n}\left[-\frac{1}{2}\grad_i^2 - \sum\limits_{k=1}^{N} \frac{Z_k}{|\vb{r}_i-\vb{R}_k|} + (1-\lambda)V_i^{(scf)}+\lambda\sum\limits_{i