update friday

This commit is contained in:
Antoine Marie 2020-07-10 17:05:59 +02:00
parent 67a0317e6e
commit 16ca1fd92d
11 changed files with 496 additions and 403 deletions

View File

@ -49,26 +49,36 @@
\@writefile{toc}{\contentsline {section}{\numberline {2}Perturbation theory}{3}{section.2}\protected@file@percent }
\citation{Moller_1934}
\citation{Gill_1986}
\citation{Gill_1998}
\citation{Gill_1988}
\citation{Handy_1985}
\citation{Leininger_2000}
\citation{Lepetit_1988}
\citation{Gill_1986}
\citation{Gill_1998}
\citation{Gill_1988}
\citation{Handy_1985}
\citation{Leininger_2000}
\citation{Lepetit_1988}
\citation{Gill_1986}
\citation{SzaboBook}
\citation{Fukutome_1981}
\citation{Gill_1988}
\citation{Gill_1988}
\citation{Handy_1985}
\citation{Cremer_1996}
\citation{Cremer_1996}
\@writefile{toc}{\contentsline {section}{\numberline {3}Historical overview}{5}{section.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Behavior of the M{\o }ller-Plesset series}{5}{subsection.3.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces \centering Barriers to homolytic fission of \ce {He2^2+} at MPn/STO-3G level ($n = 1$--$20$).}}{5}{figure.1}\protected@file@percent }
\newlabel{fig:my_label}{{1}{5}{\centering Barriers to homolytic fission of \ce {He2^2+} at MPn/STO-3G level ($n = 1$--$20$)}{figure.1}{}}
\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces \centering Percentage of electron correlation energy recovered and $\expval {S^2}$ for the \ce {H2} molecule as a function of bond length (r,\si {\angstrom }) in the STO-3G basis set.}}{5}{table.1}\protected@file@percent }
\newlabel{tab:my_label}{{1}{5}{\centering Percentage of electron correlation energy recovered and $\expval {S^2}$ for the \ce {H2} molecule as a function of bond length (r,\si {\angstrom }) in the STO-3G basis set}{table.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces \centering Barriers to homolytic fission of \ce {He2^2+} at MPn/STO-3G level ($n = 1$--$20$)\cite {Gill_1986}.}}{5}{figure.1}\protected@file@percent }
\newlabel{fig:my_label}{{1}{5}{\centering Barriers to homolytic fission of \ce {He2^2+} at MPn/STO-3G level ($n = 1$--$20$)\cite {Gill_1986}}{figure.1}{}}
\citation{Olsen_1996}
\citation{Christiansen_1996}
\citation{Olsen_2000}
\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces \centering Percentage of electron correlation energy recovered and $\expval {S^2}$ for the \ce {H2} molecule as a function of bond length (r,\si {\angstrom }) in the STO-3G basis set \cite {Gill_1988}.}}{6}{table.1}\protected@file@percent }
\newlabel{tab:my_label}{{1}{6}{\centering Percentage of electron correlation energy recovered and $\expval {S^2}$ for the \ce {H2} molecule as a function of bond length (r,\si {\angstrom }) in the STO-3G basis set \cite {Gill_1988}}{table.1}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Cases of divergence}{6}{subsection.3.2}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces \centering Correlation contributions for \ce {Ne} and \ce {HF} in the cc-pVTZ-(f/d) $\circ $ and aug-cc-pVDZ $\bullet $ basis sets.}}{6}{figure.2}\protected@file@percent }
\newlabel{fig:my_label}{{2}{6}{\centering Correlation contributions for \ce {Ne} and \ce {HF} in the cc-pVTZ-(f/d) $\circ $ and aug-cc-pVDZ $\bullet $ basis sets}{figure.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}The singularity structure}{6}{subsection.3.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}The physics of quantum phase transition}{7}{subsection.3.3}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {4}The spherium model}{7}{section.4}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}The singularity structure}{7}{subsection.3.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.4}The physics of quantum phase transition}{8}{subsection.3.4}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {4}The spherium model}{8}{section.4}\protected@file@percent }
\bibstyle{unsrt}
\bibdata{Rapport}
\bibcite{Bittner_2012}{1}
@ -100,7 +110,10 @@
\bibcite{Olsen_2000}{27}
\bibcite{Moller_1934}{28}
\bibcite{Gill_1986}{29}
\bibcite{Handy_1985}{30}
\bibcite{Leininger_2000}{31}
\bibcite{SzaboBook}{32}
\bibcite{Fukutome_1981}{33}
\bibcite{Gill_1988}{30}
\bibcite{Handy_1985}{31}
\bibcite{Lepetit_1988}{32}
\bibcite{SzaboBook}{33}
\bibcite{Fukutome_1981}{34}
\bibcite{Cremer_1996}{35}
\bibcite{Christiansen_1996}{36}

View File

@ -3,8 +3,8 @@
\bibitem{Bittner_2012}
S.~Bittner, B.~Dietz, U.~G\"unther, H.~L. Harney, M.~Miski-Oglu, A.~Richter,
and F.~Sch\"afer.
\newblock {{PT Symmetry}} and {{Spontaneous Symmetry Breaking}} in a
{{Microwave Billiard}}.
\newblock Pt symmetry and {{Spontaneous Symmetry Breaking}} in a {{Microwave
Billiard}}.
\newblock {\em Phys. Rev. Lett.}, 108(2):024101, January 2012.
\bibitem{Chong_2011}
@ -134,7 +134,7 @@ D.~R. Yarkony.
\bibitem{Berry_1984}
M.~V. Berry.
\newblock {Quantal Phase Factors Accompanying Adiabatic Changes}.
\newblock Quantal phase factors accompanying adiabatic changes.
\newblock {\em Proc. Royal Soc. A}, 392:45, 1984.
\bibitem{MoiseyevBook}
@ -150,8 +150,8 @@ Jeppe Olsen, Ove Christiansen, Henrik Koch, and Poul Jørgensen.
\bibitem{Olsen_2000}
Jeppe Olsen, Poul Jørgensen, Trygve Helgaker, and Ove Christiansen.
\newblock Divergence in møllerplesset theory: A simple explanation based on
a two-state model.
\newblock Divergence in møller-plesset theory: A simple explanation based on a
two-state model.
\newblock {\em J. Chem. Phys.}, 112(22):9736--9748.
\bibitem{Moller_1934}
@ -164,17 +164,22 @@ Peter M.~W. Gill and Leo Radom.
\newblock Deceptive convergence in møller-plesset perturbation energies.
\newblock {\em Chemical Physics Letters}, 132(1):16--22.
\bibitem{Gill_1988}
Peter M.~W. Gill, John~A. Pople, Leo Radom, and Ross~H. Nobes.
\newblock Why does unrestricted møller-plesset perturbation theory converge so
slowly for spincontaminated wave functions?
\newblock {\em J. Chem. Phys.}, 89(12):7307--7314.
\bibitem{Handy_1985}
N.~C. Handy, P.~J. Knowles, and K.~Somasundram.
\newblock On the convergence of the møller-plesset perturbation series.
\newblock {\em Theoret. Chim. Acta}, 68(1):87--100.
\bibitem{Leininger_2000}
Matthew~L. Leininger, Wesley~D. Allen, Henry~F. Schaefer, and C.~David
Sherrill.
\newblock Is mo/llerplesset perturbation theory a convergent ab initio
method?
\newblock {\em J. Chem. Phys.}, 112(21):9213--9222.
\bibitem{Lepetit_1988}
M.~B. Lepetit, M.~Pélissier, and J.~P. Malrieu.
\newblock Origins of the poor convergence of manybody perturbation theory
expansions from unrestricted hartree-fock zerothorder descriptions.
\newblock {\em J. Chem. Phys.}, 89(2):998--1008.
\bibitem{SzaboBook}
A.~Szabo and N.~S. Ostlund.
@ -183,8 +188,21 @@ A.~Szabo and N.~S. Ostlund.
\bibitem{Fukutome_1981}
Hideo Fukutome.
\newblock Unrestricted hartreefock theory and its applications to molecules
\newblock Unrestricted hartree-fock theory and its applications to molecules
and chemical reactions.
\newblock 20(5):955--1065.
\bibitem{Cremer_1996}
Dieter Cremer and Zhi He.
\newblock Sixth-order møller-plesset perturbation theory on the convergence of
the mpn series.
\newblock 100(15):6173--6188.
\bibitem{Christiansen_1996}
Ove Christiansen, Jeppe Olsen, Poul Jørgensen, Henrik Koch, and Per-Åke
Malmqvist.
\newblock On the inherent divergence in the møller-plesset series. the neon
atom — a test case.
\newblock {\em Chemical Physics Letters}, 261(3):369--378.
\end{thebibliography}

View File

@ -1,5 +1,5 @@
@article{Gill_1986,
Title = {Deceptive convergence in møller-plesset perturbation energies},
Title = {Deceptive convergence in Møller-plesset perturbation energies},
Volume = {132},
doi = {10.1016/0009-2614(86)80686-8},
pages = {16--22},
@ -10,7 +10,7 @@
}
@article{Gill_1988,
Title = {Why does unrestricted Mo/llerPlesset perturbation theory converge so slowly for spincontaminated wave functions?},
Title = {Why does unrestricted Møller-Plesset perturbation theory converge so slowly for spincontaminated wave functions?},
Volume = {89},
doi = {10.1063/1.455312},
pages = {7307--7314},
@ -43,7 +43,7 @@
}
@article{Stillinger_2000,
Title = {Mo/llerPlesset convergence issues in computational quantum chemistry},
Title = {Mo/ller-Plesset convergence issues in computational quantum chemistry},
Volume = {112},
doi = {10.1063/1.481608},
pages = {9711--9715},
@ -65,7 +65,7 @@
}
@article{Olsen_2000,
Title = {Divergence in MøllerPlesset theory: A simple explanation based on a two-state model},
Title = {Divergence in Møller-Plesset theory: A simple explanation based on a two-state model},
Volume = {112},
doi = {10.1063/1.481611},
pages = {9736--9748},
@ -87,7 +87,7 @@
}
@article{Leininger_2000,
Title = {Is Mo/llerPlesset perturbation theory a convergent ab initio method?},
Title = {Is Mo/ller-Plesset perturbation theory a convergent ab initio method?},
Volume = {112},
doi = {10.1063/1.481764},
pages = {9213--9222},
@ -132,7 +132,7 @@
}
@incollection{Goodson_2004,
Title = {Singularity Structure of MøllerPlesset Perturbation Theory},
Title = {Singularity Structure of Møller-Plesset Perturbation Theory},
Volume = {47},
doi = {10.1016/S0065-3276(04)47011-7},
pages = {193--208},
@ -166,7 +166,7 @@
}
@article{Fukutome_1981,
Title = {Unrestricted HartreeFock theory and its applications to molecules and chemical reactions},
Title = {Unrestricted Hartree-Fock theory and its applications to molecules and chemical reactions},
Volume = {20},
doi = {10.1002/qua.560200502},
pages = {955--1065},
@ -196,7 +196,7 @@
Month = jan,
Number = {2},
Pages = {024101},
Title = {{{PT Symmetry}} and {{Spontaneous Symmetry Breaking}} in a {{Microwave Billiard}}},
Title = {PT Symmetry and {{Spontaneous Symmetry Breaking}} in a {{Microwave Billiard}}},
Volume = {108},
Year = {2012},
Bdsk-Url-1 = {https://doi.org/10.1103/PhysRevLett.108.024101},
@ -494,7 +494,6 @@
Date-Added = {2019-01-20 22:03:11 +0100},
Date-Modified = {2019-01-27 20:41:40 +0100},
doi = {10.1038/nphys3864},
File = {/Users/loos/Zotero/storage/ZBT6XXR3/Heiss - Circling exceptional points.pdf},
Journal = {Nat. Phys.},
Pages = {823--824},
Title = {Circling Exceptional Points},
@ -534,7 +533,7 @@
doi = {10.1103/RevModPhys.35.496},
Journal = {Proc. Royal Soc. A},
Pages = {45},
Title = {{Quantal Phase Factors Accompanying Adiabatic Changes}},
Title = {Quantal Phase Factors Accompanying Adiabatic Changes},
Volume = {392},
Year = {1984},
Bdsk-Url-1 = {https://doi.org/10.1103/RevModPhys.35.496},
@ -557,4 +556,35 @@
Keywords = {qmech},
Publisher = {McGraw-Hill},
Title = {Modern quantum chemistry},
Year = {1989}}
Year = {1989},
}
@article{Lepetit_1988,
title = {Origins of the poor convergence of manybody perturbation theory expansions from unrestricted Hartree-Fock zerothorder descriptions},
volume = {89},
doi = {10.1063/1.455170},
pages = {998--1008},
number = {2},
Journal = {J. Chem. Phys.},
author = {Lepetit, M. B. and Pélissier, M. and Malrieu, J. P.},
date = {1988-07-15},
}
@article{Cremer_1996,
title = {Sixth-Order Møller-Plesset Perturbation Theory On the Convergence of the MPn Series},
volume = {100},
doi = {10.1021/jp952815d},
pages = {6173--6188},
number = {15},
journaltitle = {The Journal of Physical Chemistry},
shortjournal = {J. Phys. Chem.},
author = {Cremer, Dieter and He, Zhi},
date = {1996-01-01},
}

View File

@ -3,54 +3,57 @@ Capacity: max_strings=100000, hash_size=100000, hash_prime=85009
The top-level auxiliary file: Rapport.aux
The style file: unsrt.bst
Database file #1: Rapport.bib
Warning--I didn't find a database entry for "Gill_1998"
Warning--empty year in Olsen_1996
Warning--empty year in Olsen_2000
Warning--empty year in Moller_1934
Warning--empty year in Gill_1986
Warning--empty year in Gill_1988
Warning--empty year in Handy_1985
Warning--empty year in Leininger_2000
Warning--empty year in Lepetit_1988
Warning--empty journal in Fukutome_1981
Warning--empty year in Fukutome_1981
You've used 33 entries,
Warning--empty journal in Cremer_1996
Warning--empty year in Cremer_1996
Warning--empty year in Christiansen_1996
You've used 36 entries,
1791 wiz_defined-function locations,
675 strings with 9180 characters,
and the built_in function-call counts, 8153 in all, are:
= -- 654
> -- 442
690 strings with 9763 characters,
and the built_in function-call counts, 8954 in all, are:
= -- 725
> -- 478
< -- 0
+ -- 161
- -- 128
* -- 746
:= -- 1349
add.period$ -- 99
call.type$ -- 33
change.case$ -- 31
+ -- 174
- -- 138
* -- 822
:= -- 1471
add.period$ -- 108
call.type$ -- 36
change.case$ -- 34
chr.to.int$ -- 0
cite$ -- 41
duplicate$ -- 299
empty$ -- 761
format.name$ -- 128
if$ -- 1723
cite$ -- 48
duplicate$ -- 326
empty$ -- 836
format.name$ -- 138
if$ -- 1889
int.to.chr$ -- 0
int.to.str$ -- 33
missing$ -- 35
newline$ -- 168
num.names$ -- 33
pop$ -- 53
int.to.str$ -- 36
missing$ -- 38
newline$ -- 183
num.names$ -- 36
pop$ -- 61
preamble$ -- 1
purify$ -- 0
quote$ -- 0
skip$ -- 100
skip$ -- 110
stack$ -- 0
substring$ -- 632
swap$ -- 32
substring$ -- 716
swap$ -- 34
text.length$ -- 0
text.prefix$ -- 0
top$ -- 0
type$ -- 0
warning$ -- 8
while$ -- 72
width$ -- 35
write$ -- 356
(There were 9 warnings)
warning$ -- 12
while$ -- 81
width$ -- 38
write$ -- 385
(There were 12 warnings)

Binary file not shown.

View File

@ -1,4 +1,4 @@
This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019/Arch Linux) (preloaded format=pdflatex 2020.5.9) 9 JUL 2020 16:17
This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019/Arch Linux) (preloaded format=pdflatex 2020.5.9) 10 JUL 2020 16:42
entering extended mode
restricted \write18 enabled.
%&-line parsing enabled.
@ -46,6 +46,27 @@ File: pdftex.def 2018/01/08 v1.0l Graphics/color driver for pdftex
\Gin@req@height=\dimen103
\Gin@req@width=\dimen104
)
(/usr/share/texmf-dist/tex/latex/tools/tabularx.sty
Package: tabularx 2016/02/03 v2.11b `tabularx' package (DPC)
(/usr/share/texmf-dist/tex/latex/tools/array.sty
Package: array 2019/08/31 v2.4l Tabular extension package (FMi)
\col@sep=\dimen105
\ar@mcellbox=\box27
\extrarowheight=\dimen106
\NC@list=\toks15
\extratabsurround=\skip43
\backup@length=\skip44
\ar@cellbox=\box28
)
\TX@col@width=\dimen107
\TX@old@table=\dimen108
\TX@old@col=\dimen109
\TX@target=\dimen110
\TX@delta=\dimen111
\TX@cols=\count88
\TX@ftn=\toks16
)
(/usr/share/texmf-dist/tex/latex/physics/physics.sty
Package: physics
@ -55,155 +76,155 @@ Package: expl3 2019-10-28 L3 programming layer (loader)
(/usr/share/texmf-dist/tex/latex/l3kernel/expl3-code.tex
Package: expl3 2019-10-28 L3 programming layer (code)
\c_max_int=\count88
\l_tmpa_int=\count89
\l_tmpb_int=\count90
\g_tmpa_int=\count91
\g_tmpb_int=\count92
\l__seq_internal_a_int=\count93
\l__seq_internal_b_int=\count94
\g__kernel_prg_map_int=\count95
\c__ior_term_noprompt_ior=\count96
\c_log_iow=\count97
\l_iow_line_count_int=\count98
\l__iow_line_target_int=\count99
\l__iow_one_indent_int=\count100
\l__iow_indent_int=\count101
\c_zero_dim=\dimen105
\c_max_dim=\dimen106
\l_tmpa_dim=\dimen107
\l_tmpb_dim=\dimen108
\g_tmpa_dim=\dimen109
\g_tmpb_dim=\dimen110
\c_zero_skip=\skip43
\c_max_skip=\skip44
\l_tmpa_skip=\skip45
\l_tmpb_skip=\skip46
\g_tmpa_skip=\skip47
\g_tmpb_skip=\skip48
\c_max_int=\count89
\l_tmpa_int=\count90
\l_tmpb_int=\count91
\g_tmpa_int=\count92
\g_tmpb_int=\count93
\l__seq_internal_a_int=\count94
\l__seq_internal_b_int=\count95
\g__kernel_prg_map_int=\count96
\c__ior_term_noprompt_ior=\count97
\c_log_iow=\count98
\l_iow_line_count_int=\count99
\l__iow_line_target_int=\count100
\l__iow_one_indent_int=\count101
\l__iow_indent_int=\count102
\c_zero_dim=\dimen112
\c_max_dim=\dimen113
\l_tmpa_dim=\dimen114
\l_tmpb_dim=\dimen115
\g_tmpa_dim=\dimen116
\g_tmpb_dim=\dimen117
\c_zero_skip=\skip45
\c_max_skip=\skip46
\l_tmpa_skip=\skip47
\l_tmpb_skip=\skip48
\g_tmpa_skip=\skip49
\g_tmpb_skip=\skip50
\c_zero_muskip=\muskip10
\c_max_muskip=\muskip11
\l_tmpa_muskip=\muskip12
\l_tmpb_muskip=\muskip13
\g_tmpa_muskip=\muskip14
\g_tmpb_muskip=\muskip15
\l_keys_choice_int=\count102
\l__intarray_loop_int=\count103
\c__intarray_sp_dim=\dimen111
\g__intarray_font_int=\count104
\c__fp_leading_shift_int=\count105
\c__fp_middle_shift_int=\count106
\c__fp_trailing_shift_int=\count107
\c__fp_big_leading_shift_int=\count108
\c__fp_big_middle_shift_int=\count109
\c__fp_big_trailing_shift_int=\count110
\c__fp_Bigg_leading_shift_int=\count111
\c__fp_Bigg_middle_shift_int=\count112
\c__fp_Bigg_trailing_shift_int=\count113
\c__kernel_randint_max_int=\count114
\g__fp_array_int=\count115
\l__fp_array_loop_int=\count116
\l__sort_length_int=\count117
\l__sort_min_int=\count118
\l__sort_top_int=\count119
\l__sort_max_int=\count120
\l__sort_true_max_int=\count121
\l__sort_block_int=\count122
\l__sort_begin_int=\count123
\l__sort_end_int=\count124
\l__sort_A_int=\count125
\l__sort_B_int=\count126
\l__sort_C_int=\count127
\l__str_internal_int=\count128
\c__str_replacement_char_int=\count129
\l__tl_analysis_normal_int=\count130
\l__tl_analysis_index_int=\count131
\l__tl_analysis_nesting_int=\count132
\l__tl_analysis_type_int=\count133
\l__regex_internal_a_int=\count134
\l__regex_internal_b_int=\count135
\l__regex_internal_c_int=\count136
\l__regex_balance_int=\count137
\l__regex_group_level_int=\count138
\l__regex_mode_int=\count139
\c__regex_cs_in_class_mode_int=\count140
\c__regex_cs_mode_int=\count141
\l__regex_catcodes_int=\count142
\l__regex_default_catcodes_int=\count143
\c__regex_catcode_D_int=\count144
\c__regex_catcode_S_int=\count145
\c__regex_catcode_L_int=\count146
\c__regex_catcode_O_int=\count147
\c__regex_catcode_A_int=\count148
\c__regex_all_catcodes_int=\count149
\l__regex_show_lines_int=\count150
\l__regex_min_state_int=\count151
\l__regex_max_state_int=\count152
\l__regex_left_state_int=\count153
\l__regex_right_state_int=\count154
\l__regex_capturing_group_int=\count155
\l__regex_min_pos_int=\count156
\l__regex_max_pos_int=\count157
\l__regex_curr_pos_int=\count158
\l__regex_start_pos_int=\count159
\l__regex_success_pos_int=\count160
\l__regex_curr_char_int=\count161
\l__regex_curr_catcode_int=\count162
\l__regex_last_char_int=\count163
\l__regex_case_changed_char_int=\count164
\l__regex_curr_state_int=\count165
\l__regex_step_int=\count166
\l__regex_min_active_int=\count167
\l__regex_max_active_int=\count168
\l__regex_replacement_csnames_int=\count169
\l__regex_match_count_int=\count170
\l__regex_min_submatch_int=\count171
\l__regex_submatch_int=\count172
\l__regex_zeroth_submatch_int=\count173
\g__regex_trace_regex_int=\count174
\c_empty_box=\box27
\l_tmpa_box=\box28
\l_tmpb_box=\box29
\g_tmpa_box=\box30
\g_tmpb_box=\box31
\l__box_top_dim=\dimen112
\l__box_bottom_dim=\dimen113
\l__box_left_dim=\dimen114
\l__box_right_dim=\dimen115
\l__box_top_new_dim=\dimen116
\l__box_bottom_new_dim=\dimen117
\l__box_left_new_dim=\dimen118
\l__box_right_new_dim=\dimen119
\l__box_internal_box=\box32
\l__coffin_internal_box=\box33
\l__coffin_internal_dim=\dimen120
\l__coffin_offset_x_dim=\dimen121
\l__coffin_offset_y_dim=\dimen122
\l__coffin_x_dim=\dimen123
\l__coffin_y_dim=\dimen124
\l__coffin_x_prime_dim=\dimen125
\l__coffin_y_prime_dim=\dimen126
\c_empty_coffin=\box34
\l__coffin_aligned_coffin=\box35
\l__coffin_aligned_internal_coffin=\box36
\l_tmpa_coffin=\box37
\l_tmpb_coffin=\box38
\g_tmpa_coffin=\box39
\g_tmpb_coffin=\box40
\l__coffin_bounding_shift_dim=\dimen127
\l__coffin_left_corner_dim=\dimen128
\l__coffin_right_corner_dim=\dimen129
\l__coffin_bottom_corner_dim=\dimen130
\l__coffin_top_corner_dim=\dimen131
\l__coffin_scaled_total_height_dim=\dimen132
\l__coffin_scaled_width_dim=\dimen133
\c__coffin_empty_coffin=\box41
\l__coffin_display_coffin=\box42
\l__coffin_display_coord_coffin=\box43
\l__coffin_display_pole_coffin=\box44
\l__coffin_display_offset_dim=\dimen134
\l__coffin_display_x_dim=\dimen135
\l__coffin_display_y_dim=\dimen136
\l_keys_choice_int=\count103
\l__intarray_loop_int=\count104
\c__intarray_sp_dim=\dimen118
\g__intarray_font_int=\count105
\c__fp_leading_shift_int=\count106
\c__fp_middle_shift_int=\count107
\c__fp_trailing_shift_int=\count108
\c__fp_big_leading_shift_int=\count109
\c__fp_big_middle_shift_int=\count110
\c__fp_big_trailing_shift_int=\count111
\c__fp_Bigg_leading_shift_int=\count112
\c__fp_Bigg_middle_shift_int=\count113
\c__fp_Bigg_trailing_shift_int=\count114
\c__kernel_randint_max_int=\count115
\g__fp_array_int=\count116
\l__fp_array_loop_int=\count117
\l__sort_length_int=\count118
\l__sort_min_int=\count119
\l__sort_top_int=\count120
\l__sort_max_int=\count121
\l__sort_true_max_int=\count122
\l__sort_block_int=\count123
\l__sort_begin_int=\count124
\l__sort_end_int=\count125
\l__sort_A_int=\count126
\l__sort_B_int=\count127
\l__sort_C_int=\count128
\l__str_internal_int=\count129
\c__str_replacement_char_int=\count130
\l__tl_analysis_normal_int=\count131
\l__tl_analysis_index_int=\count132
\l__tl_analysis_nesting_int=\count133
\l__tl_analysis_type_int=\count134
\l__regex_internal_a_int=\count135
\l__regex_internal_b_int=\count136
\l__regex_internal_c_int=\count137
\l__regex_balance_int=\count138
\l__regex_group_level_int=\count139
\l__regex_mode_int=\count140
\c__regex_cs_in_class_mode_int=\count141
\c__regex_cs_mode_int=\count142
\l__regex_catcodes_int=\count143
\l__regex_default_catcodes_int=\count144
\c__regex_catcode_D_int=\count145
\c__regex_catcode_S_int=\count146
\c__regex_catcode_L_int=\count147
\c__regex_catcode_O_int=\count148
\c__regex_catcode_A_int=\count149
\c__regex_all_catcodes_int=\count150
\l__regex_show_lines_int=\count151
\l__regex_min_state_int=\count152
\l__regex_max_state_int=\count153
\l__regex_left_state_int=\count154
\l__regex_right_state_int=\count155
\l__regex_capturing_group_int=\count156
\l__regex_min_pos_int=\count157
\l__regex_max_pos_int=\count158
\l__regex_curr_pos_int=\count159
\l__regex_start_pos_int=\count160
\l__regex_success_pos_int=\count161
\l__regex_curr_char_int=\count162
\l__regex_curr_catcode_int=\count163
\l__regex_last_char_int=\count164
\l__regex_case_changed_char_int=\count165
\l__regex_curr_state_int=\count166
\l__regex_step_int=\count167
\l__regex_min_active_int=\count168
\l__regex_max_active_int=\count169
\l__regex_replacement_csnames_int=\count170
\l__regex_match_count_int=\count171
\l__regex_min_submatch_int=\count172
\l__regex_submatch_int=\count173
\l__regex_zeroth_submatch_int=\count174
\g__regex_trace_regex_int=\count175
\c_empty_box=\box29
\l_tmpa_box=\box30
\l_tmpb_box=\box31
\g_tmpa_box=\box32
\g_tmpb_box=\box33
\l__box_top_dim=\dimen119
\l__box_bottom_dim=\dimen120
\l__box_left_dim=\dimen121
\l__box_right_dim=\dimen122
\l__box_top_new_dim=\dimen123
\l__box_bottom_new_dim=\dimen124
\l__box_left_new_dim=\dimen125
\l__box_right_new_dim=\dimen126
\l__box_internal_box=\box34
\l__coffin_internal_box=\box35
\l__coffin_internal_dim=\dimen127
\l__coffin_offset_x_dim=\dimen128
\l__coffin_offset_y_dim=\dimen129
\l__coffin_x_dim=\dimen130
\l__coffin_y_dim=\dimen131
\l__coffin_x_prime_dim=\dimen132
\l__coffin_y_prime_dim=\dimen133
\c_empty_coffin=\box36
\l__coffin_aligned_coffin=\box37
\l__coffin_aligned_internal_coffin=\box38
\l_tmpa_coffin=\box39
\l_tmpb_coffin=\box40
\g_tmpa_coffin=\box41
\g_tmpb_coffin=\box42
\l__coffin_bounding_shift_dim=\dimen134
\l__coffin_left_corner_dim=\dimen135
\l__coffin_right_corner_dim=\dimen136
\l__coffin_bottom_corner_dim=\dimen137
\l__coffin_top_corner_dim=\dimen138
\l__coffin_scaled_total_height_dim=\dimen139
\l__coffin_scaled_width_dim=\dimen140
\c__coffin_empty_coffin=\box43
\l__coffin_display_coffin=\box44
\l__coffin_display_coord_coffin=\box45
\l__coffin_display_pole_coffin=\box46
\l__coffin_display_offset_dim=\dimen141
\l__coffin_display_x_dim=\dimen142
\l__coffin_display_y_dim=\dimen143
\g__char_data_ior=\read1
(/usr/share/texmf-dist/tex/latex/l3kernel/l3deprecation.def
@ -211,18 +232,18 @@ File: l3deprecation.def 2019-04-06 v L3 Deprecated functions
))
(/usr/share/texmf-dist/tex/latex/l3backend/l3backend-pdfmode.def
File: l3backend-pdfmode.def 2019-04-06 L3 backend support: PDF mode
\l__kernel_color_stack_int=\count175
\l__pdf_internal_box=\box45
\l__kernel_color_stack_int=\count176
\l__pdf_internal_box=\box47
))
Package: xparse 2019-10-11 L3 Experimental document command parser
\l__xparse_current_arg_int=\count176
\g__xparse_grabber_int=\count177
\l__xparse_m_args_int=\count178
\l__xparse_v_nesting_int=\count179
\l__xparse_current_arg_int=\count177
\g__xparse_grabber_int=\count178
\l__xparse_m_args_int=\count179
\l__xparse_v_nesting_int=\count180
)
(/usr/share/texmf-dist/tex/latex/amsmath/amsmath.sty
Package: amsmath 2019/04/01 v2.17c AMS math features
\@mathmargin=\skip49
\@mathmargin=\skip51
For additional information on amsmath, use the `?' option.
(/usr/share/texmf-dist/tex/latex/amsmath/amstext.sty
@ -230,51 +251,51 @@ Package: amstext 2000/06/29 v2.01 AMS text
(/usr/share/texmf-dist/tex/latex/amsmath/amsgen.sty
File: amsgen.sty 1999/11/30 v2.0 generic functions
\@emptytoks=\toks15
\ex@=\dimen137
\@emptytoks=\toks17
\ex@=\dimen144
))
(/usr/share/texmf-dist/tex/latex/amsmath/amsbsy.sty
Package: amsbsy 1999/11/29 v1.2d Bold Symbols
\pmbraise@=\dimen138
\pmbraise@=\dimen145
)
(/usr/share/texmf-dist/tex/latex/amsmath/amsopn.sty
Package: amsopn 2016/03/08 v2.02 operator names
)
\inf@bad=\count180
\inf@bad=\count181
LaTeX Info: Redefining \frac on input line 227.
\uproot@=\count181
\leftroot@=\count182
\uproot@=\count182
\leftroot@=\count183
LaTeX Info: Redefining \overline on input line 389.
\classnum@=\count183
\DOTSCASE@=\count184
\classnum@=\count184
\DOTSCASE@=\count185
LaTeX Info: Redefining \ldots on input line 486.
LaTeX Info: Redefining \dots on input line 489.
LaTeX Info: Redefining \cdots on input line 610.
\Mathstrutbox@=\box46
\strutbox@=\box47
\big@size=\dimen139
\Mathstrutbox@=\box48
\strutbox@=\box49
\big@size=\dimen146
LaTeX Font Info: Redeclaring font encoding OML on input line 733.
LaTeX Font Info: Redeclaring font encoding OMS on input line 734.
\macc@depth=\count185
\c@MaxMatrixCols=\count186
\macc@depth=\count186
\c@MaxMatrixCols=\count187
\dotsspace@=\muskip16
\c@parentequation=\count187
\dspbrk@lvl=\count188
\tag@help=\toks16
\row@=\count189
\column@=\count190
\maxfields@=\count191
\andhelp@=\toks17
\eqnshift@=\dimen140
\alignsep@=\dimen141
\tagshift@=\dimen142
\tagwidth@=\dimen143
\totwidth@=\dimen144
\lineht@=\dimen145
\@envbody=\toks18
\multlinegap=\skip50
\multlinetaggap=\skip51
\mathdisplay@stack=\toks19
\c@parentequation=\count188
\dspbrk@lvl=\count189
\tag@help=\toks18
\row@=\count190
\column@=\count191
\maxfields@=\count192
\andhelp@=\toks19
\eqnshift@=\dimen147
\alignsep@=\dimen148
\tagshift@=\dimen149
\tagwidth@=\dimen150
\totwidth@=\dimen151
\lineht@=\dimen152
\@envbody=\toks20
\multlinegap=\skip52
\multlinetaggap=\skip53
\mathdisplay@stack=\toks21
LaTeX Info: Redefining \[ on input line 2855.
LaTeX Info: Redefining \] on input line 2856.
))
@ -291,8 +312,8 @@ LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold'
))
(/usr/share/texmf-dist/tex/latex/base/inputenc.sty
Package: inputenc 2018/08/11 v1.3c Input encoding file
\inpenc@prehook=\toks20
\inpenc@posthook=\toks21
\inpenc@prehook=\toks22
\inpenc@posthook=\toks23
)
(/usr/share/texmf-dist/tex/latex/base/fontenc.sty
Package: fontenc 2018/08/11 v2.0j Standard LaTeX package
@ -301,6 +322,8 @@ Package: fontenc 2018/08/11 v2.0j Standard LaTeX package
File: t1enc.def 2018/08/11 v2.0j Standard LaTeX file
LaTeX Font Info: Redeclaring font encoding T1 on input line 48.
))
defining Unicode char U+2212 (decimal 8722)
(/usr/share/texmf-dist/tex/generic/babel/babel.sty
Package: babel 2019/10/15 3.35 The Babel package
@ -312,37 +335,16 @@ Language: english 2017/06/06 v3.3r English support from the babel system
(/usr/share/texmf-dist/tex/generic/babel/babel.def
File: babel.def 2019/10/15 3.35 Babel common definitions
\babel@savecnt=\count192
\U@D=\dimen146
\babel@savecnt=\count193
\U@D=\dimen153
(/usr/share/texmf-dist/tex/generic/babel/txtbabel.def)
\bbl@dirlevel=\count193
\bbl@dirlevel=\count194
)
\l@canadian = a dialect from \language\l@american
\l@australian = a dialect from \language\l@british
\l@newzealand = a dialect from \language\l@british
))
(/usr/share/texmf-dist/tex/latex/tools/tabularx.sty
Package: tabularx 2016/02/03 v2.11b `tabularx' package (DPC)
(/usr/share/texmf-dist/tex/latex/tools/array.sty
Package: array 2019/08/31 v2.4l Tabular extension package (FMi)
\col@sep=\dimen147
\ar@mcellbox=\box48
\extrarowheight=\dimen148
\NC@list=\toks22
\extratabsurround=\skip52
\backup@length=\skip53
\ar@cellbox=\box49
)
\TX@col@width=\dimen149
\TX@old@table=\dimen150
\TX@old@col=\dimen151
\TX@target=\dimen152
\TX@delta=\dimen153
\TX@cols=\count194
\TX@ftn=\toks23
)
(/usr/share/texmf-dist/tex/latex/siunitx/siunitx.sty
Package: siunitx 2019/10/10 v2.7t A comprehensive (SI) units package
@ -432,13 +434,22 @@ stry (CN)
\mhchem@option@minustextsidebearingleft=\dimen170
\mhchem@option@minustextsidebearingright=\dimen171
)
(/usr/share/texmf-dist/tex/latex/graphics/color.sty
Package: color 2016/07/10 v1.1e Standard LaTeX Color (DPC)
(/usr/share/texmf-dist/tex/latex/xcolor/xcolor.sty
Package: xcolor 2016/05/11 v2.12 LaTeX color extensions (UK)
(/usr/share/texmf-dist/tex/latex/graphics-cfg/color.cfg
File: color.cfg 2016/01/02 v1.6 sample color configuration
)
Package color Info: Driver file: pdftex.def on input line 147.
Package xcolor Info: Driver file: pdftex.def on input line 225.
Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1348.
Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1352.
Package xcolor Info: Model `RGB' extended on input line 1364.
Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1366.
Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1367.
Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1368.
Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1369.
Package xcolor Info: Model `Gray' substituted by `gray' on input line 1370.
Package xcolor Info: Model `wave' substituted by `hsb' on input line 1371.
)
(/usr/share/texmf-dist/tex/latex/hyperref/hyperref.sty
Package: hyperref 2019/09/28 v7.00a Hypertext links for LaTeX
@ -573,20 +584,20 @@ LaTeX Warning: Label `fig:my_label' multiply defined.
)
\openout1 = `Rapport.aux'.
LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 62.
LaTeX Font Info: ... okay on input line 62.
LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 62.
LaTeX Font Info: ... okay on input line 62.
LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 62.
LaTeX Font Info: ... okay on input line 62.
LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 62.
LaTeX Font Info: ... okay on input line 62.
LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 62.
LaTeX Font Info: ... okay on input line 62.
LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 62.
LaTeX Font Info: ... okay on input line 62.
LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 62.
LaTeX Font Info: ... okay on input line 62.
LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 64.
LaTeX Font Info: ... okay on input line 64.
LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 64.
LaTeX Font Info: ... okay on input line 64.
LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 64.
LaTeX Font Info: ... okay on input line 64.
LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 64.
LaTeX Font Info: ... okay on input line 64.
LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 64.
LaTeX Font Info: ... okay on input line 64.
LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 64.
LaTeX Font Info: ... okay on input line 64.
LaTeX Font Info: Checking defaults for PD1/pdf/m/n on input line 64.
LaTeX Font Info: ... okay on input line 64.
(/usr/share/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
[Loading MPS to PDF converter (version 2006.09.02).]
\scratchcounter=\count295
@ -702,10 +713,10 @@ Dictionary: translator-basic-dictionary, Language: English
File: siunitx-abbreviations.cfg 2017/11/26 v2.7k siunitx: Abbreviated units
)
Package chemgreek Info: Activating mapping `default' on line 62.
Package chemgreek Info: Activating mapping `default' on line 64.
\AtBeginShipoutBox=\box58
Package hyperref Info: Link coloring ON on input line 62.
Package hyperref Info: Link coloring ON on input line 64.
(/usr/share/texmf-dist/tex/latex/hyperref/nameref.sty
Package: nameref 2019/09/16 v2.46 Cross-referencing by name of section
@ -715,19 +726,19 @@ Package: gettitlestring 2016/05/16 v1.5 Cleanup title references (HO)
)
\c@section@level=\count301
)
LaTeX Info: Redefining \ref on input line 62.
LaTeX Info: Redefining \pageref on input line 62.
LaTeX Info: Redefining \nameref on input line 62.
LaTeX Info: Redefining \ref on input line 64.
LaTeX Info: Redefining \pageref on input line 64.
LaTeX Info: Redefining \nameref on input line 64.
(./Rapport.out) (./Rapport.out)
\@outlinefile=\write3
\openout3 = `Rapport.out'.
LaTeX Font Info: Trying to load font information for U+msa on input line 62.
LaTeX Font Info: Trying to load font information for U+msa on input line 64.
(/usr/share/texmf-dist/tex/latex/amsfonts/umsa.fd
File: umsa.fd 2013/01/14 v3.01 AMS symbols A
)
LaTeX Font Info: Trying to load font information for U+msb on input line 62.
LaTeX Font Info: Trying to load font information for U+msb on input line 64.
(/usr/share/texmf-dist/tex/latex/amsfonts/umsb.fd
@ -741,12 +752,12 @@ Package epstopdf Info: Source file: <logoens.eps>
(epstopdf) size: 4097 bytes
(epstopdf) Command: <repstopdf --outfile=logoens-eps-converted-to.p
df logoens.eps>
(epstopdf) \includegraphics on input line 70.
(epstopdf) \includegraphics on input line 72.
Package epstopdf Info: Output file is already uptodate.
<logoens-eps-converted-to.pdf, id=32, 263.98625pt x 97.36375pt>
<logoens-eps-converted-to.pdf, id=36, 263.98625pt x 97.36375pt>
File: logoens-eps-converted-to.pdf Graphic file (type pdf)
<use logoens-eps-converted-to.pdf>
Package pdftex.def Info: logoens-eps-converted-to.pdf used on input line 70.
Package pdftex.def Info: logoens-eps-converted-to.pdf used on input line 72.
(pdftex.def) Requested size: 154.28833pt x 56.9055pt.
Package epstopdf Info: Source file: <logoucbl.eps>
(epstopdf) date: 2010-04-12 19:14:50
@ -756,12 +767,12 @@ Package epstopdf Info: Source file: <logoucbl.eps>
(epstopdf) size: 25752 bytes
(epstopdf) Command: <repstopdf --outfile=logoucbl-eps-converted-to.
pdf logoucbl.eps>
(epstopdf) \includegraphics on input line 70.
(epstopdf) \includegraphics on input line 72.
Package epstopdf Info: Output file is already uptodate.
<logoucbl-eps-converted-to.pdf, id=33, 185.69376pt x 134.5025pt>
<logoucbl-eps-converted-to.pdf, id=37, 185.69376pt x 134.5025pt>
File: logoucbl-eps-converted-to.pdf Graphic file (type pdf)
<use logoucbl-eps-converted-to.pdf>
Package pdftex.def Info: logoucbl-eps-converted-to.pdf used on input line 70.
Package pdftex.def Info: logoucbl-eps-converted-to.pdf used on input line 72.
(pdftex.def) Requested size: 78.5632pt x 56.9055pt.
Package epstopdf Info: Source file: <logounivlyon.eps>
(epstopdf) date: 2010-04-12 19:19:02
@ -771,24 +782,24 @@ Package epstopdf Info: Source file: <logounivlyon.eps>
(epstopdf) size: 4678 bytes
(epstopdf) Command: <repstopdf --outfile=logounivlyon-eps-converted
-to.pdf logounivlyon.eps>
(epstopdf) \includegraphics on input line 70.
(epstopdf) \includegraphics on input line 72.
Package epstopdf Info: Output file is already uptodate.
<logounivlyon-eps-converted-to.pdf, id=34, 301.125pt x 135.50626pt>
<logounivlyon-eps-converted-to.pdf, id=38, 301.125pt x 135.50626pt>
File: logounivlyon-eps-converted-to.pdf Graphic file (type pdf)
<use logounivlyon-eps-converted-to.pdf>
Package pdftex.def Info: logounivlyon-eps-converted-to.pdf used on input line
70.
72.
(pdftex.def) Requested size: 126.45784pt x 56.9055pt.
LaTeX Font Info: Trying to load font information for T1+cmtt on input line 1
15.
19.
(/usr/share/texmf-dist/tex/latex/base/t1cmtt.fd
File: t1cmtt.fd 2014/09/29 v2.5h Standard LaTeX font definitions
)
<LCPQ_logo.pdf, id=37, 370.38374pt x 168.63pt>
<LCPQ_logo.pdf, id=41, 370.38374pt x 168.63pt>
File: LCPQ_logo.pdf Graphic file (type pdf)
<use LCPQ_logo.pdf>
Package pdftex.def Info: LCPQ_logo.pdf used on input line 118.
Package pdftex.def Info: LCPQ_logo.pdf used on input line 122.
(pdftex.def) Requested size: 124.98499pt x 56.9055pt.
Package epstopdf Info: Source file: <LogoCNRS.eps>
(epstopdf) date: 2009-03-09 14:15:18
@ -798,18 +809,18 @@ Package epstopdf Info: Source file: <LogoCNRS.eps>
(epstopdf) size: 21135 bytes
(epstopdf) Command: <repstopdf --outfile=LogoCNRS-eps-converted-to.
pdf LogoCNRS.eps>
(epstopdf) \includegraphics on input line 118.
(epstopdf) \includegraphics on input line 122.
Package epstopdf Info: Output file is already uptodate.
<LogoCNRS-eps-converted-to.pdf, id=38, 57.21375pt x 57.21375pt>
<LogoCNRS-eps-converted-to.pdf, id=42, 57.21375pt x 57.21375pt>
File: LogoCNRS-eps-converted-to.pdf Graphic file (type pdf)
<use LogoCNRS-eps-converted-to.pdf>
Package pdftex.def Info: LogoCNRS-eps-converted-to.pdf used on input line 118.
Package pdftex.def Info: LogoCNRS-eps-converted-to.pdf used on input line 122.
(pdftex.def) Requested size: 56.90804pt x 56.9055pt.
<UPS_logo.jpg, id=39, 592.1322pt x 199.4652pt>
<UPS_logo.jpg, id=43, 592.1322pt x 199.4652pt>
File: UPS_logo.jpg Graphic file (type jpg)
<use UPS_logo.jpg>
Package pdftex.def Info: UPS_logo.jpg used on input line 118.
Package pdftex.def Info: UPS_logo.jpg used on input line 122.
(pdftex.def) Requested size: 168.93109pt x 56.9055pt.
[1
@ -820,81 +831,80 @@ Package pdftex.def Info: UPS_logo.jpg used on input line 118.
\tf@toc=\write4
\openout4 = `Rapport.toc'.
[2] [3]
LaTeX Warning: Citation `Gill_1998' on page 4 undefined on input line 195.
LaTeX Warning: Citation `Gill_1998' on page 4 undefined on input line 203.
[4]
<gill1986.png, id=177, 328.22626pt x 329.23pt>
[2] [3] [4]
<gill1986.png, id=186, 328.22626pt x 329.23pt>
File: gill1986.png Graphic file (type png)
<use gill1986.png>
Package pdftex.def Info: gill1986.png used on input line 207.
Package pdftex.def Info: gill1986.png used on input line 212.
(pdftex.def) Requested size: 217.6621pt x 218.32733pt.
[5 <./gill1986.png>]
<Nedivergence.png, id=190, 329.23pt x 234.8775pt>
LaTeX Warning: `!h' float specifier changed to `!ht'.
[5 <./gill1986.png>]
<Nedivergence.png, id=207, 329.23pt x 234.8775pt>
File: Nedivergence.png Graphic file (type png)
<use Nedivergence.png>
Package pdftex.def Info: Nedivergence.png used on input line 235.
Package pdftex.def Info: Nedivergence.png used on input line 246.
(pdftex.def) Requested size: 219.35216pt x 156.49014pt.
<HFdivergence.png, id=191, 322.20375pt x 231.86626pt>
<HFdivergence.png, id=208, 322.20375pt x 231.86626pt>
File: HFdivergence.png Graphic file (type png)
<use HFdivergence.png>
Package pdftex.def Info: HFdivergence.png used on input line 237.
Package pdftex.def Info: HFdivergence.png used on input line 248.
(pdftex.def) Requested size: 217.4634pt x 156.49014pt.
[6 <./Nedivergence.png> <./HFdivergence.png>] [7]
(./Rapport.bbl [8])
Package atveryend Info: Empty hook `BeforeClearDocument' on input line 288.
[9]
Package atveryend Info: Empty hook `AfterLastShipout' on input line 288.
[6 <./Nedivergence.png> <./HFdivergence.png>] [7] [8]
(./Rapport.bbl [9])
Package atveryend Info: Empty hook `BeforeClearDocument' on input line 305.
[10]
Package atveryend Info: Empty hook `AfterLastShipout' on input line 305.
(./Rapport.aux)
Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 288.
Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 288.
Package atveryend Info: Executing hook `AtVeryEndDocument' on input line 305.
Package atveryend Info: Executing hook `AtEndAfterFileList' on input line 305.
Package rerunfilecheck Info: File `Rapport.out' has not changed.
(rerunfilecheck) Checksum: 55E6D89818A61C016BC75B6B77DD8075;459.
LaTeX Warning: There were undefined references.
(rerunfilecheck) Checksum: 88987B6FDBFC32AB6DEBEB04F7925937;527.
LaTeX Warning: There were multiply-defined labels.
Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 288.
)
Here is how much of TeX's memory you used:
21296 strings out of 492167
393258 string characters out of 6131559
482619 words of memory out of 5000000
25403 multiletter control sequences out of 15000+600000
555565 words of font info for 81 fonts, out of 8000000 for 9000
1141 hyphenation exceptions out of 8191
52i,12n,71p,1517b,973s stack positions out of 5000i,500n,10000p,200000b,80000s
{/usr/share/texmf-dist/fonts/enc/dvips/cm-super/cm-super-t1.enc}</usr/share/t
exmf-dist/fonts/type1/public/amsfonts/cm/cmbsy10.pfb></usr/share/texmf-dist/fon
ts/type1/public/amsfonts/cm/cmbx10.pfb></usr/share/texmf-dist/fonts/type1/publi
c/amsfonts/cm/cmex10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/
cmmi10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi8.pfb></us
r/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr/share/texmf-d
ist/fonts/type1/public/amsfonts/cm/cmr8.pfb></usr/share/texmf-dist/fonts/type1/
public/amsfonts/cm/cmsy10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfont
s/cm/cmsy8.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfbx1000.pfb>
</usr/share/texmf-dist/fonts/type1/public/cm-super/sfbx1095.pfb></usr/share/tex
mf-dist/fonts/type1/public/cm-super/sfbx1200.pfb></usr/share/texmf-dist/fonts/t
ype1/public/cm-super/sfbx1440.pfb></usr/share/texmf-dist/fonts/type1/public/cm-
super/sfbx2074.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfcc0800.
pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfcc1095.pfb></usr/share
/texmf-dist/fonts/type1/public/cm-super/sfrm0600.pfb></usr/share/texmf-dist/fon
ts/type1/public/cm-super/sfrm0800.pfb></usr/share/texmf-dist/fonts/type1/public
/cm-super/sfrm1000.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfrm1
095.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfti1095.pfb></usr/s
hare/texmf-dist/fonts/type1/public/cm-super/sftt1095.pfb></usr/share/texmf-dist
/fonts/type1/public/cm-super/sfxc1095.pfb>
Output written on Rapport.pdf (9 pages, 971965 bytes).
PDF statistics:
306 PDF objects out of 1000 (max. 8388607)
255 compressed objects within 3 object streams
66 named destinations out of 1000 (max. 500000)
102 words of extra memory for PDF output out of 10000 (max. 10000000)
Package atveryend Info: Empty hook `AtVeryVeryEnd' on input line 305.
)
(\end occurred inside a group at level 1)
### simple group (level 1) entered at line 207 ({)
### bottom level
Here is how much of TeX's memory you used:
21712 strings out of 492167
397847 string characters out of 6131559
492401 words of memory out of 5000000
25811 multiletter control sequences out of 15000+600000
557560 words of font info for 90 fonts, out of 8000000 for 9000
1141 hyphenation exceptions out of 8191
52i,12n,71p,1516b,994s stack positions out of 5000i,500n,10000p,200000b,80000s
{/usr/share/texmf-dist/fonts/enc/dvips/cm-super/cm-super-t1.enc
}</usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmbsy10.pfb></usr/share/
texmf-dist/fonts/type1/public/amsfonts/cm/cmbx10.pfb></usr/share/texmf-dist/fon
ts/type1/public/amsfonts/cm/cmex10.pfb></usr/share/texmf-dist/fonts/type1/publi
c/amsfonts/cm/cmmi10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/
cmmi8.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr
/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr8.pfb></usr/share/texmf-dis
t/fonts/type1/public/amsfonts/cm/cmsy10.pfb></usr/share/texmf-dist/fonts/type1/
public/amsfonts/cm/cmsy8.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super
/sfbx1000.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfbx1095.pfb><
/usr/share/texmf-dist/fonts/type1/public/cm-super/sfbx1200.pfb></usr/share/texm
f-dist/fonts/type1/public/cm-super/sfbx1440.pfb></usr/share/texmf-dist/fonts/ty
pe1/public/cm-super/sfbx2074.pfb></usr/share/texmf-dist/fonts/type1/public/cm-s
uper/sfcc0800.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfcc1095.p
fb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfrm0600.pfb></usr/share/
texmf-dist/fonts/type1/public/cm-super/sfrm0800.pfb></usr/share/texmf-dist/font
s/type1/public/cm-super/sfrm1000.pfb></usr/share/texmf-dist/fonts/type1/public/
cm-super/sfrm1095.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfti10
00.pfb></usr/share/texmf-dist/fonts/type1/public/cm-super/sfti1095.pfb></usr/sh
are/texmf-dist/fonts/type1/public/cm-super/sftt1095.pfb></usr/share/texmf-dist/
fonts/type1/public/cm-super/sfxc1095.pfb>
Output written on Rapport.pdf (10 pages, 1002451 bytes).
PDF statistics:
335 PDF objects out of 1000 (max. 8388607)
281 compressed objects within 3 object streams
72 named destinations out of 1000 (max. 500000)
110 words of extra memory for PDF output out of 10000 (max. 10000000)

View File

@ -2,6 +2,7 @@
\BOOKMARK [1][-]{section.2}{Perturbation theory}{}% 2
\BOOKMARK [1][-]{section.3}{Historical overview}{}% 3
\BOOKMARK [2][-]{subsection.3.1}{Behavior of the M\370ller-Plesset series}{section.3}% 4
\BOOKMARK [2][-]{subsection.3.2}{The singularity structure}{section.3}% 5
\BOOKMARK [2][-]{subsection.3.3}{The physics of quantum phase transition}{section.3}% 6
\BOOKMARK [1][-]{section.4}{The spherium model}{}% 7
\BOOKMARK [2][-]{subsection.3.2}{Cases of divergence}{section.3}% 5
\BOOKMARK [2][-]{subsection.3.3}{The singularity structure}{section.3}% 6
\BOOKMARK [2][-]{subsection.3.4}{The physics of quantum phase transition}{section.3}% 7
\BOOKMARK [1][-]{section.4}{The spherium model}{}% 8

Binary file not shown.

Binary file not shown.

View File

@ -13,21 +13,23 @@
\setlength{\evensidemargin}{0cm}
\usepackage{graphicx} % inclusion des figures
\usepackage{physics}
\usepackage{tabularx} % gestion avancée des tableaux
\usepackage{physics}
\usepackage{amsmath} % collection de symboles mathématiques
\usepackage{amssymb} % collection de symboles mathématiques
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc} % codage moderne des caractères sous Latex
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\DeclareUnicodeCharacter{2212}{-}
\usepackage[english]{babel}
\usepackage{tabularx} % gestion avancée des tableaux
\usepackage{siunitx}
\usepackage[version=4]{mhchem}
\usepackage{color} % gestion de différentes couleurs
\usepackage{xcolor} % gestion de différentes couleurs
\definecolor{linkcolor}{rgb}{0,0,0.6} % définition de la couleur des liens pdf
\usepackage[ pdftex,colorlinks=true,
@ -89,11 +91,13 @@ hyperfigures=false]
\vspace{1.5cm}
\parbox{15cm}{\small
\textbf{Abstract} : \it
\textbf{Abstract} : \it In this work, we explore the description of quantum chemistry in the complex plane. We see that the physic of the system can be connected to the position of the singularities of the energy in the complex plane. After briefly present the fundamental notions of quantum chemistry and perturbation theory in the complex plane, we perform an historical review of the researches that have been done on the physic of singularities. Then we make links between all those points of view on this problem using the spherium model (i.e., two opposite-spin electrons restricted to remain on a surface of a sphere of radius $R$) as a theoretical playground. In particular, we explore the effects of symmetry breaking of the wave functions on the singularity structure.
}
\vspace{0.5cm}
\parbox{15cm}{
\textbf{Keywords} : \it perturbation theory, Hartree-Fock, spherium, exceptional points
\textbf{Keywords} : \it Complex chemistry, Perturbation theory, Spherium, Exceptional points, Symmetry breaking
} %fin de la commande \parbox des mots clefs
\vspace{0.5cm}
@ -134,7 +138,7 @@ Laboratoire de Chimie et Physique Quantiques
\section{Introduction}
%============================================================%
It has always been of great importance for theoretical chemists to better understand excited states and their properties because processes involving excited states are ubiquitous in nature (physics, chemistry and biology). One of the major challenges is to accurately compute excited states energies. Plenty of methods have been developed to this aim and each of them have its own qualities but also its own flaws. The fact that none of all those methods is succesfull for every molecule in every geometry encourage chemists to continue the development of new methodologies to get accurate energies and to try to understand deeply why each methods fails or not with each molecule. All those methods rely on the notion of quantised energy levels of Hermitian quantum mechanics. In quantum chemistry, the ordering of the energy levels represents the different electronic states of a molecule, the lowest being the ground state while the higher ones are the so-called excited states. And we need methods to get accurately how those states are ordered.
It has always been of great importance for theoretical chemists to better understand excited states and their properties because processes involving excited states are ubiquitous in nature (physics, chemistry and biology). One of the major challenges is to accurately compute energies of a chemical system (atoms, molecules, ..). Plenty of methods have been developed to this aim and each of them have its own qualities but also its own flaws. The fact that none of all those methods is successful for every molecule in every geometry encourage chemists to continue the development of new methodologies to get accurate energies and to try to understand deeply why each methods fails or not in each situation. All those methods rely on the notion of quantised energy levels of Hermitian quantum mechanics. In quantum chemistry, the ordering of the energy levels represents the different electronic states of a molecule, the lowest being the ground state while the higher ones are the so-called excited states. And we need methods to get accurately how those states are ordered.
Within this quantised paradigm, electronic states look completely disconnected from one another.
However, one can gain a different perspective on quantisation if one extends quantum chemistry into the complex domain.
@ -192,7 +196,7 @@ In Hartree-Fock theory you approximate the exact wave function as a Slater-deter
E_{\text{MP\textsubscript{n}}}= \sum_{k=0}^n E^{(k)}
\end{equation}
But \textit{a priori} there is no reason that this power series is always convergent for $\lambda$=1 when n goes to infinity. In fact, it is known that when the Hartree-Fock wave function is a bad approximation of the exact wave function, for example for multi-reference states, the M{\o}ller-Plesset will give bad results\cite{Gill_1986, Gill_1998, Handy_1985,Leininger_2000}. A smart way to investigate the convergence properties of the MP series is to transform the coupling parameter $\lambda$ into a complex variable. By doing this the Hamiltonian and the energy become functions of this variable. So by searching the singularities of the function $E(\lambda)$ we can get information on the convergence properties of the MPPT. Those singularities of the energy are exactly the exceptional points connecting the electronic states mentioned in the introduction. The direct computation of the terms of the series is relatively easy up to the 4th order and the 5th and 6th order can be obtained at high cost. But to understand deeply the behavior of the MP series and how it is connected to the singularities, we need to have access to high order terms of the series. For small systems we can have access to the whole series using Full Configuration Interaction. If you diagonalize the Hamiltonian $H(\lambda)$ in the FCI basis you get the exact energies (in this finite basis set) and expanding in $\lambda$ allow you to get the M{\o}ller-Plesset perturbation series at every order.
But \textit{a priori} there is no reason that this power series is always convergent for $\lambda$=1 when n goes to infinity. In fact, it is known that when the Hartree-Fock wave function is a bad approximation of the exact wave function, for example for multi-reference states, the M{\o}ller-Plesset will give bad results\cite{Gill_1986, Gill_1988, Handy_1985, Lepetit_1988}. A smart way to investigate the convergence properties of the MP series is to transform the coupling parameter $\lambda$ into a complex variable. By doing this the Hamiltonian and the energy become functions of this variable. So by searching the singularities of the function $E(\lambda)$ we can get information on the convergence properties of the MPPT. Those singularities of the energy are exactly the exceptional points connecting the electronic states mentioned in the introduction. The direct computation of the terms of the series is relatively easy up to the 4th order and the 5th and 6th order can be obtained at high cost. But to understand deeply the behavior of the MP series and how it is connected to the singularities, we need to have access to high order terms of the series. For small systems we can have access to the whole series using Full Configuration Interaction. If you diagonalize the Hamiltonian $H(\lambda)$ in the FCI basis you get the exact energies (in this finite basis set) and expanding in $\lambda$ allow you to get the M{\o}ller-Plesset perturbation series at every order.
%============================================================%
\section{Historical overview}
@ -200,16 +204,19 @@ But \textit{a priori} there is no reason that this power series is always conver
\subsection{Behavior of the M{\o}ller-Plesset series}
First the chemists hoped that each time you compute a term of higher order of the perturbation expansion the energy would be more accurate. If this was true it would give a direct method to the exact energy in a finite basis. But rapidly some strange behaviors of the series have been exhibited. In the late 80's Gill et al. have reported deceptive and slow convergences in stretch systems\cite{Gill_1986, Gill_1998, Handy_1985,Leininger_2000}. In the figure below we can see that the restricted M{\o}ller-Plesset series is convergent but oscillating which is not convenient if you are able to compute only few terms (for example here RMP5 is worse than RMP4).
When you use M{\o}ller-Plesset perturbation theory it would be very convenient that each time you compute a term of higher order the result obtained is closer to exact energy. In other words that the M{\o]ller-Plesset series would be monotonically convergent. Assuming this the only limiting process to get the exact correlation energy in a finite basis is our ability to compute the terms of the perturbation series.
Unfortunately this not true in generic cases and rapidly some strange behaviors of the series have been exhibited. In the late 80's Gill et al. have reported deceptive and slow convergences in stretch systems\cite{Gill_1986, Gill_1988, Handy_1985, Lepetit_1988}. In the figure below we can see that the restricted M{\o}ller-Plesset series is convergent but oscillating which is not convenient if you are able to compute only few terms (for example here RMP5 is worse than RMP4). On the other hand, the unrestricted M{\o}ller-Plesset series is monotonically converging (except for the first few orders) but very slowly so we can't use it for systems where we can compute only the first terms.
\begin{figure}[h!]
\centering
\includegraphics[width=0.45\textwidth]{gill1986.png}
\caption{\centering Barriers to homolytic fission of \ce{He2^2+} at MPn/STO-3G level ($n = 1$--$20$).}
\caption{\centering Barriers to homolytic fission of \ce{He2^2+} at MPn/STO-3G level ($n = 1$--$20$)\cite{Gill_1986}.}
\label{fig:my_label}
\end{figure}
The unrestricted M{\o}ller-Plesset series is monotonically converging (except for the first few orders) but it is very slow so we can't use it for real systems where we can compute only the first terms. When a bond is stretched the exact function can undergo a symmetry breaking becoming multi-reference during this process (see for example the case of \ce{H_2} in \cite{SzaboBook}). A restricted HF Slater determinant is a poor approximation of a broken symmetry wave function but even in the unrestricted formalism, where the spatial orbitals of electrons $\alpha$ and $\beta$ are not restricted to be the same\cite{Fukutome_1981}, which allow a better description of symmetry broken system the series doesn't give accurate results at low orders. In the unrestricted framework the ground state singlet wave function is allowed to mix with triplet states which lead to spin contamination. Gill et al. highlighted that there is a link between the slow convergence of the unrestricted MP series and the spin contamination of the wave function as it's shown below.
When a bond is stretched the exact function can undergo a symmetry breaking becoming multi-reference during this process (see for example the case of \ce{H_2} in \cite{SzaboBook}). A restricted HF Slater determinant is a poor approximation of a broken symmetry wave function but even in the unrestricted formalism, where the spatial orbitals of electrons $\alpha$ and $\beta$ are not restricted to be the same\cite{Fukutome_1981}, which allow a better description of symmetry broken system the series doesn't give accurate results at low orders. Even with this improvement of the zeroth order wave function the series doesn't have the smooth and rapidly converging behavior wanted.
In the unrestricted framework the ground state singlet wave function is allowed to mix with triplet states which lead to spin contamination. Gill et al. highlighted that there is a link between the slow convergence of the unrestricted MP series and the spin contamination of the wave function as it's shown in the Table 1 within the example of \ce{H_2} in a minimal basis.
\begin{table}[h!]
\centering
@ -223,13 +230,17 @@ The unrestricted M{\o}ller-Plesset series is monotonically converging (except fo
2.50 & 0.0\% & 00.1\% & 00.3\% & 00.4\% & 0.99\\
\hline
\end{tabular}
\caption{\centering Percentage of electron correlation energy recovered and $\expval{S^2}$ for the \ce{H2} molecule as a function of bond length (r,\si{\angstrom}) in the STO-3G basis set.}
\caption{\centering Percentage of electron correlation energy recovered and $\expval{S^2}$ for the \ce{H2} molecule as a function of bond length (r,\si{\angstrom}) in the STO-3G basis set \cite{Gill_1988}.}
\label{tab:my_label}
\end{table}
Cremer and He performed the same analysis with 29 FCI systems and the regroup all the systems in two classes. The class A systems which have a monotonic convergence to the FCI value and the class B which converge erraticly after initial oscillations.
Handy and co-workers. exhibited the same behaviors of the series (oscillating and monotonically slowly) in stretched \ce{H_2O} and \ce{NH_2} systems \cite{Handy_1985}. Cremer and He performed the same analysis with 29 FCI systems \cite{Cremer_1996} and regrouped all the systems in two classes. The class A systems which have a monotonic convergence to the FCI value and the class B which converge erratically after initial oscillations. The sample of systems contains stretched molecules and also some at equilibrium geometry, there are also some systems in various basis sets. They highlighted that systems with class A convergence have well-separated electrons pairs whereas class B systems present electrons clustering.
This problem was preoccupying in order to develop a method that would allow to compute exact energies for all systems using perturbation theory. But in fact it could be expected as it was known that the perturbation theory was not working well if the wave functions eigenvectors of $H_0$ are bad approximations of the exact wave functions. But Olsen et al. have discovered even more preoccupying behavior of the MP series in the late 90's. They have shown that the series could be divergent even in systems that they considered as well understood like \ce{Ne} and \ce{HF}.
This classification was encouraging in order to develop methods based on perturbation theory as it rationalize the two different convergence modes observed. If it is possible to predict if a system is class A or B, then one can use extrapolation method of the first terms adapted to the class of the systems \cite{Cremer_1996}.
\subsection{Cases of divergence}
But Olsen et al. have discovered even more preoccupying behavior of the MP series in the late 90's. They have shown that the series could be divergent even in systems that they considered as well understood like \ce{Ne} and \ce{HF} \cite{Olsen_1996, Christiansen_1996}. Cremer and He had already studied those two systems and classified them as class B systems. But Olsen and his co-workers have done the analysis in larger basis sets containing diffuse functions and in those basis sets the series become divergent at high order.
\begin{figure}[h!]
\includegraphics[height=5.5cm]{Nedivergence.png}
@ -239,8 +250,14 @@ This problem was preoccupying in order to develop a method that would allow to c
\caption{\centering Correlation contributions for \ce{Ne} and \ce{HF} in the cc-pVTZ-(f/d) $\circ$ and aug-cc-pVDZ $\bullet$ basis sets.}
\label{fig:my_label}
\end{figure}
The discovery of those divergent behavior was really worrying because to get more and more accurate results theoretical chemists need to work in large basis sets. So they investigated the causes of those divergences and in the same time the reasons of the different types of convergence. In order to do this they analyzed the relation between the dominant singularity (i.e. the closest singularity to the origin) and the convergence behavior of the series \cite{Olsen_2000}. A singularity in the unit circle is designated as an intruder state, more precisely as a front-door (respectively back-door) intruder state if the real part of the singularity is positive (respectively negative). The method used is to do a scan of the real axis to identify the avoided crossing responsible for the pair of dominant singularity. Then by modeling this avoided crossing by a two-state Hamiltonian one can get an approximation of the dominant conjugate pair of singularity by finding the EPs of the 2x2 Hamiltonian. The diagonal matrix is the unperturbed Hamiltonian and the other matrix is the perturbation part of the Hamiltonian.
\begin{equation}
\mqty(\alpha & \delta \\ \delta & \beta) = \mqty(\alpha + \alpha_s & 0 \\ 0 & \beta + \beta_s ) + \mqty(- \alpha_s & \delta \\ \delta & - \beta_s)
\end{equation}
When the basis sets is augmented with diffuse functions the series are becoming divergent. This is a really worrying observation because chemists want to work in the largest basis set possible to model the complete basis set. They have shown that those divergences were due to a backdoor intruder state i.e. a pair of singularity in the negative half plane. Their method to investigate links between singularities and those behaviors of the series is to scan energies on the real axis to list the avoided crossings. An avoided crossing on the real axis is indicative of a pair of complex conjugate singularities, their real parts are equal to the value of $\lambda$ at the minimum difference of energy of the avoided crossing. Then modeling an avoided crossing with a two level model, they get an approximation of the pair of singularities by finding the EPs of the two-state model. When the basis set is augmented with diffuse functions the ground state undergoes a shark avoided crossing with a diffuse state on the negative real axis. When there are enough diffuse function in the basis set this pair of singularities is in the unit circle causing the divergence of the series. Olsen and his coworkers conclude that the divergence of the series in those case was due to the interaction of the ground state with a highly diffuse state.
They have shown that those divergences were due to a backdoor intruder state i.e. a pair of singularity in the negative half plane. Their method to investigate links between singularities and those behaviors of the series is to scan energies on the real axis to list the avoided crossings. An avoided crossing on the real axis is indicative of a pair of complex conjugate singularities, their real parts are equal to the value of $\lambda$ at the minimum difference of energy of the avoided crossing. Then modeling an avoided crossing with a two level model, they get an approximation of the pair of singularities by finding the EPs of the two-state model. When the basis set is augmented with diffuse functions the ground state undergoes a shark avoided crossing with a diffuse state on the negative real axis. When there are enough diffuse function in the basis set this pair of singularities is in the unit circle causing the divergence of the series. Olsen and his coworkers conclude that the divergence of the series in those case was due to the interaction of the ground state with a highly diffuse state.
They also analyzed the convergence of the series for the \ce{CH_2} as an example molecule containing low-lying doubly excited states. In this molecule the doubly excited states are strongly interacting with the ground state because they have the same spatial and spin symmetry. Thus the single reference wave function is a poor approximation. They have shown that there is a singularity close to the unit circle resulting from an interaction with the lowest doubly excited states and that this singularity is causing the slow convergence for the series of \ce{CH_2}.
\subsection{The singularity structure}
@ -285,4 +302,4 @@ Finally, it has been shown that $\beta$ singularities are very sensitive to the
\end{document}
\end{document}

View File

@ -3,6 +3,7 @@
\contentsline {section}{\numberline {2}Perturbation theory}{3}{section.2}%
\contentsline {section}{\numberline {3}Historical overview}{5}{section.3}%
\contentsline {subsection}{\numberline {3.1}Behavior of the M{\o }ller-Plesset series}{5}{subsection.3.1}%
\contentsline {subsection}{\numberline {3.2}The singularity structure}{6}{subsection.3.2}%
\contentsline {subsection}{\numberline {3.3}The physics of quantum phase transition}{7}{subsection.3.3}%
\contentsline {section}{\numberline {4}The spherium model}{7}{section.4}%
\contentsline {subsection}{\numberline {3.2}Cases of divergence}{6}{subsection.3.2}%
\contentsline {subsection}{\numberline {3.3}The singularity structure}{7}{subsection.3.3}%
\contentsline {subsection}{\numberline {3.4}The physics of quantum phase transition}{8}{subsection.3.4}%
\contentsline {section}{\numberline {4}The spherium model}{8}{section.4}%