take 1 xavier part
This commit is contained in:
parent
e1a07ff198
commit
d5a67a894a
@ -1,7 +1,7 @@
|
||||
%% This BibTeX bibliography file was created using BibDesk.
|
||||
%% http://bibdesk.sourceforge.net/
|
||||
|
||||
%% Created for Pierre-Francois Loos at 2020-05-21 09:37:18 +0200
|
||||
%% Created for Pierre-Francois Loos at 2020-05-26 10:43:21 +0200
|
||||
|
||||
|
||||
%% Saved with string encoding Unicode (UTF-8)
|
||||
@ -15,7 +15,8 @@
|
||||
School = {Universit{\'e} Pierre et Marie Curie --- Paris VI},
|
||||
Title = {Range-Separated Density-Functional Theory for Molecular Excitation Energies},
|
||||
Url = {https://tel.archives-ouvertes.fr/tel-01027522},
|
||||
Year = {2014}}
|
||||
Year = {2014},
|
||||
Bdsk-Url-1 = {https://tel.archives-ouvertes.fr/tel-01027522}}
|
||||
|
||||
@article{Baumeier_2012a,
|
||||
Author = {Baumeier, Bj\"{o}rn and Andrienko, Denis and Rohlfing, Michael},
|
||||
|
111
BSEdyn.tex
111
BSEdyn.tex
@ -309,10 +309,10 @@ can be expressed as a function of the one- and two-body Green's functions
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
\label{eq:G1}
|
||||
G(1,1') & = - i \mel{N}{T \hpsi(1) \hpsi^{\dagger}(1')}{N},
|
||||
G(1,2) & = - i \mel{N}{T [ \hpsi(1) \hpsi^{\dagger}(2) ] }{N},
|
||||
\\
|
||||
\label{eq:G2}
|
||||
G_2(1,2;1',2') & = - \mel{N}{T \hpsi(1) \hpsi(2) \hpsi^{\dagger}(2') \hpsi^{\dagger}(1')}{N},
|
||||
G_2(1,2;1',2') & = - \mel{N}{T [ \hpsi(1) \hpsi(2) \hpsi^{\dagger}(2') \hpsi^{\dagger}(1') ]}{N},
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
and
|
||||
@ -331,17 +331,17 @@ In the optical limit of instantaneous electron-hole creation and destruction, im
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
iL(1,2; 1',2')
|
||||
& = \theta(+t_{12}) \sum_{s > 0} \chi_s(\bx_1,\bx_{1'}) \tchi_s(\bx_2,\bx_{2'}) e^{ - i \Oms t_{12} }
|
||||
& = \theta(+\tau_{12}) \sum_{s > 0} \chi_s(\bx_1,\bx_{1'}) \tchi_s(\bx_2,\bx_{2'}) e^{ - i \Oms \tau_{12} }
|
||||
\\
|
||||
& - \theta(-t_{12}) \sum_{s > 0} \chi_s(\bx_2,\bx_{2'}) \tchi_s(\bx_1,\bx_{1'}) e^{ + i \Oms t_{12} },
|
||||
& - \theta(-\tau_{12}) \sum_{s > 0} \chi_s(\bx_2,\bx_{2'}) \tchi_s(\bx_1,\bx_{1'}) e^{ + i \Oms \tau_{12} },
|
||||
\end{split}
|
||||
\end{equation}
|
||||
where $t_{12} = t_1 - t_2$, $\theta$ is the Heaviside step function, and
|
||||
where $\tau_{12} = t_1 - t_2$, $\theta$ is the Heaviside step function, and
|
||||
\begin{subequations}
|
||||
\begin{align}
|
||||
\chi_s(\bx_1,\bx_{2}) & = \mel{N}{T \hpsi(\bx_1) \hpsi^{\dagger}(\bx_{2})}{N,s},
|
||||
\chi_s(\bx_1,\bx_{2}) & = \mel{N}{T [\hpsi(\bx_1) \hpsi^{\dagger}(\bx_{2})] }{N,s},
|
||||
\\
|
||||
\tchi_s(\bx_1,\bx_{2}) & = \mel{N,s}{T \hpsi(\bx_1) \hpsi^{\dagger}(\bx_{2})}{N}.
|
||||
\tchi_s(\bx_1,\bx_{2}) & = \mel{N,s}{T [\hpsi(\bx_1) \hpsi^{\dagger}(\bx_{2})] }{N}.
|
||||
\end{align}
|
||||
\end{subequations}
|
||||
The $\Oms$'s are the neutral excitation energies of interest.
|
||||
@ -349,100 +349,101 @@ The $\Oms$'s are the neutral excitation energies of interest.
|
||||
Picking up the $e^{+i \Oms t_2 }$ component in $L(1,2; 1',2')$ and $L(6,2;5,2')$, simplifying further by $\tchi_s(\bx_2,\bx_{2'})$ on both side of the BSE [see Eq.~\eqref{eq:BSE}], we are left with the search of the $e^{-i \Oms t_1 }$ Fourier component associated with the right-hand side of the modified dynamical BSE:
|
||||
\begin{multline} \label{eq:BSE_2}
|
||||
\mel{N}{T \hpsi(\bx_1) \hpsi^{\dagger}(\bx_{1}')}{N,s} e^{ - i \Oms t_1 }
|
||||
\theta ( t_{12} )
|
||||
\theta ( \tau_{12} )
|
||||
\\
|
||||
= \int d3456 \, L_0(1,4;1',3) \Xi(3,5;4,6)
|
||||
\\
|
||||
\times \mel{N}{T \hpsi(6) \hpsi^{\dagger}(5)}{N,s}
|
||||
\times \mel{N}{T [\hpsi(6) \hpsi^{\dagger}(5)] }{N,s}
|
||||
\theta [\min(t_5,t_6) - t_2].
|
||||
\end{multline}
|
||||
For the lowest neutral excitation energies falling in the fundamental gap of the system (\ie, $\Oms < \EgFun$), $L_0(1,2;1',2')$ cannot contribute to the $e^{-i \Oms t_1 }$ response due to excitonic effects since its lowest excitation energy is precisely the fundamental gap [see Eq.~\eqref{eq:Egfun}].
|
||||
\titou{T2: Xavier, should we mention the consequences of this more explicitly?}
|
||||
Consequently, special care has to be taken for high-lying excited states (like core or Rydberg excitations) where additional terms have to be taken into account (see Refs.~\onlinecite{Strinati_1982,Strinati_1984}).
|
||||
|
||||
Dropping the (space/spin) variables, the Fourier components with respect to $t_1$ of $L_0(1,4;1',3)$ reads
|
||||
\begin{align} \label{eq:iL0}
|
||||
[iL_0]( \omega_1 )
|
||||
= \int \frac{d\omega}{2\pi} \; G\qty(\omega - \frac{\omega_1}{2} ) G\qty( {\omega} + \frac{\omega_1}{2} )
|
||||
e^{ i \omega t_{34} } e^{ i \omega_1 t^{34} }
|
||||
e^{ i \omega \tau_{34} } e^{ i \omega_1 \tau^{34} },
|
||||
\end{align}
|
||||
with $t_{34} = t_3 - t_4$ and $t^{34} = (t_3 + t_4)/2$.
|
||||
with $\tau_{34} = t_3 - t_4$ and $\tau^{34} = (t_3 + t_4)/2$.
|
||||
We now adopt the Lehman representation of the one-body Green's function in the quasiparticle approximation, \ie,
|
||||
\begin{equation} \label{eq:G-Lehman}
|
||||
G(\bx_1,\bx_2 ; \omega) = \sum_p \frac{ \phi_p(\bx_1) \phi_p^*(\bx_2) } { \omega - \e{p} + i \eta \times \text{sgn} (\e{p} - \mu) }
|
||||
G(\bx_1,\bx_2 ; \omega) = \sum_p \frac{ \phi_p(\bx_1) \phi_p^*(\bx_2) } { \omega - \e{p} + i \eta \times \text{sgn} (\e{p} - \mu) },
|
||||
\end{equation}
|
||||
where $\mu$ is the chemical potential.
|
||||
The set $\e{p}$'s in Eq.~\eqref{eq:G-Lehman} are quasiparticle energies and the $\phi_p$'s are their associated one-body (spin)orbitals.
|
||||
The $\e{p}$'s in Eq.~\eqref{eq:G-Lehman} are quasiparticle energies (\ie, proper addition/removal energies) and the $\phi_p$'s are their associated one-body (spin)orbitals.
|
||||
%where the $\eps_{p}$'s are proper addition/removal energies such that
|
||||
%\begin{equation}
|
||||
% e^{i \hH \tau} \ha_p^{\dagger} \ket{N} = e^{ i (E_0^N + \e{p} ) \tau } \ha_p^{\dagger} \ket{N},
|
||||
%\end{equation}
|
||||
%$\hH$ being the exact many-body Hamiltonian.
|
||||
In the following, $i$ and $j$ are occupied orbitals, $a$ and $b$ are unoccupied orbitals, while $p$, $q$, $r$, and $s$ indicate arbitrary orbitals.
|
||||
%\titou{namely $GW$ quasiparticle energies and input Hartree-Fock molecular orbitals in the present study. (T2: shall we really mention this here?)}
|
||||
After projecting onto $\phi_a^*(\bx_1) \phi_i(\bx_{1'})$, one gets
|
||||
Projecting $L_0(1,4;1',3)$ onto $\phi_a^*(\bx_1) \phi_i(\bx_{1'})$ yields
|
||||
\begin{multline}
|
||||
\int d\bx_1 d\bx_{1'} \; \phi_a^*(\bx_1) \phi_i(\bx_{1'}) L_0(\bx_1,3;\bx_{1'},4; \Oms)
|
||||
\int d\bx_1 d\bx_{1'} \; \phi_a^*(\bx_1) \phi_i(\bx_{1'}) L_0(\bx_1,4;\bx_{1'},3; \Oms)
|
||||
\\
|
||||
=
|
||||
\frac{ \phi_a^*(\bx_3) \phi_i(\bx_4) e^{i \Oms t^{34} }} { \Oms - ( \e{a} - \e{i} ) + i \eta }
|
||||
\qty[ \theta( \tau ) e^{i ( \e{i} + \hOms) \tau } + \theta( - \tau ) e^{i (\e{a} - \hOms \tau) } ]
|
||||
\qty[ \theta( \tau_{34} ) e^{i ( \e{i} + \hOms) \tau_{34} } + \theta( - \tau_{34} ) e^{i (\e{a} - \hOms \tau_{34}) } ].
|
||||
\end{multline}
|
||||
with $\tau = t_{34}$.
|
||||
\titou{T2: I think 3 and 4 have been swapped in the previous equation.}
|
||||
% and $(i,j)$/$(a,b)$ index occupied/virtual orbitals, respectively.
|
||||
Adopting now the $GW$ approximation for the exchange-correlation self-energy, \ie,
|
||||
\begin{equation}
|
||||
\Sigma_\text{xc}^{\GW}(1,2) = i G(1,2) W(1^+,2),
|
||||
\end{equation}
|
||||
leads to the following simplified BSE kernel
|
||||
\begin{equation}
|
||||
\Xi(3,5;4,6) = v(3,6) \delta(3,4) \delta(5,6) - W(3^+,4) \delta(3,6) \delta(4,5),
|
||||
\end{equation}
|
||||
where $W$ is its dynamically-screened Coulomb operator.
|
||||
\titou{T2: shall we introduce the GW approximation later on?}
|
||||
As a final step, we express the terms $\mel{N}{T \hpsi(\bx_1) \hpsi^{\dagger}(\bx_{1}')}{N,s}$ and $\mel{N}{T \hpsi(6) \hpsi^{\dagger}(5)}{N,s}$ from Eq.~\eqref{eq:BSE_2} in the standard electron-hole product (or single-excitation) space.
|
||||
As a final step, we express the terms $\mel{N}{T [\hpsi(\bx_1) \hpsi^{\dagger}(\bx_{1}')] }{N,s}$ and $\mel{N}{T [\hpsi(6) \hpsi^{\dagger}(5)] }{N,s}$ from Eq.~\eqref{eq:BSE_2} in the standard electron-hole product (or single-excitation) space.
|
||||
% with $(6,5) \rightarrow (5,5) \; \text{or} \; (3,4)$ when multiplied by $\delta(5,6)$ or $\delta(3,6) \delta(4,5)$, respectively.
|
||||
This is done by expanding the field operators over a complete orbital basis of creation/destruction operators.
|
||||
For example, we have
|
||||
\begin{multline}
|
||||
\mel{N}{T \hpsi(3) \hpsi^{\dagger}(4)}{N,s}
|
||||
\mel{N}{T [\hpsi(3) \hpsi^{\dagger}(4)] }{N,s}
|
||||
\\
|
||||
= - \qty( e^{ -i \Omega_s t^{34} } ) \sum_{pq} \phi_p(\bx_3) \phi_q^*(\bx_4)
|
||||
\mel{N}{\ha_q^{\dagger} \ha_p}{N,s}
|
||||
\\
|
||||
\times \qty[ \theta( t_{34} ) e^{- i ( \e{p} - \hOms ) t_{34} } + \theta( - t_{34} ) e^{ - i ( \e{q} + \hOms) t_{34} } ],
|
||||
\end{multline}
|
||||
where the $ \lbrace \eps_{p/q} \rbrace$ are proper addition/removal energies \titou{(T2: shall it be mentioned earlier around Eq. (14)?)} such that
|
||||
with a similar expression for $\mel{N}{T [\hpsi(\bx_3) \hpsi^{\dagger}(\bx_4)] }{N,s}$.
|
||||
|
||||
Adopting now the $GW$ approximation for the exchange-correlation self-energy, \ie,
|
||||
\begin{equation}
|
||||
e^{i \hH \tau} \ha_p^{\dagger} \ket{N} = e^{ i (E_0^N + \e{p} ) \tau } \ha_p^{\dagger} \ket{N},
|
||||
\Sigma_\text{xc}^{\GW}(1,2) = i G(1,2) W(1^+,2),
|
||||
\end{equation}
|
||||
$\hH$ being the exact many-body Hamiltonian.
|
||||
The $GW$ quasiparticle energies $\eGW{i/a}$ are good approximations to such removal/addition energies.
|
||||
Selecting $(p,q)=(j,b)$ yields the largest components
|
||||
$X_{jb}^{s} = \mel{N}{\ha_j^{\dagger} \ha_b}{N,s}$, while $(p,q)=(b,j)$ yields much weaker
|
||||
$Y_{jb}^{s} = \mel{N}{\ha_b^{\dagger} \ha_j}{N,s}$ contributions.
|
||||
Neglecting the $Y_{jb}^{s}$ weights leads to the Tamm-Dancoff approximation (TDA).
|
||||
Working out the same expansion for $\mel{N}{T \hpsi(5) \hpsi^{\dagger}(5)}{N,s}$ and $\mel{N}{T \hpsi(\bx_1) \hpsi^{\dagger}(\bx_{1'})}{N,s}$ \titou{(where do we need these terms?)}, and projecting onto $\phi_a^*(\bx_1) \phi_i(\bx_{1'})$, one obtains after a few tedious manipulations (see {\SI}) the dynamical Bethe-Salpeter equation (dBSE):
|
||||
\begin{equation}
|
||||
leads to the following simplified BSE kernel
|
||||
\begin{equation} \label{eq:Xi_GW}
|
||||
\Xi(3,5;4,6) = v(3,6) \delta(3,4) \delta(5,6) - W(3^+,4) \delta(3,6) \delta(4,5),
|
||||
\end{equation}
|
||||
where $W$ is the dynamically-screened Coulomb operator.
|
||||
The $GW$ quasiparticle energies $\eGW{p}$ are good approximations to the removal/addition energies $\e{p}$ introduced in Eq.~\eqref{eq:G-Lehman}.
|
||||
%Selecting $(p,q)=(j,b)$ yields the largest components
|
||||
%$X_{jb}^{s} = \mel{N}{\ha_j^{\dagger} \ha_b}{N,s}$, while $(p,q)=(b,j)$ yields much weaker
|
||||
%$Y_{jb}^{s} = \mel{N}{\ha_b^{\dagger} \ha_j}{N,s}$ contributions.
|
||||
%Neglecting the $Y_{jb}^{s}$ weights leads to the Tamm-Dancoff approximation (TDA).
|
||||
|
||||
%Working out similar expressions for $\mel{N}{T [\hpsi(5) \hpsi^{\dagger}(5)] }{N,s}$ and $\mel{N}{T [\hpsi(\bx_1) \hpsi^{\dagger}(\bx_{1'})] }{N,s}$,
|
||||
Substituting Eq.~\eqref{eq:Xi_GW} into Eq.~\eqref{eq:BSE_2}, working out similar expressions for the remaining terms, and projecting onto $\phi_a^*(\bx_1) \phi_i(\bx_{1'})$, one gets after a few tedious manipulations (see {\SI}) the dynamical Bethe-Salpeter equation (dBSE):
|
||||
\begin{equation} \label{eq:BSE-final}
|
||||
\begin{split}
|
||||
( \e{a} - \e{i} - \Oms ) X_{ia}^{s}
|
||||
& + \sum_{jb} \qty[ v_{ai,bj} - \widetilde{W}_{ij,ab}(\Oms) ] X_{jb}^{s} \\
|
||||
& + \sum_{jb} \qty[ v_{ai,jb} - \widetilde{W}_{ib,aj}(\Oms) ] Y_{jb}^{s}
|
||||
( \eGW{a} - \eGW{i} - \Oms ) X_{ia}^{s}
|
||||
& + \sum_{jb} \qty[ (ia|jb) - \widetilde{W}_{ij,ab}(\Oms) ] X_{jb}^{s} \\
|
||||
& + \sum_{jb} \qty[ (ia|bj) - \widetilde{W}_{ib,aj}(\Oms) ] Y_{jb}^{s}
|
||||
= 0
|
||||
\end{split}
|
||||
\end{equation}
|
||||
with an effective dynamically-screened Coulomb potential \cite{Romaniello_2009b}
|
||||
with
|
||||
\begin{equation}
|
||||
(pq|rs) = \int d\br d\br' \, \phi_p^*(\br) \phi_q(\br) v(\br -\br') \phi_r^*(\br') \phi_s(\br'),
|
||||
\end{equation}
|
||||
and an effective dynamically-screened Coulomb potential \cite{Romaniello_2009b}
|
||||
\begin{multline}
|
||||
\widetilde{W}_{ij,ab}(\Oms)
|
||||
= \frac{ i }{ 2 \pi} \int d\omega \; e^{-i \omega 0^+ } W_{ij,ab}(\omega)
|
||||
\\
|
||||
\times \qty[ \frac{1}{ \Omega_{ib}^s - \omega + i \eta } + \frac{1}{ \Omega_{ja}^{s} + \omega + i\eta } ]
|
||||
\times \qty[ \frac{1}{ \Omega_{ib}^s - \omega + i \eta } + \frac{1}{ \Omega_{ja}^{s} + \omega + i\eta } ],
|
||||
\end{multline}
|
||||
where $\Om{ib}{s} = \Oms - ( \e{b} - \e{i} )$ and $\Om{ja}{s} = \Oms - ( \e{a} - \e{j} )$.
|
||||
Following Mulliken's notations, the Coulomb matrix elements are defined as
|
||||
\begin{align}
|
||||
v_{ai,bj}
|
||||
& = \int d\br d\br' \; \phi_a(\br) \phi_i^*(\br) v(\br -\br') \phi_b^*(\br') \phi_j(\br'),
|
||||
\\
|
||||
where $\Om{ib}{s} = \Oms - ( \eGW{b} - \eGW{i} )$, $\Om{ja}{s} = \Oms - ( \eGW{a} - \eGW{j} )$, and
|
||||
\begin{equation}
|
||||
W_{ij,ab}({\omega})
|
||||
& = \int d\br d\br' \; \phi_i(\br) \phi_j^*(\br) W(\br ,\br'; \omega) \phi_a^*(\br') \phi_b(\br'),
|
||||
\end{align}
|
||||
where we group together the indices of orbitals taken at the same space position, taking further as inner indices those associated with orbitals with complex conjugation.
|
||||
= \int d\br d\br' \, \phi_i(\br) \phi_j^*(\br) W(\br ,\br'; \omega) \phi_a^*(\br') \phi_b(\br'),
|
||||
\end{equation}
|
||||
Neglecting the terms $Y_{jb}^{s}$ in Eq.~\eqref{eq:BSE-final} leads to the well-known Tamm-Dancoff approximation (TDA).
|
||||
|
||||
\xavier{A second coupled equation for the $(X_{ia}^{s}, Y_{ia}^{s} )$ vector can be obtained by projecting now onto the $\mel{N}{T \hpsi(\bx_1) \hpsi^{\dagger}(\bx_{1'})}{N,s}$ left-hand side and right-hand-side of the BSE, leading to : }
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user