Working on notes BSE2
This commit is contained in:
parent
c05dcb3579
commit
dc37db6258
@ -56,11 +56,14 @@
|
||||
\newcommand{\KS}{\text{KS}}
|
||||
\newcommand{\HF}{\text{HF}}
|
||||
\newcommand{\RPA}{\text{RPA}}
|
||||
\newcommand{\RPAx}{\text{RPAx}}
|
||||
\newcommand{\dRPAx}{\text{dRPAx}}
|
||||
\newcommand{\BSE}{\text{BSE}}
|
||||
\newcommand{\TDABSE}{\text{BSE(TDA)}}
|
||||
\newcommand{\dBSE}{\text{dBSE}}
|
||||
\newcommand{\TDAdBSE}{\text{dBSE(TDA)}}
|
||||
\newcommand{\GW}{GW}
|
||||
\newcommand{\GF}{\text{GF2}}
|
||||
\newcommand{\stat}{\text{stat}}
|
||||
\newcommand{\dyn}{\text{dyn}}
|
||||
\newcommand{\TDA}{\text{TDA}}
|
||||
@ -79,10 +82,13 @@
|
||||
\newcommand{\eKS}[1]{\eps^\text{KS}_{#1}}
|
||||
\newcommand{\eQP}[1]{\eps^\text{QP}_{#1}}
|
||||
\newcommand{\eGW}[1]{\eps^{GW}_{#1}}
|
||||
\newcommand{\eGF}[1]{\eps^{\text{GF2}}_{#1}}
|
||||
\newcommand{\Om}[2]{\Omega_{#1}^{#2}}
|
||||
|
||||
% Matrix elements
|
||||
\newcommand{\Sig}[1]{\Sigma_{#1}}
|
||||
\newcommand{\SigGW}[1]{\Sigma^{\GW}_{#1}}
|
||||
\newcommand{\SigGF}[1]{\Sigma^{\GF}_{#1}}
|
||||
\newcommand{\MO}[1]{\phi_{#1}}
|
||||
\newcommand{\ERI}[2]{(#1|#2)}
|
||||
\newcommand{\sERI}[2]{[#1|#2]}
|
||||
@ -220,31 +226,30 @@ The ground state has a one-electron configuration $v\bar{v}$, while the doubly-e
|
||||
There is then only one single excitation which corresponds to the transition $v \to c$.
|
||||
As usual, this can produce a singlet singly-excited state of configuration $(v\bar{c} + c\bar{v})/\sqrt{2}$, and a triplet singly-excited state of configuration $(v\bar{c} - c\bar{v})/\sqrt{2}$ \cite{SzaboBook}.
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Dynamical BSE kernel}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
Within many-body perturbation theory (MBPT), one can easily compute the quasiparticle energies associated with the valence and conduction orbitals.
|
||||
Assuming that the dynamically-screened Coulomb potential has been calculated at the random-phase approximation (RPA) level and within the Tamm-Dancoff approximation (TDA), the expression of the $\GW$ quasiparticle energy is
|
||||
\begin{equation}
|
||||
\e{p}^{\GW} = \e{p} + Z_{p} \Sig{p}(\e{p})
|
||||
\e{p}^{\GW} = \e{p} + Z_{p}^{\GW} \SigGW{p}(\e{p})
|
||||
\end{equation}
|
||||
where $p = v$ or $c$,
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
\label{eq:Sigv}
|
||||
\Sig{v}(\omega) & = \frac{2 \ERI{vv}{vc}^2}{\omega - \e{v} + \Omega} + \frac{2 \ERI{vc}{cv}^2}{\omega - \e{c} + \Omega}
|
||||
\\
|
||||
\label{eq:Sigc}
|
||||
\Sig{c}(\omega) & = \frac{2 \ERI{vc}{cv}^2}{\omega - \e{v} + \Omega} + \frac{2 \ERI{vc}{cc}^2}{\omega - \e{c} + \Omega}
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
\begin{equation}
|
||||
\label{eq:SigC}
|
||||
\SigGW{p}(\omega) = \frac{2 \ERI{pv}{vc}^2}{\omega - \e{v} + \Omega} + \frac{2 \ERI{pc}{cv}^2}{\omega - \e{c} - \Omega}
|
||||
\end{equation}
|
||||
are the correlation parts of the self-energy associated with the valence of conduction orbitals,
|
||||
\begin{equation}
|
||||
Z_{p} = \qty( 1 - \left. \pdv{\Sig{p}(\omega)}{\omega} \right|_{\omega = \e{p}} )^{-1}
|
||||
Z_{p}^{\GW} = \qty( 1 - \left. \pdv{\SigGW{p}(\omega)}{\omega} \right|_{\omega = \e{p}} )^{-1}
|
||||
\end{equation}
|
||||
is the renormalization factor, and
|
||||
\begin{equation}
|
||||
\ERI{pq}{rs} = \iint p(\br) q(\br) \frac{1}{\abs{\br - \br'}} r(\br') s(\br') d\br d\br'
|
||||
\end{equation}
|
||||
are the usual (bare) two-electron integrals.
|
||||
In Eqs.~\eqref{eq:Sigv} and \eqref{eq:Sigc}, $\Omega = \Delta\e{} + 2 \ERI{vc}{vc}$ is the sole (singlet) RPA excitation energy of the system, with $\Delta\e{} = \eGW{c} - \eGW{v}$.
|
||||
In Eq.~\eqref{eq:SigC}, $\Omega = \Delta\e{} + 2 \ERI{vc}{vc}$ is the sole (singlet) RPA excitation energy of the system, with $\Delta\eGW{} = \eGW{c} - \eGW{v}$.
|
||||
|
||||
One can now build the dynamical Bethe-Salpeter equation (dBSE) Hamiltonian, which reads
|
||||
\begin{equation} \label{eq:HBSE}
|
||||
@ -258,7 +263,7 @@ One can now build the dynamical Bethe-Salpeter equation (dBSE) Hamiltonian, whic
|
||||
with
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
R(\omega) & = \Delta\e{} + 2 \sigma \ERI{vc}{cv} - W_R(\omega)
|
||||
R(\omega) & = \Delta\eGW{} + 2 \sigma \ERI{vc}{cv} - W_R(\omega)
|
||||
\\
|
||||
C(\omega) & = 2 \sigma \ERI{vc}{cv} - W_C(\omega)
|
||||
\end{align}
|
||||
@ -266,7 +271,7 @@ with
|
||||
($\sigma = 1$ for singlets and $\sigma = 0$ for triplets) and
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
W_R(\omega) & = \ERI{vv}{cc} + \frac{4 \ERI{vv}{vc} \ERI{vc}{cc}}{\omega - \Omega - \Delta\e{}}
|
||||
W_R(\omega) & = \ERI{vv}{cc} + \frac{4 \ERI{vv}{vc} \ERI{vc}{cc}}{\omega - \Omega - \Delta\eGW{}}
|
||||
\\
|
||||
W_C(\omega) & = \ERI{vc}{cv} + \frac{4 \ERI{vc}{cv}^2}{\omega - \Omega}
|
||||
\end{align}
|
||||
@ -292,7 +297,7 @@ Within the static approximation, the BSE Hamiltonian is
|
||||
\end{equation}
|
||||
with
|
||||
\begin{align}
|
||||
R^{\stat} & = R(\omega = \Delta\e{}) = \Delta\e{} + 2 \sigma \ERI{vc}{vc} - W_R(\omega = \Delta\e{})
|
||||
R^{\stat} & = R(\omega = \Delta\eGW{}) = \Delta\eGW{} + 2 \sigma \ERI{vc}{vc} - W_R(\omega = \Delta\eGW{})
|
||||
\\
|
||||
C^{\stat} & = C(\omega = 0) = 2 \sigma \ERI{vc}{vc} - W_C(\omega = 0)
|
||||
\end{align}
|
||||
@ -333,13 +338,17 @@ This system contains two orbitals and the numerical values of the various quanti
|
||||
&
|
||||
\e{c} & = + 1.399\,859
|
||||
\\
|
||||
\ERI{vv}{vv} & = 1.026\,907
|
||||
&
|
||||
\ERI{cc}{cc} & = 0.766\,363
|
||||
\\
|
||||
\ERI{vv}{cc} & = 0.858\,133
|
||||
&
|
||||
\ERI{vc}{cv} & = 0.227\,670
|
||||
\\
|
||||
\ERI{vv}{vc} & = 0.255\,554
|
||||
\ERI{vv}{vc} & = 0.316\,490
|
||||
&
|
||||
\ERI{vc}{cc} & = 0.316\,490
|
||||
\ERI{vc}{cc} & = 0.255\,554
|
||||
\end{align}
|
||||
which yields
|
||||
\begin{align}
|
||||
@ -429,18 +438,18 @@ A quick configuration interaction with singles and doubles (CISD) calculation pr
|
||||
\omega_{3}^{\updw} & = 3.47880
|
||||
\end{align}
|
||||
This evidences that BSE reproduces qualitatively well the singlet and triplet single excitations, but quite badly the double excitation which is off by more than 1 hartree.
|
||||
All these numerical results are gathered in Table \ref{tab:Ex}.
|
||||
All these numerical results are gathered in Table \ref{tab:BSE}.
|
||||
|
||||
The perturbatively-corrected values are also reported, which shows that this scheme is very efficient at reproducing the dynamical value.
|
||||
Note that, although the BSE1(dTDA) value is further from the dBSE value than BSE1, it is quite close to the exact excitation energy.
|
||||
|
||||
%%% TABLE I %%%
|
||||
\begin{table}
|
||||
\caption{Singlet and triplet excitation energies at various levels of theory.
|
||||
\label{tab:Ex}
|
||||
\caption{BSE singlet and triplet excitation energies at various levels of theory.
|
||||
\label{tab:BSE}
|
||||
}
|
||||
\begin{center}
|
||||
\small
|
||||
\footnotesize
|
||||
\begin{tabular}{|c|ccccccc|c|}
|
||||
\hline
|
||||
Singlets & BSE & BSE1 & BSE1(dTDA) & dBSE & BSE(TDA) & BSE1(TDA) & dBSE(TDA) & Exact \\
|
||||
@ -460,6 +469,106 @@ Note that, although the BSE1(dTDA) value is further from the dBSE value than BSE
|
||||
\end{table}
|
||||
%%% %%% %%% %%%
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Second-order BSE kernel}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
Here, we follow a different strategy and compute the dynamical second-order BSE kernel as illustrated by Yang and collaborators \cite{Zhang_2013}, and Rebolini and Toulouse \cite{Rebolini_2016}.
|
||||
|
||||
First, let us compute the second-order quasiparticle energies, which reads
|
||||
\begin{equation}
|
||||
\eGF{p} = \e{p} + Z_{p}^{\GF} \SigGF{p}(\e{p})
|
||||
\end{equation}
|
||||
where the second-order self-energy is
|
||||
\begin{equation}
|
||||
\label{eq:SigGF}
|
||||
\SigGF{p}(\omega) = \frac{2 \ERI{pv}{vc}^2}{\omega - \e{v} + \e{c} - \e{v}} + \frac{2 \ERI{pc}{cv}^2}{\omega - \e{c} - (\e{c} - \e{v})}
|
||||
\end{equation}
|
||||
and
|
||||
\begin{equation}
|
||||
Z_{p}^{\GF} = \qty( 1 - \left. \pdv{\SigGF{p}(\omega)}{\omega} \right|_{\omega = \e{p}} )^{-1}
|
||||
\end{equation}
|
||||
This expression can be easily obtained in the present case by the substitution $\Omega \to \e{c} - \e{v}$ which transforms the $GW$ self-energy into its GF2 analog.
|
||||
|
||||
The static Hamiltonian for this theory is just the usual RPAx (or TDHF) Hamiltonian, \ie,
|
||||
\begin{equation}
|
||||
\bH^{\RPAx} =
|
||||
\begin{pmatrix}
|
||||
A^{\stat} & B^{\stat}
|
||||
\\
|
||||
-B^{\stat} & -A^{\stat}
|
||||
\end{pmatrix}
|
||||
\end{equation}
|
||||
with
|
||||
\begin{align}
|
||||
A^{\stat} & = \Delta\eGF{} + 2 \sigma \ERI{vc}{vc} - \ERI{vv}{cc}
|
||||
\\
|
||||
B^{\stat} & = 2 \sigma \ERI{vc}{vc} - \ERI{vc}{cv}
|
||||
\end{align}
|
||||
The dynamical part of the kernel for BSE2 (that we will call dRPAx for notational consistency) is a bit ugly but it simplifies greatly in the case of the present model to yield
|
||||
\begin{equation}
|
||||
\bH^{\dRPAx} = \bH^{\RPAx} +
|
||||
\begin{pmatrix}
|
||||
A(\omega) & B
|
||||
\\
|
||||
-B & -A(-\omega)
|
||||
\end{pmatrix}
|
||||
\end{equation}
|
||||
with
|
||||
\begin{align}
|
||||
A^{\updw}(\omega) & = - \frac{4 \ERI{cv}{vv} \ERI{vc}{cc} - \ERI{vc}{cc}^2 - \ERI{cv}{vv}^2 }{\omega - 2 \Delta\eGF{}}
|
||||
\\
|
||||
B^{\updw} & = - \frac{4 \ERI{vc}{cv}^2 - \ERI{cc}{cc} \ERI{vc}{cv} - \ERI{vv}{vv} \ERI{vc}{cv} }{2 \Delta\eGF{}}
|
||||
\end{align}
|
||||
and
|
||||
\begin{align}
|
||||
A^{\upup}(\omega) & = - \frac{ \ERI{vc}{cc}^2 + \ERI{cv}{vv}^2 }{\omega - 2 \Delta\eGF{}}
|
||||
\\
|
||||
B^{\upup} & = - \frac{\ERI{cc}{cc} \ERI{vc}{cv} + \ERI{vv}{vv} \ERI{vc}{cv} }{2 \Delta\eGF{}}
|
||||
\end{align}
|
||||
Note that the coupling blocks $B$ are frequency independent, as they should.
|
||||
This has an important consequence as this lack of frequency dependence removes one of the spurious pole.
|
||||
The singlet manifold has then the right number of excitations.
|
||||
However, one spurious triplet excitation remains.
|
||||
Numerical results for the two-level model are reported in Table \ref{tab:RPAx} with the usual approximations and perturbative treatmenets.
|
||||
|
||||
%%% TABLE II %%%
|
||||
\begin{table}
|
||||
\caption{RPAx singlet and triplet excitation energies at various levels of theory.
|
||||
\label{tab:RPAx}
|
||||
}
|
||||
\begin{center}
|
||||
\footnotesize
|
||||
\begin{tabular}{|c|ccccccc|c|}
|
||||
\hline
|
||||
Singlets & RPAx & RPAx1 & RPAx1(dTDA) & dRPAx & RPAx(TDA) & RPAx1(TDA) & dRPAx(TDA) & Exact \\
|
||||
\hline
|
||||
$\omega_1$ & 1.84903 & 1.90927 & 1.90950 & 1.90362 & 1.86299 & 1.92356 & 1.92359 & 1.92145 \\
|
||||
$\omega_2$ & & & & & & & & \\
|
||||
$\omega_3$ & & & & 4.47124 & & & 4.47097 & 3.47880 \\
|
||||
\hline
|
||||
Triplets & RPAx & RPAx1 & RPAx1(dTDA) & dRPAx & RPAx(TDA) & RPAx1(TDA) & dRPAx(TDA) & Exact \\
|
||||
\hline
|
||||
$\omega_1$ & 1.38912 & 1.44267 & 1.44304 & 1.42564 & 1.40765 & 1.46154 & 1.46155 & 1.47085 \\
|
||||
$\omega_2$ & & & & & & & & \\
|
||||
$\omega_3$ & & & & 4.47797 & & & 4.47767 & \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\end{table}
|
||||
%%% %%% %%% %%%
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Sangalli's kernel}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
In Ref.~\cite{Sangalli_2011}, Sangalli proposed a norm-conserving kernel without (he claims) spurious excitations.
|
||||
For the two-level model, this kernel (based on the second RPA) reads
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Take-home messages}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
What have we learnt here?
|
||||
|
||||
% BIBLIOGRAPHY
|
||||
\bibliographystyle{unsrt}
|
||||
\bibliography{../BSEdyn}
|
||||
|
Loading…
Reference in New Issue
Block a user