diff --git a/Manuscript/EPAWTFT.blg b/Manuscript/EPAWTFT.blg deleted file mode 100644 index e86c9a7..0000000 --- a/Manuscript/EPAWTFT.blg +++ /dev/null @@ -1,68 +0,0 @@ -This is BibTeX, Version 0.99d (TeX Live 2016) -Capacity: max_strings=35307, hash_size=35307, hash_prime=30011 -The top-level auxiliary file: EPAWTFT.aux -The style file: apsrev4-1.bst -Reallocated singl_function (elt_size=4) to 100 items from 50. -Reallocated singl_function (elt_size=4) to 100 items from 50. -Reallocated singl_function (elt_size=4) to 100 items from 50. -Reallocated singl_function (elt_size=4) to 100 items from 50. -Reallocated singl_function (elt_size=4) to 100 items from 50. -Reallocated singl_function (elt_size=4) to 100 items from 50. -Reallocated wiz_functions (elt_size=4) to 6000 items from 3000. -Database file #1: EPAWTFTNotes.bib -Database file #2: EPAWTFT.bib -control{REVTEX41Control}, control.key{N/A}, control.author{N/A}, control.editor{N/A}, control.title{N/A}, control.pages{N/A}, control.year{N/A}, control.eprint{N/A}, -control{apsrev41Control}, control.key{N/A}, control.author{08}, control.editor{1}, control.title{}, control.pages{0}, control.year{1}, control.eprint{N/A}, -Warning--jnrlst (dependency: not reversed) set 1 -Reallocated singl_function (elt_size=4) to 100 items from 50. -merlin.mbs apsrev4-1.bst 2010-07-25 4.21a (PWD, AO, DPC) hacked -Control: key (0) -Control: author (8) initials jnrlst -Control: editor formatted (1) identically to author -Control: production of article title (-1) disabled -Control: page (0) single -Control: year (1) truncated -Control: production of eprint (0) enabled -Warning--empty year in Coulson_1949 -You've used 86 entries, - 5847 wiz_defined-function locations, - 2232 strings with 30838 characters, -and the built_in function-call counts, 84131 in all, are: -= -- 5391 -> -- 2225 -< -- 571 -+ -- 708 -- -- 541 -* -- 13040 -:= -- 8275 -add.period$ -- 84 -call.type$ -- 86 -change.case$ -- 338 -chr.to.int$ -- 89 -cite$ -- 87 -duplicate$ -- 7807 -empty$ -- 6261 -format.name$ -- 1300 -if$ -- 16801 -int.to.chr$ -- 6 -int.to.str$ -- 93 -missing$ -- 1030 -newline$ -- 304 -num.names$ -- 252 -pop$ -- 3216 -preamble$ -- 1 -purify$ -- 419 -quote$ -- 0 -skip$ -- 3083 -stack$ -- 0 -substring$ -- 2260 -swap$ -- 7422 -text.length$ -- 263 -text.prefix$ -- 0 -top$ -- 10 -type$ -- 1191 -warning$ -- 2 -while$ -- 257 -width$ -- 0 -write$ -- 718 -(There were 2 warnings) diff --git a/Manuscript/EPAWTFT.tex b/Manuscript/EPAWTFT.tex index 1bbca55..26b0a6e 100644 --- a/Manuscript/EPAWTFT.tex +++ b/Manuscript/EPAWTFT.tex @@ -54,7 +54,8 @@ \newcommand{\laEP}{\lambda_\text{EP}} -\newcommand{\Ne}{N} +\newcommand{\Ne}{N} % Number of electrons +\newcommand{\Nn}{M} % Number of nuclei \newcommand{\hI}{\Hat{I}} \newcommand{\hH}{\Hat{H}} \newcommand{\hS}{\Hat{S}} @@ -95,8 +96,15 @@ % Center tabularx columns \newcolumntype{Y}{>{\centering\arraybackslash}X} -% Imaginary constant -\renewcommand{\i}{\mathrm{i}} +% HF rotation angles +\newcommand{\ta}{\theta_{\alpha}} +\newcommand{\tb}{\theta_{\beta}} + +% Some constants +\renewcommand{\i}{\mathrm{i}} % Imaginary unit +\newcommand{\e}{\mathrm{e}} % Euler number +\newcommand{\rc}{r_{\text{c}}} + % Blackboard bold \newcommand{\bbR}{\mathbb{R}} \newcommand{\bbC}{\mathbb{C}} @@ -195,14 +203,16 @@ More importantly here, although EPs usually lie off the real axis, these singula \end{figure*} To illustrate the concepts discussed throughout this article, we will consider the symmetric Hubbard dimer at half filling, \ie\ with two opposite-spin fermions. -Simple systems that are analytically solvable are of great importance in theoretical chemistry and physics as they can be employed to illustrate concepts and test new methods as the mathematics are easier than in realistic systems (such as molecules or solids) but they retain much of the key physics. +Analytically solvable model systems are essential in theoretical chemistry and physics as the simplicity of the +mathematics compared to realistic systems (e.g.\ atoms and molecules) readily allows concepts to be illustrated and new methods to be tested wile retaining much +of the key physics. -Using the (localised) site basis, the (singlet) Hilbert space of the Hubbard dimer comprises the four configurations +Using the (localised) site basis, the Hilbert space of the Hubbard dimer comprises the four configurations \begin{align} & \ket{\Lup \Ldown} & & \ket{\Lup\Rdown} & & \ket{\Rup\Ldown} & & \ket{\Rup\Rdown} \end{align} where $\Lsi$ ($\Rsi$) denotes an electron with spin $\sigma$ on the left (right) site. -The exact [or full configuration interaction (FCI)] Hamiltonian is then +The exact, or full configuration interaction (FCI), Hamiltonian is then \begin{equation} \label{eq:H_FCI} \bH = @@ -215,10 +225,10 @@ The exact [or full configuration interaction (FCI)] Hamiltonian is then \end{equation} where $t$ is the hopping parameter and $U$ is the on-site Coulomb repulsion. We refer the interested reader to Refs.~\onlinecite{Carrascal_2015,Carrascal_2018} for more details about this system. -The parameter $U$ dictates the correlation regime. -In the weak correlation regime (\ie, small $U$), the kinetic energy dominates and the electrons are delocalised over both sites. +The parameter $U$ controls the strength of the electron correlation. +In the weak correlation regime (small $U$), the kinetic energy dominates and the electrons are delocalised over both sites. In the large-$U$ (or strong correlation) regime, the electron repulsion term drives the physics and the electrons localise on opposite sites to minimise their Coulomb repulsion. -This phenomenon is sometimes referred to as a Wigner crystallisation. \cite{Wigner_1934} +This phenomenon is often referred to as a Wigner crystallisation. \cite{Wigner_1934} To illustrate the formation of an EP, we scale the off-diagonal coupling strength by introducing the complex parameter $\lambda$ through the transformation $t\rightarrow \lambda t$. When $\lambda$ is real, the Hamiltonian~\eqref{eq:H_FCI} is Hermitian with the distinct (real-valued) (eigen)energies @@ -273,76 +283,134 @@ Additionally, the wave functions pick up a geometric phase in the process, and f \subsection{Rayleigh-Schr\"odinger perturbation theory} %============================================================% -Within the Born-Oppenheimer approximation, +Within the Born-Oppenheimer approximation, the exact molecular Hamiltonian with $\Ne$ electrons and +$\Nn$ (clamped) nuclei is defined as \begin{equation}\label{eq:ExactHamiltonian} - \hH = - \frac{1}{2} \sum_{i}^{n} \grad_i^2 - \sum_{i}^{n} \sum_{A}^{N} \frac{Z_A}{\abs{\vb{r}_i-\vb{R}_A}} + \sum_{i