Updates from Overleaf

This commit is contained in:
Pierre-Francois Loos 2020-07-22 15:43:47 +02:00
parent fbdf708629
commit f1aadcd19b
1 changed files with 11 additions and 8 deletions

View File

@ -367,7 +367,7 @@ where $\tau_{12} = t_1 - t_2$, $\theta$ is the Heaviside step function, and
\tchi_s(\bx_1,\bx_{2}) & = \mel{N,s}{T [\hpsi(\bx_1) \hpsi^{\dagger}(\bx_{2})] }{N}.
\end{align}
\end{subequations}
The $\Om{s}{}$'s are the neutral excitation energies of interest.
The $\Om{s}{}$'s are the neutral excitation energies of interest (with $\Om{s}{} = E^N_s - E^N_0$).
Picking up the $e^{+i \Om{s}{} t_2 }$ component of both $L(1,2; 1',2')$ and $L(6,2;5,2')$, simplifying further by $\tchi_s(\bx_2,\bx_{2'})$ on both sides of the BSE [see Eq.~\eqref{eq:BSE}], we seek the $e^{-i \Om{s}{} t_1 }$ Fourier component associated with the right-hand side of a modified dynamical BSE, which reads
\begin{multline} \label{eq:BSE_2}
@ -435,7 +435,7 @@ leads to the following simplified BSE kernel
where $W$ is the dynamically-screened Coulomb operator.
The $GW$ quasiparticle energies $\eGW{p}$ are usually good approximations to the removal/addition energies $\e{p}$ introduced in Eq.~\eqref{eq:G-Lehman}.
Substituting Eqs.~\eqref{eq:iL0bis}, \eqref{eq:spectral65}, and \eqref{eq:Xi_GW} into Eq.~\eqref{eq:BSE_2}, and projecting onto $\MO{a}^*(\bx_1) \MO{i}(\bx_{1'})$, one gets after a few tedious manipulations (see {\SI}) the dynamical BSE:
Substituting Eqs.~\eqref{eq:iL0bis}, \eqref{eq:spectral65}, and \eqref{eq:Xi_GW} into Eq.~\eqref{eq:BSE_2}, and projecting onto $\MO{a}^*(\bx_1) \MO{i}(\bx_{1'})$, one gets after a few tedious manipulations the dynamical BSE:
\begin{equation} \label{eq:BSE-final}
\begin{split}
( \eGW{a} - \eGW{i} - \Om{s}{} ) X_{ia,s}
@ -525,10 +525,13 @@ The analysis of the poles of the integrand in Eq.~\eqref{eq:wtilde} yields
\times \qty[ \frac{1}{\Om{ib}{s} - \Om{m}{\RPA} + i\eta} + \frac{1}{\Om{ja}{s} - \Om{m}{\RPA} + i\eta} ].
\end{multline}
One can verify that, in the static limit where $\Om{m}{\RPA} \to \infty$, the matrix elements $\widetilde{W}_{ij,ab}$ correctly reduce to the static ${W}_{ij,ab}$ ones, evidencing that the standard static BSE problem is recovered from the present dynamical formalism in this limit.
Due to excitonic effects, the lowest BSE excitation energy, $\Om{1}{}$, stands lower than the lowest RPA excitation energy, $\Om{1}{\RPA}$, so that, $\Om{ib}{s} - \Om{m}{\RPA} < 0 $ and $\widetilde{W}_{ij,ab}(\Om{s}{})$ has no resonances.
Furthermore, $\Om{ib}{s}$ and $\Om{ja}{s}$ are necessarily negative quantities for in-gap low-lying BSE excitations.
Thus, we have $\abs*{\Omega_{ib}^{s} - \Om{m}{\RPA}} > \Omega_m^{\RPA}$.
Due to excitonic effects, the lowest BSE excitation energy, $\Om{1}{}$, stands lower than the lowest RPA excitation energy, $\Om{1}{\RPA}$, so that, $\Om{ib}{S} - \Om{m}{\RPA} < 0 $ and $\widetilde{W}_{ij,ab}(\Om{S}{})$ has no resonances.
This property holds for a few low lying $\Om{s}{}$ excitations but special care must be taken for higher ones.
Furthermore, $\Om{ib}{S}$ and $\Om{ja}{S}$ are necessarily negative quantities for in-gap low-lying BSE excitations.
Thus, we have $\abs*{\Om{ib}{S} - \Om{m}{\RPA}} > \Om{m}{\RPA}$.
As a consequence, we observe a reduction of the electron-hole screening, \ie, an enhancement of electron-hole binding energy, as compared to the standard static BSE, and consequently smaller (red-shifted) excitation energies.
This will be numerically illustrated in Sec.~\ref{sec:resdis}.
%================================
@ -1089,7 +1092,7 @@ In this Appendix, we derive Eqs.~\eqref{eq:iL0} to \eqref{eq:iL0bis}.
Defining the $t_1$-time Fourier transform of $L_0(1,3;4,1')$ with
$(t_{1'} = t_1^{+})$
\begin{align}
[L_0](\bx_1,3;\bx_{1'},4 \; | \; \omega_1 ) = -i
[L_0](\bx_1,4;\bx_{1'},3 \; | \; \omega_1 ) = -i
\int dt_1 e^{i \omega_1 t_1 } G(1,3)G(4,1')
\end{align}
we plug-in the Fourier expansion of the Green's function, e.g.
@ -1098,14 +1101,14 @@ $(t_{1'} = t_1^{+})$
\end{align*}
with $\tau_{13} = (t_1-t_3)$ to obtain:
\begin{multline}
[L_0](\bx_1,3;\bx_{1'},4 \;| \; \omega_1 ) =
[L_0](\bx_1,4;\bx_{1'},3 \;| \; \omega_1 ) =
\\
\int \frac{ d\omega }{ 2i\pi } \; G(\bx_1,\bx_3;\omega) \; G(\bx_4,\bx_{1'};\omega-\omega_1)
e^{ i \omega t_3 } e^{-i (\omega-\omega_1) t_4 } \nonumber
\end{multline}
With the change of variable $\omega \to \omega + {\omega_1}/2$ one obtains readily
\begin{multline}
[L_0](\bx_1,3;\bx_{1'},4 \; | \; \omega_1 ) =
[L_0](\bx_1,4;\bx_{1'},3 \; | \; \omega_1 ) =
\\
e^{ i \omega_1 t^{34} }
\int \frac{ d\omega }{ 2i\pi } \; G\qty(\bx_1,\bx_3;\omega+ \frac{\omega_1}{2} ) G\qty(\bx_4,\bx_{1'};\omega-\frac{\omega_1}{2} ) \;